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Optimal Control Problem (OCP)

y path constraints h(x, u) > 0

states x(t) ¥_ )
initial value % terminal

0| # constraint r(x(T)) > 0
i ——
0 t T
m|n|m|se / Ux(1),u(r))dr + V(x(T))
subject to x(7) = f(x(7), u(7)), t€[0,T], (dynamic model)
h(x(7),u(r)) >0, t€[0,T], (path constraints)

r(x(0),x(T)) > 0. (initial /terminal conditions)
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OCP Solution Approacehs

Three families of approaches:
@ Hamilton-Jacobi-Bellman / Dynamic Programming
@ Indirect Methods (first optimise then discretise)
@ Direct Methods (first discretise then optimise)

e Direct single shooting
o Direct multiple shooting
e Direct collocation
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Single vs. Multiple Shooting

@ Single Shooting:

From x(t) integrate the system on the whole horizon
— continuous trajectory

0061
20055~ s1 = z(Ty)
¥ 50 = z(0)
0045 50 o oés 0z o5 o
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Single vs. Multiple Shooting

@ Single Shooting:
From x(t) integrate the system on the whole horizon
— continuous trajectory
@ Multiple Shooting:

From x(tx) integrate the system on each interval separately
— discontinuous trajectory

0.061~

f(s0,u0) = xo(Ts) f(s1,u1) = 21(Ty)

£30.055(

s0 = x0(0) s1 = x1(0) s2 = x2(0)
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Single vs. Multiple Shooting

@ Single Shooting:
From x(t) integrate the system on the whole horizon
— continuous trajectory
@ Multiple Shooting:
From x(tx) integrate the system on each interval separately
— discontinuous trajectory
@ Colloctaion:
For each point x(tx) satisfy the collocation equations
— discontinuous trajectory
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N
uo,---sUn—1 k=0

subject to X1 = f(Xk, Uk), k=0,...,N—1, (dynamic model)
h(xk, ux) >0, k=0,...,N—1, (path constraints)

r(xo, xn) > 0. (initial /terminal conditions)
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MS OCP Discretisation

The OCP becomes a nonlinear programming problem (NLP)

N
uo,---sUn—1 k=0

subject to X1 = f(Xk, Uk), k=0,...,N—1, (dynamic model)
h(xk, ux) >0, k=0,...,N—1, (path constraints)
r(xo, xn) > 0. (initial /terminal conditions)

. and it can be seen as an OCP for discrete time systems
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© Model Predictive Control
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Looking ahead in the future...

...design a control sequence minimizing the deviation from the reference
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time [s]

N-1
min sy — Seer |5 + Z Isk — sref||%) + ||ux — uerl|2  —  deviation from the reference
k=0

sit. sei1 = f(sk,ux), k=0,....,N—1, — model of the system evolution
h(sk, ux) <0, k=0,...,N—1, — path constraints
so = Xo. — current state of the system
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

NLP cannot be solved instantaneously: better to apply
@ suboptimal solution (almost) instantaneously?
@ optimal solution after a longer time delay?
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

Quadratic Problem Approximation

SQP for NMPC in a nutshell
NMPC at time i QP (for a given s, u)
As

oE Pt S 2 ATERS%[AS au ] [ﬁz]Jr [A"]
min kE:U“sk Xref|Q+kZ:0””k uref Iz v den + mes aw
st sppq = f (S, ug)
h (sk, ux) > 0, +  Asg+ Ay >0,
D=2 S0 =%
) )

Iterative procedure (at each time /):
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell
NMPC at time i QP (for a given s, u)
As

N N—1
; 2 2
T,T E [Isk — Xref”Q + Z lluk — urer Il
k=0 k=0
st sk = f(sk, uk)
h (sk, ux) > 0,

s =%

Quadratic Problem Approximation

anoztes sl [&]+ [&]
st. As ;= + As, + Auy,
+ Asy + Aug >0,
s =%

Iterative procedure (at each time /):
e Given current guess s, u
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

Quadratic Problem Approximation

SQP for NMPC in a nutshell
NMPC at time i QP (for a given s, u)
As

. 1 As T
. " . il . AT,IRS E[As Au]B[Au]+J [Au]
min E [Isk — Xref”Q + Z lluk — urer Il of of
k=0 k=0 st. Asgyy =f+ 8—Ask 45 B—Auk,

st sgy1 = f(sk uk) oh ;h !
h (sk, ux) > 0, ho+ - Asi+ —Aug 2 0,

so =X =%

-
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Iterative procedure (at each time /):
e Given current guess s, u
e Linearize at s, u: need 2" order derivatives for B
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

Quadratic Problem Approximation

SQP for NMPC in a nutshell
NMPC at time i QP (for a given s, u)
As

. 1 As T
. " . il . AT,IRS 5[ As  Au ]B[ Au ]+J [ Au ]
min Z [Isk — Xref”Q + Z lluk — urer Il of of
k=0 k=0 st. Asgyy =f+ 8—Ask 45 B—Auk,

st sgy1 = f(sk uk) oh ;h !

h (sk, ux) > 0, ho+ - Asi+ —Aug 2 0,
so =X =%
-

Y o

Iterative procedure (at each time /):
e Given current guess s, u
e Linearize at s, u: need 2" order derivatives for B

e Make sure Hessian B > 0: avoid negative curvature
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

. 1 As T As
. " . il . AT,IRS E[As Au]B[Au]+J [Au]
min Z [Isk — Xref”Q + Z lluk — urer Il of of
k=0 k=0 st. Asgyy =f+ 8—Ask 45 B—Auk,
st sgy1 = f(sk uk) oh ;h !
h (sk, ux) > 0, ho+ - Asi+ —Aug 2 0,
so =X =%
-
v

Iterative procedure (at each time /):
e Given current guess s, u
e Linearize at s, u: need 2" order derivatives for B

e Make sure Hessian B > 0: avoid negative curvature

e Solve QP
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell

Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

N N—1
. 2 2
T:? Z IIsk = xrer llg + Z lluk — urer Ik
k=0 k=0
st sk = f(sk, uk)
h (sk, ux) > 0,

s =%

1 As T
i - A A B J
Fe N -
t. A f+6fA +afA
s.t. S| = — As, — Auy,
k+1 9s k 9u 'k
oh oh
h+ —Asg + —Au, >0,
Os ou
so =%

As
Au

]

Iterative procedure (at each time /):
o Given current guess s, u
e Linearize at s, u: need 2" order derivatives for B
e Make sure Hessian B > 0: avoid negative curvature

e Solve QP

e Globalization: ensure descent, stepsize o € (0, 1]
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell Quadratic Problem Approximation
NMPC at time / QP (for a given s, u)
. 1 As T As
N , s o R A"]B[Au]+J [Au]
Tig Z”sk — Xt + Z lluk — urer Ik of oF
k=0 k=0 st. Asgiq =f+ —As + —Auyy,
st sk = f(sk, uk) o3 gy
oh oh
h (sk, ux) > 0, h+ —As, + — Auy >0,
o Os Ou
S0 = X =5
v o

Iterative procedure (at each time /):
o Given current guess s, u
e Linearize at s, u: need 2" order derivatives for B
e Make sure Hessian B > 0: avoid negative curvature

e Solve QP

e Globalization: ensure descent, stepsize o € (0, 1]

st s As
GUPdate[u+]:[u:|+a|:Au]
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell Real Time Iterations
NMPC at time i RTI at time i
. 1 T As T[ As
M i Nt i AT,IZS 5 [ As Auw ]I J Au ] +J [ Au ]
Tig Z [Isk — Xref“Q + Z lluk — urer Il of of
T k=0 k=0 st. Asgy =f+ —As + —Auy
Os du
st sppq = f (S, uk) oh h
h(sk, ug) > 0, h+ EASk‘FaAUk >0,
0 =% so = %
v o

Iterative procedure (at each time /): Preparation Phase

o Given current guess s, u Without knowing %;

e Linearize at s, u: need 2" order derivatives for B @ Linearize

e Make sure Hessian B = 0: avoid negative curvature @ (Gauss-Newton = B > 0)
e Solve QP @ Prepare the QP

e Globalization: ensure descent, stepsize o € (0, 1]

st s As
eUpdateI:u+:|:[u:|+a[Au:|
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Real-Time Dilemma and Real Time Iteration (RTI) Scheme

SQP for NMPC in a nutshell Real Time Iterations
NMPC at time i RTI at time i
. 1 T As T[ As
M i Nt i AT,IZS 5 [ As Auw ]I J Au ] +J [ Au ]
Ti? Z [Isk — Xref“Q + Z lluk — urer Il of of
T k=0 k=0 st. Asgy =f+ —As + —Auy
Os du
st sppq = f (S, uk) oh h
h(sk, ug) > 0, h+ EASk‘FaAUk >0,
0 =% so = %
v o

Iterative procedure (at each time /): Preparation Phase

o Given current guess s, u Without knowing X;

e Linearize at s, u: need 2" order derivatives for B @ Linearize

e Make sure Hessian B = 0: avoid negative curvature @ (Gauss-Newton = B > 0)
e Solve QP @ Prepare the QP

e Globalization: ensure descent, stepsize o € (0, 1] Feedback Phase:

ot s As @ Solve QP once £; available
e Update [ ut ] = [ ] + [ Au ] — same latency as linear MPC

u
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CasADi

www.casadi.org

Key Properties of Casadi
@ Open Source (LGPL)
@ Automatic Differentiation

@ Python interface

What is it good for?
@ Easy and powerful way of formulating NLPs/OCPs
@ Linked to NLP solvers

@ Linked to Sundials integrators
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ACADO Toolkit

www.acadotoolkit.org

Key Properties of ACADO Toolkit
@ Open Source (LGPL)
@ User friendly interfaces close to mathematical syntax

@ Depends only on the C++ standard library

Multiplatform support
@ C4+: Linux, OS X, Windows
@ MATLAB

Fast implementations for real-time execution
— ACADO Code Generation tool:

Export tailored solver in plain C code
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