
Optimal Control, MPC and MHE

Mario Zanon

– Katholieke Universiteit Leuven



Outline 2 / 14

1 Optimal Control

2 Model Predictive Control

3 Software for OCP and MPC



Optimal Control 3 / 14

1 Optimal Control

2 Model Predictive Control

3 Software for OCP and MPC



Optimal Control 4 / 14

Optimal Control Problem (OCP)

minimise
x(·),u(·),T

∫ T

0

`(x(τ), u(τ)) dτ + V (x(T ))

subject to ẋ(τ) = f (x(τ), u(τ)), t ∈ [0,T ], (dynamic model)

h(x(τ), u(τ)) ≥ 0, t ∈ [0,T ], (path constraints)

r(x(0), x(T )) ≥ 0. (initial/terminal conditions)
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OCP Solution Approacehs

Three families of approaches:

Hamilton-Jacobi-Bellman / Dynamic Programming

Indirect Methods (first optimise then discretise)

Direct Methods

Direct single shooting
Direct multiple shooting
Direct collocation
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Single vs. Multiple Shooting

Single Shooting:
From x(t0) integrate the system on the whole horizon

→ continuous trajectory

Multiple Shooting:
From x(tk) integrate the system on each interval separately

→ discontinuous trajectory
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Single vs. Multiple Shooting

Single Shooting:
From x(t0) integrate the system on the whole horizon

→ continuous trajectory

Multiple Shooting:
From x(tk) integrate the system on each interval separately

→ discontinuous trajectory

Colloctaion:
For each point x(tk) satisfy the collocation equations

→ discontinuous trajectory
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MS OCP Discretisation

The OCP becomes a nonlinear programming problem (NLP)

minimise
x0,...,xN ,

u0,...,uN−1

N∑
k=0

`(xk , uk) + V (xN)

subject to xk+1 = f (xk , uk), k = 0, . . . ,N − 1, (dynamic model)

h(xk , uk) ≥ 0, k = 0, . . . ,N − 1, (path constraints)

r(x0, xN) ≥ 0. (initial/terminal conditions)

... and it can be seen as an OCP for discrete time systems
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Brain predicts and optimizes:
e.g. slow down before curve

Model Predictive Control (MPC)

Always look a bit into the future.



Model Predictive Control 10 / 14

Looking ahead in the future...

...design a control sequence minimizing the deviation from the reference
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h (sk , uk ) ≤ 0, k = 0, . . . ,N − 1, → path constraints

s0 = x̂0. → current state of the system
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

NLP cannot be solved instantaneously: better to apply
suboptimal solution (almost) instantaneously?
optimal solution after a longer time delay?

SQP for NMPC in a nutshell

NMPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖
2
Q +

N−1∑
k=0

‖uk − uref ‖
2
R

s.t. sk+1 = f (sk , uk )

h (sk , uk ) ≥ 0,

s0 = x̂i

Iterative procedure (at each time i):

1 Given current guess s, u

2 Linearize at s, u: need 2nd order derivatives for B

3 Make sure Hessian B � 0: avoid negative curvature

4 Solve QP

5 Globalization: ensure descent, stepsize α ∈ (0, 1]

6 Update

[
s+

u+

]
=

[
s
u

]
+ α

[
∆s
∆u

]

Preparation Phase
Without knowing x̂i

Linearize

(Gauss-Newton⇒ B � 0)

Prepare the QP

Feedback Phase:

Solve QP once x̂i available
→ same latency as linear MPC
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2
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] [
∆s
∆u
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f

+
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme
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3 Make sure Hessian B � 0: avoid negative curvature

4 Solve QP

5 Globalization: ensure descent, stepsize α ∈ (0, 1]

6 Update

[
s+

u+

]
=

[
s
u

]
+ α

[
∆s
∆u

]

Preparation Phase
Without knowing x̂i

Linearize

(Gauss-Newton⇒ B � 0)

Prepare the QP

Feedback Phase:

Solve QP once x̂i available
→ same latency as linear MPC
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell Real Time Iterations
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min
u,s

N∑
k=0

‖sk − xref ‖
2
Q +

N−1∑
k=0

‖uk − uref ‖
2
R

s.t. sk+1 = f (sk , uk )

h (sk , uk ) ≥ 0,

s0 = x̂i

RTI at time i

min
∆u,∆s

1

2

[
∆s ∆u

]
JT J

[
∆s
∆u

]
+ JT

[
∆s
∆u

]

s.t. ∆sk+1 = f +
∂f

∂s
∆sk +

∂f

∂u
∆uk

h +
∂h

∂s
∆sk +

∂h

∂u
∆uk ≥ 0,

s0 = x̂i

Iterative procedure (at each time i):

1 Given current guess s, u
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3 Make sure Hessian B � 0: avoid negative curvature

4 Solve QP

5 Globalization: ensure descent, stepsize α ∈ (0, 1]

6 Update

[
s+

u+

]
=

[
s
u

]
+ α

[
∆s
∆u

]

Preparation Phase
Without knowing x̂i

Linearize

(Gauss-Newton⇒ B � 0)

Prepare the QP

Feedback Phase:

Solve QP once x̂i available
→ same latency as linear MPC
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www.casadi.org

Key Properties of Casadi

Open Source (LGPL)

Automatic Differentiation

Python interface

What is it good for?

Easy and powerful way of formulating NLPs/OCPs

Linked to NLP solvers

Linked to Sundials integrators
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ACADO Toolkit

www.acadotoolkit.org

Key Properties of ACADO Toolkit

Open Source (LGPL)

User friendly interfaces close to mathematical syntax

Depends only on the C++ standard library

Multiplatform support

C++: Linux, OS X, Windows

MATLAB

Fast implementations for real-time execution
−→ ACADO Code Generation tool:

Export tailored solver in plain C code
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