Direct Single and Direct Multiple Shooting

Moritz Diehl

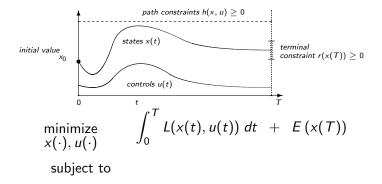
◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Overview

- Direct Single Shooting
- The Gauss-Newton Method
- Direct Multiple Shooting
- Structure Exploitation by Condensing
- Structure Exploitation by Riccati Recursion

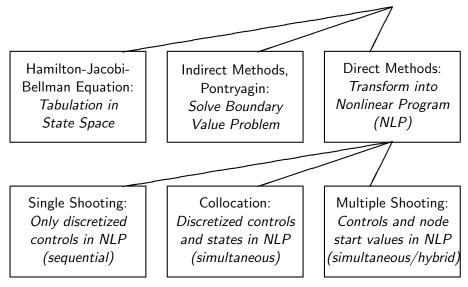
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simplified Optimal Control Problem in ODE



$$\begin{array}{rcl} x(0)-x_0&=&0, & ({\rm fixed\ initial\ value})\\ \dot{x}(t)-f(x(t),u(t))&=&0, & t\in[0,T], & ({\rm ODE\ model})\\ h(x(t),u(t))&\geq&0, & t\in[0,T], & ({\rm path\ constraints})\\ r\left(x(T)\right)&\geq&0 & ({\rm terminal\ constraints}). \end{array}$$

Recall: Optimal Control Family Tree



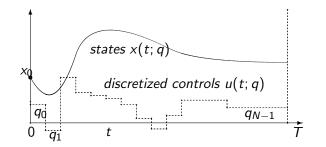
Direct Methods

- "First discretize, then optimize"
- Transcribe infinite problem into finite dimensional, Nonlinear Programming Problem (NLP), and solve NLP.
- Pros and Cons:
 - $+\,$ Can use state-of-the-art methods for NLP solution.
 - + Can treat inequality constraints and multipoint constraints much easier.

- Obtains only suboptimal/approximate solution.
- Nowadays most commonly used methods due to their easy applicability and robustness.

Direct Single Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid $0 = t_0 < t_1 < \ldots < t_N = T$, regard states x(t) on [0, T] as dependent variables.



Use numerical integration to obtain state as function x(t; q) of finitely many control parameters $q = (q_0, q_1, \dots, q_{N-1})$

NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain NLP:

$$\begin{array}{ll} \underset{q}{\operatorname{minimize}} & \int_{0}^{T} L(x(t;q),u(t;q)) \, dt + E\left(x(T;q)\right) \\ \text{subject to} \\ & h(x(t_i;q),u(t_i;q)) \geq 0, \\ & i = 0, \dots, N-1, \\ & r\left(x(T;q)\right) \geq 0. \end{array} \qquad (discretized \ path \ constraints) \\ & r\left(x(T;q)\right) \geq 0. \qquad (terminal \ constraints) \end{array}$$

Solve with finite dimensional optimization solver, e.g. Sequential Quadratic Programming (SQP).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution by Standard SQP

Summarize problem as

$$\min_{q} F(q) \text{ s.t. } H(q) \geq 0.$$

Solve e.g. by Sequential Quadratic Programming (SQP), starting with guess q^0 for controls. k := 0

- 1. Evaluate $F(q^k)$, $H(q^k)$ by ODE solution, and derivatives!
- 2. Compute correction Δq^k by solution of QP:

$$\min_{\Delta q}
abla F(q_k)^{ op} \Delta q + rac{1}{2} \Delta q^{ op} A^k \Delta q \;\; ext{s.t.} \;\; H(q^k) +
abla H(q^k)^{ op} \Delta q \geq 0.$$

3. Perform step $q^{k+1} = q^k + \alpha_k \Delta q^k$ with step length α_k determined by line search.

Hessian in Quadratic Subproblem

Matrix A^k in QP

$$\min_{\Delta q} \nabla F(q_k)^\top \Delta q + \frac{1}{2} \Delta q^\top A^k \Delta q \quad \text{s.t.} \quad H(q^k) + \nabla H(q^k)^\top \Delta q \ge 0.$$

is called the Hessian matrix. Several variants exist:

- ► exact Hessian: A^k = ∇²_q L(q, µ) with µ the constraint multipliers. Delivers fast quadratic local convergence.
- Update Hessian using consecutive Lagrange gradients, e.g. by BFGS formula: superlinear
- In case of least squares objective F(q) = ¹/₂ ||R(q)||²/₂ can also use Gauss-Newton Hessian (good linear convergence).

$$A^{k} = \left(rac{\partial R}{\partial q}(q^{k})
ight)^{ op}rac{\partial R}{\partial q}(q^{k})$$

The Generalized Gauss-Newton Method

Aim: solve constrained nonlinear least squares problems:

$$\min_{q} \frac{1}{2} \|R(q)\|_{2}^{2} \text{ s.t. } H(q) \geq 0.$$

Generalized Gauss-Newton solves in each iteration:

$$\min_{\Delta q} \frac{1}{2} \| R(q_k) + \nabla R(q_k)^\top \Delta q \|_2^2 \quad \text{s.t.} \quad H(q^k) + \nabla H(q^k)^\top \Delta q \ge 0.$$

This is a QP and equivalent to

$$\begin{array}{l} \min_{\Delta q} \quad \underbrace{R(q_k)^\top \nabla R(q_k)^\top}_{=\nabla F(q_k)^\top} \Delta q + \frac{1}{2} \Delta q^\top \underbrace{\nabla R(q_k) \nabla R(q_k)^\top}_{=:A_k} \Delta q \\ \text{s.t.} \quad H(q^k) + \nabla H(q^k)^\top \Delta q \geq 0. \end{array}$$

Properties of Gauss-Newton Hessian

- Gauss-Newton Hessian A_k := ∇R(q_k)∇R(q_k)[⊤] is symmetric and has only non-zero eigenvalues. Thus, QP subproblems are convex.
- A_k is similar to $\nabla_q^2 \mathcal{L}(q_k, \mu_k)$, but not equal.
- ▶ Using $\mathcal{L}(q,\mu) = \frac{1}{2} \| R(q) \|_2^2 H(q)^\top \mu$ and

$$abla^2\left(rac{1}{2}\|R(q)\|_2^2
ight)=
abla R(q_k)
abla R(q_k)^ op+\sum_{i=1}^{n_R}R_i(q)
abla^2 R_i(q)$$

we get
$$abla_q^2 \mathcal{L}(q,\mu) =$$

$$abla R(q)
abla R(q)^{ op} + \sum_{i=1}^{n_R} R_i(q)
abla^2 R_i(q) - \sum_{i=1}^{n_H} \mu_i
abla^2 H_i(q)$$
error (small if $\|R(q)\|$ small at solution)

Overview

- Direct Single Shooting
- The Gauss-Newton Method
- Direct Multiple Shooting
- Structure Exploitation by Condensing
- Structure Exploitation by Riccati Recursion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Direct Multiple Shooting [Bock and Plitt, 1981]

Discretize controls piecewise on a coarse grid

$$u(t) = q_i$$
 for $t \in [t_i, t_{i+1}]$

Solve ODE on each interval [t_i, t_{i+1}] numerically, starting with artificial initial value s_i:

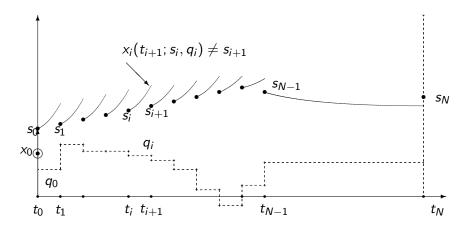
$$egin{array}{rll} \dot{x}_i(t;s_i,q_i) &=& f(x_i(t;s_i,q_i),q_i), \quad t\in[t_i,t_{i+1}], \ x_i(t_i;s_i,q_i) &=& s_i. \end{array}$$

Obtain trajectory pieces $x_i(t; s_i, q_i)$.

Also numerically compute integrals

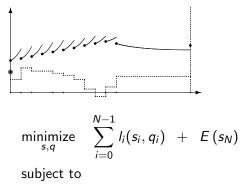
$$I_i(s_i,q_i) := \int_{t_i}^{t_{i+1}} L(x_i(t_i;s_i,q_i),q_i)dt$$

Sketch of Direct Multiple Shooting



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

NLP in Direct Multiple Shooting



$$\begin{split} s_0 - x_0 &= 0, & \text{(initial value)} \\ s_{i+1} - x_i(t_{i+1}; s_i, q_i) &= 0, \ i = 0, \dots, N-1, & \text{(continuity)} \\ h(s_i, q_i) &\geq 0, \ i = 0, \dots, N, & \text{(discretized path constr.)} \\ r(s_N) &\geq 0. & \text{(terminal constraints)} \end{split}$$

Structured NLP

- Summarize all variables as $w := (s_0, q_0, s_1, q_1, \dots, s_N)$.
- Obtain structured NLP

$$\min_{w} F(w) \quad \text{s.t.} \quad \left\{ \begin{array}{l} G(w) = 0 \\ H(w) \ge 0. \end{array} \right.$$

- ► Jacobian $\nabla G(w^k)^{\top}$ contains dynamic model equations.
- Jacobians and Hessian of NLP are block sparse, can be exploited in numerical solution procedure.

QP = Discrete Time Problem

$$\min_{X, U} \sum_{i=0}^{N-1} \begin{bmatrix} 1\\ \Delta s_i\\ \Delta q_i \end{bmatrix}^{\top} \begin{bmatrix} 0 & q_i^{\top} & s_i^{\top}\\ q_i & Q_i & S_i^{\top}\\ s_i & S_i & R_i \end{bmatrix} \begin{bmatrix} 1\\ \Delta s_i\\ \Delta q_i \end{bmatrix} + \begin{bmatrix} 1\\ \Delta s_N \end{bmatrix}^{\top} \begin{bmatrix} 0 & p_N^{\top}\\ p_N & P_N \end{bmatrix} \begin{bmatrix} 1\\ \Delta s_N \end{bmatrix}$$

subject to

$$\begin{array}{rcl} \Delta s_0 - x_0^{\text{fix}} &=& 0, & (\text{initial}) \\ \Delta s_{i+1} - A_i \Delta s_i - B_i \Delta q_i - c_i &=& 0, & i = 0, \dots, N-1, & (\text{system}) \\ C_i \Delta s_i + D_i \Delta q_i - c_i &\leq& 0, & i = 0, \dots, N-1, & (\text{path}) \\ C_N \Delta s_N - c_N &\leq& 0, & (\text{terminal}) \end{array}$$

Interpretation of Continuity Conditions

- In direct multiple shooting, continuity conditions s_{i+1} = x_i(t_{i+1}; s_i, q_i) represent discrete time dynamic system.
- Linearized reduced continuity conditions (used in condensing to eliminate Δs₁,..., Δs_N) represent linear discrete time system:

$$\Delta s_{i+1} = (x_i(t_{i+1}; s_i, q_i) - s_{i+1}) + X_i \Delta s_i^{\times} + Y_i \Delta q_i = 0,$$

 $i = 0, \dots, N-1.$

- If original system is linear, continuity is perfectly satisfied in all SQP iterations.
- Lagrange multipliers λ_i for the continuity conditions are approximation of **adjoint variables**. They indicate the costs of continuity.

Condensing Technique [Bock, Plitt, 1984]

As before in multiple shooting for BVPs, can use "condensing" of linear system equations

to eliminate $\Delta s_1, \ldots, \Delta s_N$ from QP. Results in *condensed QP* in variables Δs_0 and $\Delta q_0, \ldots, \Delta q_N$ only.

Alternative to condensing: can use Riccati recursion within QP solver addressing the full, uncondensed, but block sparse QP problem.

- Same algorithm as discrete time Riccati difference equation
- Linear effort in number N of shooting nodes, compared to O(N³) for condensed QP.

 Use Interiour Point Method to deal with inequalities, or Schur-Complement type reduction techniques.

Summary

- Direct Single and Multiple Shooting solve equivalent NLPs, i.e. they have the same discretization errors.
- Multiple shooting keeps the initial states of all shooting intervals as optimization variables, while single shooting eliminates all states by a forward simulation.
- The Generalized Gauss-Newton method is advantageous in case of least-squares cost functions with small residuals