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Parametric Quadratic Programming

Let Lk denote the set of one-parameter affine linear functions onto Rk ,

Lk = {f : [0, 1]→ Rk | ∀τ ∈ (0, 1) : f (τ) = (1− τ)f (0) + τ f (1)}.

For g, lb,ub ∈ Ln and lA,uA ∈ Lm we are interested in solving

min
x

1
2 xT Hx + g(τ)T x

s.t. uA(τ) ≥ Ax ≥ lA(τ)
ub(τ) ≥ x ≥ lb(τ)

(PQP(τ ))

H ∈ Rn×n sym. pos. def., A ∈ Rm×n.

Theorem: Under primal and dual nondegeneracy, the solution
x : [0, 1]→ Rn and the multipliers y : [0, 1]→ Rm are piecewise affine
linear in the parameter τ .

Determine pieces of x , y iteratively.
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Critical Regions

Let (x(0), y(0)) be optimal for PQP(0).

Optimality conditions:

0 = Hx + g(0)− AT yA − yb

0 ≤ rA(0) = Ax − lA(0)

0 ≤ rb(0) = x − lb(0)

0 ≤ yA
i if 0 = rA(0)

0 = yA
i if 0 < rA(0)

0 ≤ yb
i if 0 = rb(0)

0 = yb
i if 0 < rb(0)

Upper bounds ignored for simplicity.
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Critical Regions

Let (x(0), y(0)) be optimal for PQP(0).

Shift of g(0), l(0) towards g(1), l(1):

0 = H(x + τ∆x) + g(τ)− AT (yA + τ∆yA)− (yb + τ∆yb)

0 ≤ rA(0) + τ∆rA = A(x + τ∆x)− lA(τ)

0 ≤ rb(0) + τ∆rb = x + τ∆x − lb(τ)

0 ≤ yi + τ∆yi if 0 = ri = ∆ri
0 = yi = ∆yi if 0 < ri

Upper bounds ignored for simplicity.
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Critical Regions

Let (x(0), y(0)) be optimal for PQP(0).

Compute (∆x ,∆y) from ∆g = g(1)− g(0), ∆l = l(1)− l(0):−∆g = H∆x − AT ∆yA −∆yb

∆x such that active ri remain zero
∆y such that inactive yi remain zero

2n + m conditions for 2n + m unknowns (∆x ,∆yb,∆yA).

Now choose τ maximal such that:{
−τ∆rA

i ≤ rA
i for i inactive

−τ∆rb
i ≤ rb

i for i inactive{
−τ∆yA

i ≤ yA
i for i active

−τ∆yb
i ≤ yb

i for i active

Upper bounds ignored for simplicity.
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The qpOASES Algorithm

Init: Let (x , y) solve PQP(0).
Solve: Compute ∆g = g(1)− g(τ), ∆l = l(1)− l(τ)

Compute (∆r ,∆y) from (∆g,∆l)
Ratio: For all i inactive, let αi = −rA

i /∆ri
For all i active, let αi = −yi/∆yi
Let i∗ = argmin{i | αi ≥ 0}

Step: let α = αi∗ , let τ+ = τ + α(1− τ),
let r = r + α∆r , y = y + α∆y

Term: If τ = 1 then stop with (x , y) solving PQP(1).
LITest: If i∗ inactive becomes active:

Test for linear dependence on actives
If needed, find j∗ active that becomes inactive

NPCTest: If i∗ active becomes inactive:
Test for non-positive curvature on null-space
If needed, find j∗ inactive that becomes active

Loop: Go to Solve
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Linear Algebra Tasks in qpOASES

Working setW = (X ,A), (fixed vars, active cons),
its complement isWC = (F , I) (free vars, inactive cons)
Computing (∆x ,∆y) for a working setW means solving

HXX HXF AT
AX IX

HFX HFF AT
AF

AAX AAF
IX


︸ ︷︷ ︸

=KW


∆xX
∆xF
−∆yA

A
−∆yb

X

 =


−∆gX
−∆gF

∆lAA
∆lbX



Per iteration, at most one member enters/leaves setsW andWC

Efficient approach: Factorize KW once (expensive), maintain
factorization through updates (cheap)
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What some other active-set solvers do
Dense: Null-space method with updates (Gill et al., 70ies+80ies)
Iterative: Preconditioned CG, matrix free (QPA, Gould et al.)
Tailored: Exploit block structures from partial separability,
e.g. condensing-type algorithms (Bock et al., 1984),
Marc Steinbach’s group, qpHPSC (K., 2010),
qpSchur (Biegler et al.), qpDUNES (Frasch et al., next talk)

General-purpose:
CPLEX, GuRoBi: Solve LP with complementarities using Wolfe’s
method (50ies !), can use sparse techniques for revised simplex

bqpd: LIU and Fletcher-Matthews updates (Fletcher et al., 90ies)

QPBLU(R), SQIC: sparse LDLT and Schur complement updates
(Saunders ≥2008, Gill, Wong, 2013)

Andreas approached me with a similar implementation for qpOASES
in late 2012
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Typical Matrices from Control Problems
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Sparse Factorizations for K

Possibilities:
Sparse K = LDLT

Sparse K = LU
Sparse LK = U

Codes:
HSL MA27/57
MA32/42, PARADISO, SuperLU, UMFPACK, WSMP

Advantages:
Pivoting for numerical stability and structural sparsity
Detection of rank deficiency
More efficient memory accesses
Vectorization opportunities, BLAS-3
Parallelization opportunities: multi-core
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Schur Complement Idea

Kd = r , have factorization of K .

Active set changes append border to KKT system matrix K :[
K M

MT N

] [
d
p

]
=

[
r
q

]
=⇒

[
K M
0 N −MT K−1M

] [
d
p

]
=

[
r

q −MT K−1r

]
=⇒

[
K M
0 S

] [
d
p

]
=

[
r

q −MT K−1r

]
Two tasks:

Need to explain how M, N, q are formed
Need to maintain factorization of Schur
complement S

For active-set QP: Gill, Murray, Saunders, Wright, 1987.
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Add/Remove a Bound

Add a bound i ∈ F to X : Express ∆xi = ∆lbiHFF AT
AF ei

AAF 0 0
eT

i 0 0

 ∆xF
−∆yA
−∆yi

 =

−∆g̃F
∆lA
∆bi


∆g̃F is ∆gF with i-th component set to zero.

Remove a bound i ∈ X to F : xi now free, system needs to growHFF AT
AF HF i

AAF 0 AAi

HiF AT
Ai Hii

 ∆xF
−∆yA

∆xi

 =

−∆g̃F
∆lA
−∆gi


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Add/Remove a Constraint

Add a constraint i ∈ I to A: Express Ai∆x = ∆lAiHFF AT
AF AT

iF
AAF 0 0
AiF 0 0

 ∆xF
−∆yA
−∆yi

 =

−∆gF
∆lA
∆bi



Remove a constraint i ∈ A to I: Add a free constraint slackHFF AT
AF 0

AAF 0 ei

0 eT
i 0

 ∆xF
−∆yA

s

 =

−∆g̃F
∆l̃A

0


∆l̃A is ∆lA with i-th component set to zero.
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Update of Schur Complement

Assume

N̄ =

[
N n1

nT
1 n2

]
, M̄ =

[
M m

]
Then the new Schur complement matrix S̄ is

S̄ =

[
MT

mT

]
S
[
M m

]
−
[

N n1

nT
1 n2

]
=

[
MT K−1M MT K−1m
mT K−1M mT K−1m

]
−
[

N n1

nT
1 n2

]

=

[
S MT K−1m− n1

mT K−1M − nT
1 mT K−1m− n2

]

Rank-1 updates to a factorization of S, e.g. dense QR.
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Tradeoffs

Stability: Schur complement S may quickly become ill-conditioned.

Sparse solvers typically provide a condition number estimate obtained
from the diagonal pivots. qpOASES refacctorizes if this exceeds a
threshold condMax; we can go pretty high, e.g. condMax = 1014

Speed: Schur complement S grows in every iteration.

qpOASES refectorizes every nSmax, e.g. nSmax = 100, iterations =⇒ obtain
new factors for new KW and start with an empty border.

There is a tradeoff between working with the dense QR factor of S and
computing a sparse factor of KW .
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Guesses of the Working Set

Advantage of pivoting factorization: Can easily cope with
rank-deficient A and wild guesses ofW0

Opens up possibility to use crash strategies to obtain good initial
guesses.

AssumeW0 such that KW0 is singular because AAF has linearly
dependent rows.

Then, a pivoting factorization will yield P, Q such that

PT KW0Q =
[

KW̄0
IB
]
.

W̄0 ⊂ W0 is a maximal linear independent subset ofW0. The unassigned
column pivots B are a minimal set of simple bounds to augment W̄0.
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Inertia Control

Can use qpOASES to find second-order critical points of indefinite QPs.

If KW0 had correct inertia, then In(S) = (σ−, σ+, 0) where σ− and σ+ are
the numbers of constraints removed and added.

Can monitor inertia of S to monitor inertia of KW : Only need to look at
sign changes of determinant.

In case of incorrect inertia of S, we can flip the side of the removed
bound/constraint and add it again.

In case of incorrect inertia of KW0 itself, a pivoting factorization will yield
P, Q such that

PT KW0Q =
[

KW̄0
IB
]
.

where the unassigned column pivots B are a minimal set of simple
bounds to augment W̄0 such that correct inertia is obtained.
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Things to to

Internal representation of working set slightly involved to work with

Apparently slows down some sparse vector operations

qpOASES cold startup currently somewhat sluggish. Crashing
strategies for guessing the initial working set will cure this.

But remember that qpOASES’ strength is solving sequences of
problems!

Thorough comparisons with dense qpOASES and sparse QP codes
such as bqpd and SQIC

(QP Benchmark Collection will be very helpful)

18 Christian Kirches � christian.kirches@iwr.uni-heidelberg.de A sparse variant of qpOASES



Sparse qpOASES in ongoing projects

Moving to COIN-OR:
A new release of qpOASES including the sparse
variant will join the COIN-OR initiative.
http://www.coin-or.org

iQP: T.C. Johnson, C. Kirches, A. Wächter. An Active-Set Quadratic
Programming Method Based On Sequential Hot-Starts.
http://www.optimization-online.org/DB_HTML/2013/10/4084.html

(submitted to SIAM J. Opt.)

Optimum Experimental Design for dynamic processes:
Sparse Block-SR1 SQP code for NLPs coming from dynamic OED
problems.
Part of Dennis’ thesis. Paper to be submitted to Comp. Optim. Appl. or
Math. Prog. Comput.
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Thank you very much for your attention!

Christian Kirches

Interdisciplinary Center for Scientific Computing (IWR)
Heidelberg University

mail Im Neuenheimer Feld 368
69120 Heidelberg, Germany

phone +49 6221 54-8812
e-mail christian.kirches@iwr.uni-heidelberg.de
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