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The Generalized Gauss-Newton algorithm

Consider a constrained nonlinear least-squares problem:
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minimize Yo(w) = y(w) |2
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subject to  g(w) =0

P(w) <0.



The Generalized Gauss-Newton algorithm

Consider a constrained nonlinear least-squares problem:

minimize g(w) = y(w)]|3
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subject to  g(w) =0
Y(w) < 0.

GGN algorithm

. Find initial guess wy.
. for i=0,1,2,... do
if converged then
exit
Wit1 = W; + Aw
end for

s



The Generalized Gauss-Newton algorithm

Consider a constrained nonlinear least-squares problem:

minimize o (w) = lco ()2
subject to  g(w) =0
d(w) <0.
GGN algorithm
. 1 p ()(‘l] , 2
1: Find initial guess wo. AW =@ min e (w5 e Al
AwER" u
2: for i=0,1,2,... do 9
3: if converged then subject to  g(w;) + a—g(wi)Aw =0
4: exit ((;112)
5: wiy1 = w; + Aw Y(w;) + a—(wi)Aw <0.
6: end for w



GGN and SQP

Different view on GGN:

full-step SQP method with Hessian approximation

Jdc dc
BGN = aiu())(wl)Taiu(j(wl)



Newton-type optimization and GGN

Two things you (maybe) did not know about Newton-type optimization:

> Necessary and sufficient condition for asymptotic stability

> Statistical stability (next group retreat)



A necessary and sufficient condition for asymptotic

stability of a local minimizer

Consider the unconstrained problem,

Wit1 = Wy — B(wl)ilv#@(’wl)



A necessary and sufficient condition for asymptotic

stability of a local minimizer

Consider the unconstrained problem,

Wit1 = Wy — B(w2)71v1/)0(’w7,)

Lemma (Linear Stability Analysis)

Regard iterations w; 1 = F(w;) with F' a continuously differentiable
function in a neighborhood of a fixed point F(w*) = w*.

OF
p <a—w(w*)> <1 <= w"is asymptotically stable.

‘p is the spectral radius




A necessary and sufficient condition for asymptotic

stability of a local minimizer

Theorem (Bounds on Hessian approximation, unconstrained case)

Local minimizer w* is asymptotically stable with asymptotic contraction
rate 0 < « < 1, if and only if the following conditions hold:

V2o (w*) o _ V%o (w*)
1+« = St 2 l—a



A necessary and sufficient condition for asymptotic
stability of a local minimizer

Theorem (Bounds on Hessian approximation, unconstrained case)

Local minimizer w* is asymptotically stable with asymptotic contraction
rate 0 < « < 1, if and only if the following conditions hold:

V2o (w*) o _ V%o (w*)
1+« = St 2 l—a

This theorem also holds for constrained problems. ‘




A necessary and sufficient condition for asymptotic
stability of a local minimizer

1+a
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Sequential Convex Quadratic Programming: a

generalization of GGN

Consider
ur;rel%" do(co(w)) (1a)
st gi(w ) 0, 2:1,...7p, (1b)
Oilci(w)) <0,i=1,...,q. (1c)

with ¢ 1 (+) convex.



Sequential Convex Quadratic Programming:

generalization of GGN

Consider
1%%1" o (co(w)) (1a)
st gi(w) =0, i=1,...,p, (1b)
Oilci(w)) <0,i=1,...,q. (1¢)
with ¢ 1 (+) convex.
scqQP 0co, \Two, Jco ,
B (w, 1) := —(w) ' Vido(co(w))—(w)
ow “ ow "
2 f)(‘,‘ T2 ()(',‘ F N
+ Z; K (w) ' Vigi(ci(w)) " (w).
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Advantages

> SCQP is convex

plB(w))
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Advantages

> SCQP is convex

> SCQP as cheap as GGN

> better approximation of exact Hessian
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Advantages

> SCQP is convex

> SCQP as cheap as GGN

> better approximation of exact Hessian

= ldeal for embedded optimization!

plB(w))

P(V7un(w*))




Relation to SCP

In contrast to SCQP, SCP keeps nonlinear convex functions in
constraints:

minimize f ' (w; + Aw)

AweRn™
subject to  g(w;) + @(w-)Aw =0
3 8w K3
w; + Aw € Q,

with € convex.



Relation to SCP

In contrast to SCQP, SCP keeps nonlinear convex functions in
constraints:

i+ A
g Sl Aw)

. dg
) Y ) Aw =
subject to  g(w;) + B (wi))Aw =10

w; + Aw € Q,

with € convex.
SCQP is an alternative to SCP as a generalization of GGN:




Numerical example: inverted pendulum swing-up

, )=

lcos(0)



Numerical example: inverted pendulum swing-up

9/!
Y \ Xmass p—= ZSID(H)
Ymass

D X
We solve the following OCP for different radii R, of the terminal region:

L, Z e, (22)
Uo;-- 7'U4N 1

s.t. o = To, (2b)

xk+1:f(xk7uk)7 k:07"'7N_1’ (2C)

XN =4 YN =073 - RZ <0, (2d)



A closer look at the Hessians

GN Hessian

Tk

Tk




A closer look at the Hessians

GN Hessian

Tk

Tk

SCQP Hessian
Tk
Tk
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Numerical example: results

GGN does not converge..

|IKKT residual
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Figure: Re = 0.05m.



Numerical example: results

GGN does not converge..

|IKKT residual
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Figure: Trajectory of pendulum.
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Numerical example: compare radii

GGN still does not converge!
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Numerical example: compare radii

GGN still does not converge!

" Brmax
Fe
1.0 106 .‘o\‘ A B
08 B _ T
10° .
0.6 ® el
10* * e
0.4 ., T,
1°}[e-e GGN .
= 0 GGN -
: 0 102L] o -* SCQP ‘\
\.
—02 ! T
\
0.4 R i ECE o T e e e e s et
06 107! ™3
—2
08+ 0.0 05 10 15 2.0 0755 107 01 107
X [m] Re[m]
Figure: Re = 1m Figure: Comparison for different radii.
R = .



Conclusion

What we've done

> A new Hessian approximation for embedded SQP



Conclusion

What we've done

> A new Hessian approximation for embedded SQP

What we want to do next

> Efficient implementation (acados!)

> Real-world tests



Thank you for your attention.
Questions?



