Real-time Optimal Control of an NPC Inverter via an RCP System

MASTER THESIS PRESENTATION

Titus Busulwa

Done in cooperation with IMTEK and Fraunhofer ISE.

UNIVERSITY OF FREIBURG

September 1, 2016

Overview

- General Introduction
- 2 Objectives & Preparatory Work
- **3** System Models
- 4 Design, Implementation and Results
- **5** Conclusions and Future Work

General Introduction

Wind and photovoltaic power plants

Figure: Solar and wind plants. Source: iDEAL Energies

Growth trend

 Solar- & wind energy sources experiencing exponential growth.

Challenge to integration

 Need to support complex power conversion requirements to maintain grid stability.

Motivation for optimisation techniques

Strict grid requirements demand use of advanced control/signal processing methods.

Why use optimisation methods

Can handle problems involving

- static and dynamic constraints.
- MIMO Systems.

Drawbacks

- Generally computationally intensive algorithms.
- Challenging for fast-sampled applications.

Objectives & Integration Tasks

Objectives & Hardware Setup

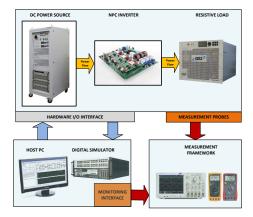
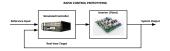


Figure: Hardware Integration for RCP.

Main Objectives

- Prototyping environment setup.
- Design/evaluate optimal control/estimation methods
- for sampling time T_s < 100 μs.



Objectives & Preparatory Work

Analog & Digital I/O Signal Integration

Analog & Digital I/O Signal Integration

Integration of communication and measurement signals between the inverter and digital simulator.

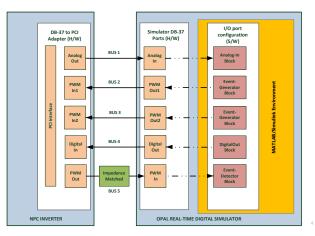


Figure: I/O Interfaces of inverter and simulator

6/37

H 5

System Models

Grid Voltage Model

Continuous-time grid voltage model $\begin{bmatrix} \ddot{v}_G \\ \dot{v}_G \end{bmatrix} = \begin{bmatrix} 0 & -w_0 \\ w_0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{v}_G \\ v_G \end{bmatrix}$ $y_{\text{grid}} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{v}_G \\ v_G \end{bmatrix}$

- \tilde{v}_G Quadrature grid voltage state
- *v_G* Grid voltage state
- $y_{\rm grid}$ Grid voltage output
- w₀ Angular grid frequency (assumed constant)

System Models

LCL Filter Model

Continuous-time LCL-filter model

$$\begin{bmatrix} \dot{i}_L\\ \dot{v}_C\\ \dot{i}_G \end{bmatrix} = \begin{bmatrix} 0 & \frac{-1}{L_M} & 0\\ \frac{1}{C_F} & 0 & \frac{-1}{C_F}\\ 0 & \frac{1}{L_G} & 0 \end{bmatrix} \begin{bmatrix} i_L\\ v_C\\ i_G \end{bmatrix} + \begin{bmatrix} \frac{1}{L_M} & 0\\ 0 & 0\\ 0 & \frac{-1}{L_G} \end{bmatrix} \begin{bmatrix} v_{in}\\ v_G \end{bmatrix}$$
$$y_{\text{LCL}} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} i_L\\ v_C\\ i_G \end{bmatrix}$$

States:

- *i*_L Main inductor current
- *v_C* Filter capacitor voltage
- *i*_G Grid-side inductor current

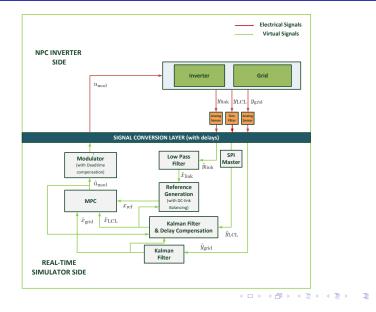
Controls:

vin Bridge input voltage

・ロン ・四 と ・ ヨ と ・

v_G Grid voltage

Closed-loop System Overview



SPI Interface Design

Figure: SPI Master Module with *EventDetector* and *EventGenerator* I/O blocks.

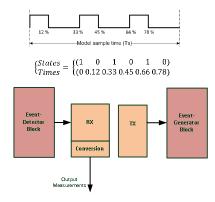
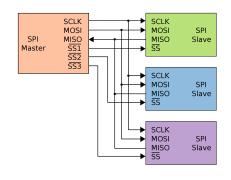


Figure: Single-master Multiple Slave Topology Source: WiKIPEDIA.



SPI Interface

SPI Interface Results

Figure: SPI Communication Results.

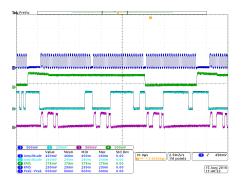
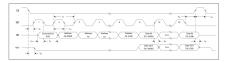


Figure: AMC1210 SPI Timing Specification. Source: Texas Instruments.



Kalman and Low Pass Filters

Kalman Filter Design (Output Current)

Output Current Estimation Problem

$$\begin{split} \hat{x}_{0}, \dots, \hat{x}_{N}] &= \arg\min_{[x_{0}, \dots, x_{N}]} \|x_{0} - \bar{x}_{0}\|_{P_{0}^{-1}}^{2} + \sum_{k=0}^{N} \|y_{k} - C_{\mathrm{dis}}x_{k}\|_{R^{-1}}^{2} \\ &+ \sum_{k=0}^{N-1} \|x_{k+1} - A_{\mathrm{dis}}x_{k} - B_{\mathrm{dis}}u_{k}\|_{Q^{-1}}^{2} \end{split}$$
where $x_{k} = \begin{bmatrix} i_{L}(k) \\ v_{C}(k) \\ i_{G}(k) \end{bmatrix}$, and $\hat{i}_{G}(N) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \hat{x}_{N}$ is sought.

Discrete-time LCL-filter model

$$x_{k+1} = A_{\text{dis}} x_k + B_{\text{dis}} u_k + w_k$$
$$y_k = C_{\text{dis}} x_k + v_k$$

$$egin{aligned} & w_k \sim \mathcal{N}(0, Q) \ & v_k \sim \mathcal{N}(0, R) \ & p_0 \sim \mathcal{N}(ar{x_0}, P_0) \end{aligned}$$

process noise measurement noise initial state noise

Kalman and Low Pass Filters

Kalman Filter Design (Output Current)

Solution Model

 $\begin{aligned} & \text{Prediction} \\ \hat{x}_{[k|k-1]} &= A_{\text{dis}} \hat{x}_{[k-1|k-1]} + B_{\text{dis}} u_k \\ & P_{[k|k-1]} &= A_{\text{dis}} P_{[k-1|k-1]} A_{\text{dis}}^T + Q \\ & \text{Correction} \\ & \hat{x}_{[k|k]} &= \hat{x}_{[k|k-1]} + K_{\text{gain}}^* (y_k - C_{\text{dis}} \hat{x}_{[k|k-1]}) \\ &= (I - K_{\text{gain}}^* C_{\text{dis}}) \hat{x}_{[k|k-1]} + K_{\text{gain}}^* y_k \end{aligned}$

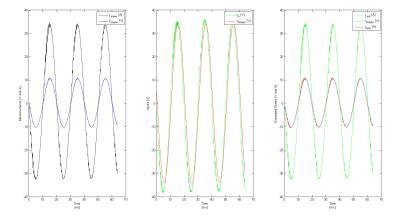
Estimation model $\hat{x}_{[k|k]} = \mathcal{A}\hat{x}_{[k-1|k-1]} + \mathcal{B}u_k + \mathcal{K}^*_{gain}y_k$ $\hat{i}_{G[k|k]} = \hat{y}_{[k|k]} = [0 \quad 0 \quad 1]\hat{x}_{[k|k]}$ where \mathcal{A} and \mathcal{B} are constant Matrices

For LTI model, if $(A_{\text{dis}}, C_{\text{dis}})$ is observable and $(A_{\text{dis}}, Q^{\frac{1}{2}})$ is stabilizable, then $\lim_{k\to\infty} P_{[k+1|k]} = P_{\infty} \ge 0$ for any $P_0 \ge 0$.

$$K_{\rm gain}^* = \frac{P_\infty C_{\rm dis}^T}{R + C_{\rm dis} P_\infty C_{\rm dis}^T}$$

Output Current Estimation Results

Figure: Plot showing the LCL filter measurements, inputs and estimated states.



Kalman and Low Pass Filters

Kalman Filter Design (Grid Voltage)

Grid Voltage Estimation Problem

$$\begin{split} [\hat{x}_{0}, \dots, \hat{x}_{N},] &= \arg\min_{[x_{0}, \dots, x_{N}]} \|x_{0} - \bar{x}_{0}\|_{P_{0}^{-1}}^{2} + \sum_{k=0}^{N} \|y_{k} - C_{d}x_{k}\|_{R^{-1}}^{2} \\ &+ \sum_{k=0}^{N-1} \|x_{k+1} - A_{d}x_{k}\|_{Q^{-1}}^{2} \end{split}$$

where $x_{k} = \begin{bmatrix} \tilde{v}_{G}(k) \\ v_{G}(k) \end{bmatrix}$ and $\hat{v}_{G}(N) = \begin{bmatrix} 0 & 1 \end{bmatrix} \hat{x}_{N}$ is sought.

Discrete-time grid voltage model

$$x_{k+1} = A_d x_k + w_k$$
$$y_k = C_d x_k + v_k$$

$$egin{aligned} & w_k \sim \mathcal{N}(0, Q) \ & v_k \sim \mathcal{N}(0, R) \ &
ho_0 \sim \mathcal{N}(ar{x_0}, P_0) \end{aligned}$$

process noise measurement noise initial state noise

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kalman and Low Pass Filters

Kalman Filter Design (Grid Voltage)

Solution Model

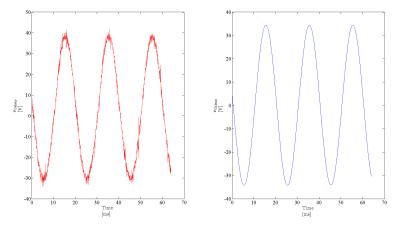
Prediction $\hat{x}_{[k|k-1]} = A_d \hat{x}_{[k-1|k-1]}$ $P_{[k|k-1]} = A_d P_{[k-1|k-1]} A_d^T + Q$ Correction $\hat{x}_{[k|k]} = \hat{x}_{[k|k-1]} + K_{gain}^* (y_k - C_d \hat{x}_{[k|k-1]})$ $\begin{array}{l} \textbf{Estimation model} \\ \hat{x}_{[k|k]} = \mathcal{A} \hat{x}_{[k-1|k-1]} + \mathcal{K}^*_{\mathrm{gain}} y_k \\ \hat{v}_{\mathcal{G}[k|k]} = \hat{y}_{[k|k]} = [0 \quad 1] \hat{x}_{[k|k]} \\ \text{where } \mathcal{A} \text{ is a constant Matrice} \end{array}$

For LTI model, if (A_d, C_d) is observable and $(A_d, Q^{\frac{1}{2}})$ is stabilizable, then $\lim_{k\to\infty} P_{[k+1|k]} = P_{\infty} \ge 0$ for any $P_0 \ge 0$.

$$K_{\text{gain}}^* = \frac{P_{\infty}C_d^T}{R + C_d P_{\infty}C_d^T}$$

Grid Voltage Filtering Results

Figure: Plot showing the filtered and unfiltered grid voltage signals, v_G



Kalman and Low Pass Filters

Low-pass Filter Design (DC-Link Voltage)

$$H_{\mathrm{LPF}}(s) = rac{1}{rac{s}{w_c} + 1} = rac{w_c}{s + w_c}$$
 (s-domain)

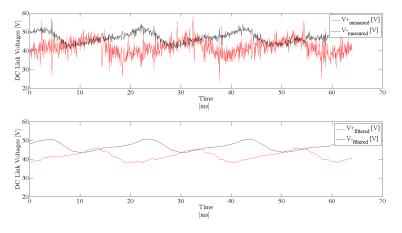
where $f_c = 500 \text{ Hz}$ and $w_c = 2 \times \pi \times 500 = 1000 \pi \text{ rad s}^{-1}$ and $s = \frac{T_s(z-1)}{2(z+1)}$ by the bilinear transform.

$$H_{\rm LPF}(z) = \frac{w_c T_s(z+1)}{2(z-1) + w_c T_s(z+1))} (z-\text{domain})$$
$$= \frac{w_c T_s(z+1)}{(w_c T_s + 2)z + (w_c T_s - 1)}$$

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

DC-link Filtering Results

Figure: DC-link filtering during openloop operation.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Controller Design: Optimal Control Problem Formulation

minimise
$$\int_0^{NT_s} ||x(t) - x_{ref}(t)||_Q^2 + ||u(t) - u_{ref}(t)||_R^2 dx$$

subject to

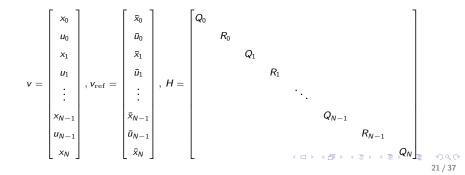
$$\begin{aligned} x(0) &= x_0 & (\text{fixed initial state}), \\ \dot{x}(t) &= Ax(t) + Bu(t), \quad t \in [0, NT_s] & (\text{dynamic constraints}), \\ \begin{bmatrix} x_{\min} \\ u_{\min} \end{bmatrix} &\leq \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \leq \begin{bmatrix} x_{\max} \\ u_{\max} \end{bmatrix}, \ t \in [0, NT_s] & (\text{path constraints}) \end{aligned}$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ (~ 20 / 37

Controller Design: qpOASES

Discretised Formulation for qpOASES

$$\begin{array}{ll} \underset{V}{\text{minimise}} & \frac{1}{2} v^T H v - v^T H v_{\text{ref}} \\ \text{subject to} & I_A \leq A_{\text{eq}} v \leq u_A, \\ & I_v \leq v \leq u_v \end{array} & \begin{array}{ll} \text{where the cost function} \\ F_{\text{obj}}(v - v_{\text{ref}}) = \frac{1}{2} (v - v_{\text{ref}})^T H (v - v_{\text{ref}}) \\ & = \frac{1}{2} (v^T H v - 2 v^T H v_{\text{ref}} + v_{\text{ref}}^T H v_{\text{ref}}) \end{array}$$



$$A_{eq} = \begin{bmatrix} I & & & & & \\ A_{dis} & B_{dis} & -I & & & \\ & \ddots & \ddots & \ddots & & \\ & & & A_{dis} & B_{dis} & -I & \\ & & & & & A_{dis} & B_{dis} & -I \end{bmatrix}, I_A = u_A = \begin{bmatrix} x(0) \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}, u_v = \begin{bmatrix} x_{max} \\ u_{max} \\ x_{max} \\ \vdots \\ x_{max} \\ u_{max} \\ x_{max} \end{bmatrix}$$

and $l_v = -u_v$

$$\begin{bmatrix} i_{L} \\ \dot{v}_{C} \\ i_{G} \\ \dot{v}_{G} \\ \dot{v}_{G} \end{bmatrix} = \begin{bmatrix} 0 & \frac{-1}{L_{M}} & 0 & 0 & 0 \\ \frac{1}{C_{F}} & 0 & \frac{-1}{C_{F}} & 0 & 0 \\ 0 & \frac{1}{L_{G}} & 0 & 0 & \frac{-1}{L_{G}} \\ 0 & 0 & 0 & 0 & -w_{0} \\ 0 & 0 & 0 & w_{0} & 0 \end{bmatrix} \begin{bmatrix} i_{L} \\ v_{C} \\ i_{G} \\ v_{G} \end{bmatrix} + \begin{bmatrix} \frac{1}{L_{M}} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} v_{\text{in}} \end{bmatrix}$$

Controller Design: MPT Toolbox

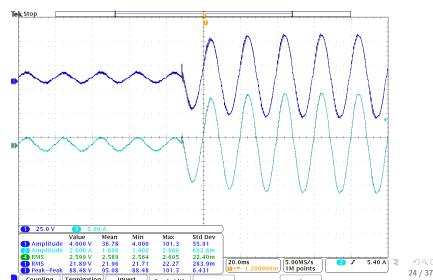
Discretised Formulation for Explicit MPC

$$\begin{array}{ll} \underset{x_{0}, u_{0}, x_{1}, \ldots, u_{N-1}, x_{N}}{\text{minimise}} & \sum_{k=0}^{N-1} \|x_{k} - \bar{x}_{\mathrm{ref}}\|_{Q}^{2} + \|u_{k}\|_{R}^{2} + \|x_{N} - \bar{x}_{\mathrm{ref}}\|_{Q_{N}}^{2} \\ \text{subject to} & x_{0} = x(0), \\ & x_{k+1} = A_{d}x_{k} + B_{d}u_{k}, \quad k = 0, \ldots, N-1 \\ & \left[\begin{matrix} x_{\min} \\ u_{\min} \end{matrix} \right] \leq \begin{bmatrix} x_{k} \\ u_{k} \end{matrix} \right] \leq \begin{bmatrix} x_{\max} \\ u_{\max} \end{matrix} \right], \quad k = 0, \ldots, N-1 \end{array}$$

$$\begin{bmatrix} \dot{i}_{L} \\ \dot{v}_{C} \\ \dot{i}_{G} \\ \dot{v}_{G} \end{bmatrix} = \overbrace{\begin{pmatrix} 0 & -\frac{1}{L_{M}} & 0 & 0 \\ \frac{1}{C_{F}} & 0 & -\frac{1}{C_{F}} & 0 \\ 0 & \frac{1}{L_{G}} & 0 & -\frac{1}{L_{G}} \\ 0 & 0 & 0 & 0 \end{bmatrix}}^{A_{\text{cont}}} \begin{bmatrix} i_{L} \\ v_{C} \\ i_{G} \\ v_{G} \end{bmatrix} + \overbrace{\begin{pmatrix} \frac{1}{L_{M}} \\ 0 \\ 0 \\ 0 \end{bmatrix}}^{B_{\text{cont}}} \begin{bmatrix} v_{\text{in}} \end{bmatrix}$$

23 / 37

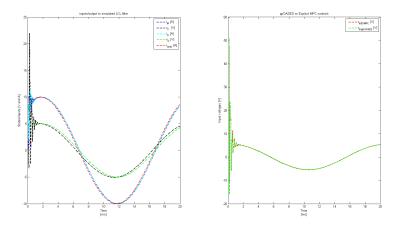
Real-time Reference Tracking Results (Offline MPC)



Controllers & Reference Generation

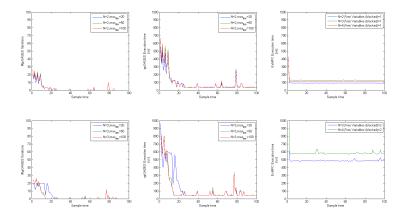
Simulation Results: Online vs Offline Control Inputs

Figure: A comparison of qpOASES and Explicit MPC inputs for a set AC reference current.



Simulation: qpOASES vs Explicit MPC Performance

Figure: Plot comparing performance of qpOASES and EXMPC during simulation.



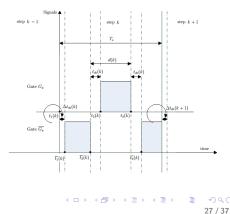
・ロ ・ < 部 ・ < 言 ・ < 言 ・ 言 ・ う へ で 26 / 37

PWM Generator Design: Complementary Signals

Gate G_x

$$\begin{split} t_1(k) &= 0, & S_1(k) = 0 \\ t_2(k) &= \overline{t_2}(k) + t_{\rm dt}, & S_2(k) = 1 \\ t_3(k) &= \frac{1 + d(k)}{2}, & S_3(k) = 0 \end{split}$$

Figure: Centered complementary signals with deadtime



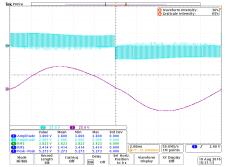
Gate $\overline{G_x}$

$\overline{t_1}(k) = \Delta t_{\mathrm{dt}}(k),$	$\overline{S_1}(k) = 1$
$\overline{t_2}(k)=\frac{1-d(k)}{2},$	$\overline{S_2}(k) = 0$
$\overline{t_3}(k) = t_3(k) + t_{\rm dt},$	$\overline{S_3}(k) = 1$

PWM Generator Results

Figure: Four PWM signals driving one phase leg of the NPC inverter $% \left({{{\rm{NPC}}} \right)_{\rm{T}}} \right)$

Figure: LCL filter input $v_i n$ and output v_G voltages



Conclusions

The following core modules developed for RCP:

- **1** A PWM Generator to actuate the inverter.
- 2 An SPI master module to read digital LCL filter measurements.
- S Kalman and low pass filters.
- **Online and offline-based MPC controllers for current control.**

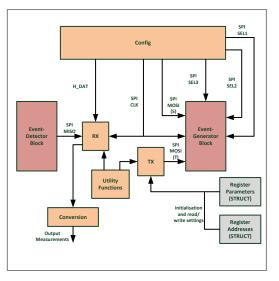
Observations

- Offline MPC more stable for fast sampled applications.
- Short horizons & decision variable dimensions => speed.
- Delays caused unsmooth results (SPI, Simulator, Sincs).
- qpOASES scales well with prediction horizons.
- qpOASES shows good performance after initialisation.

Future Work

- Real-time execution with qpOASES.
- Ondensing to improve execution time.
- Parallel measurement/readout architecture.
- Model verification for PWM Generator.
- MPC for three-phase control applications.
- **6** Grid Synchronisation with MPC.

SPI Master Architecture



PWM Generator Structure

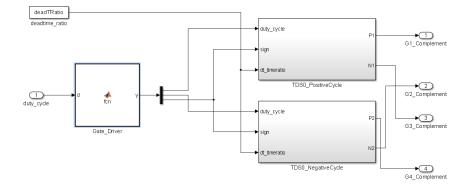


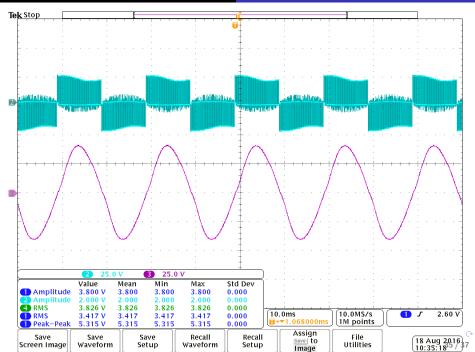
Figure: Subsystem View of Modulator Internal Structure

Conclusions and Future Work

Explicit MPC Real-time Performance

dodel: LoopBack Ts=8.0E-5[s] T=20,02	528[s] Number o	f overruns=0					
Probes	« Info	« Info					
	Usage [%]	Min	Max	Mean			
🗄 🐚 LoopBack Ts=8.0E-5[s]	59,59%						
= 🔄 SM_IO Ts=7.9999997979E-5[s	59,59%	dt= 47,46 [us]	dt= 48,10 [us]	dt= 47,67 [us]			
🗄 Major computation time	57,8%	dt= 46,05 [us]	dt= 46,56 [us]	dt= 46,24 [us]			
	0,15%	dt= 0,11 [us]	dt= 0,14 [us]	dt= 0,12 [us]			
	59,59%	dt= 47,46 [us]	dt= 48,10 [us]	dt= 47,67 [us]			
	100,0%	dt= 79,64 [us]	dt= 80,45 [us]	dt= 80,00 [us]			
	40,06%	dt= 31,58 [us]	dt= 32,52 [us]	dt= 32.05 [us]			

Conclusions and Future Work



Prediction

$$\hat{x}_{[k|k-1]} = A\hat{x}_{[k-1|k-1]} \tag{1}$$

$$P_{[k|k-1]} = AP_{[k-1|k-1]}A^{T} + W$$
(2)

where $P_{[k|k-1]} \in \mathbb{R}^{n_x \times n_x}$ is the predicted state covariance, $\hat{x}_{[k|k]} \in \mathbb{R}^{n_x}$ is the predicted state estimate. It is assumed that the noise covariances are constant and thus $W_k = W$ and $V_k = V$. Innovation Update

$$P_{[k|k]} = (P_{[k|k-1]}^{-1} + C^{T} V^{-1} C)^{-1} = (1 - K_{k} C) P_{[k|k-1]}$$
(3)

Innovation Residual

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

$$\hat{x}_{[k|k]} = \hat{x}_{[k|k-1]} + \underbrace{P_{[k|k]}C^{T}V^{-1}}_{(k|k-1]} \times \underbrace{(y_{k} - C\hat{x}_{[k|k-1]})}_{(k)}$$
(4)

Optimal Kalman Gain

$$K_{k} = P_{[k|k]}C^{T}V^{-1} = \underbrace{\frac{P_{[k|k-1]}C^{T}}{V + CP_{[k|k-1]}C^{T}}}_{\text{Innovation Covariance}}$$
(5)

36 / 37

$$\hat{x}_{[k+1|k]} = A\hat{x}_{[k|k]} = K_{k+1|k}y_{k} + (A - K_{k+1|k}C)\hat{x}_{[k|k-1]}, \quad k \ge 0$$
(6)

$$K_{k+1|k} = \frac{AP_{[k|k-1]}C^{T}}{V + CP_{[k|k-1]}C^{T}}$$
(7)

$$P_{[k+1|k]} = AP_{[k|k]}A^{T} + W = A(1 - K_{k}C)P_{[k|k-1]}A^{T} + W$$
$$= A(P_{[k|k-1]} - P_{[k|k-1]}C^{T}(V + CP_{[k|k-1]}C^{T})^{-1}CP_{[k|k-1]})A^{T} + W$$
(8)