Microsecond timescale (N)MPC for Power-Electronics applications

Benjamin Stickan

September 7, 2016

Outline

(1) Recent work at Fraunhofer

(2) C/GMRES

Project introduction

- Current project
- EU project Netfficient
- Local energy storage on the island of Borkum
- Aim: support the grid
- Reduce energy exchange between island and mainland
- Storage System with 1 MW inverter ($8 \times 125 \mathrm{~kW}$)
- Recent work
- Extention of inverter model to 3-phases
- Development of EMPC-scheme for 125 kW inverter

Current System (1/3)

Power-Electronics switches

Current System (2/3)

Current System(3/3)

Measurements: Main inductor current, Capacitor Voltage, Grid Controls: Average input voltages u1-u3

Control Scheme

Control loop frequency: $40 \mathrm{kHz}(25 \mu s)$ System states: 8
Estimator states: 20
Control variables: 3

Simulation results $(1 / 3)$

- Controller: EMPC, $\mathrm{H}=3$, move blocking over whole horizon
- Decision variables: 3 (only one phase shown here)

Simulation results $(2 / 3)$

- Controller: EMPC, $\mathrm{H}=3$, move blocking over whole horizon
- Decision variables: 3

Simulation results $(3 / 3)$

- Controller: qpOASES, $\mathrm{H}=5$
- Decision variables: 15

Questions

- How to solve problems fast and reliable?
- Are FPGAs an option?
- Which methods would be suited?
- How large is the effort?

C/GMRES

- Developed by Toshiyuki Ohtsuka
- 'Indirect' approach
- Based on Pontryagin's maximum (minimum) principle

OCP formulation

Consider general nonlinear system equations:

$$
\dot{x}=f(x(t), u(t), p(t))
$$

$x(t) \in \mathbb{R}^{n} \quad: \quad$ state vector
$u(t) \in \mathbb{R}^{m_{u}} \quad: \quad$ input vector
$p(t) \in \mathbb{R}^{m_{p}} \quad: \quad$ vector of given time dependent variables.

OCP formulation

Consider general nonlinear system equations:

$$
\dot{x}=f(x(t), u(t), p(t))
$$

$x(t) \in \mathbb{R}^{n} \quad: \quad$ state vector
$u(t) \in \mathbb{R}^{m_{u}} \quad: \quad$ input vector
$p(t) \in \mathbb{R}^{m_{p}} \quad: \quad$ vector of given time dependent variables.
$\underset{x, u}{\operatorname{minimize}}: J=\varphi\left(x^{*}(T, t), p(t+T)\right)$

$$
+\int_{0}^{T} L\left(x^{*}(\tau, t), u^{*}(\tau, t), p(t+\tau)\right) \mathrm{d} \tau
$$

Subject to $\left\{\begin{array}{l}x_{\tau}^{*}(\tau, t)=f\left(x^{*}(\tau, t), u^{*}(\tau, t), p(t+\tau)\right), \\ x^{*}(0, t)=x(t), \\ C\left(x^{*}(\tau, t), u^{*}(\tau, t), p(t+\tau)\right)=0\end{array}\right.$

Inequality Constraints

How deal with inequality constraints $|u| \leqslant u_{\max }$?
Employ dummy input u_{d} :

$$
C:=\left(u^{2}+u_{\mathrm{d}}^{2}-u_{\max }^{2}\right)=0
$$

First Order Optimality Conditions

$$
\begin{aligned}
& x_{\tau}^{*}=f\left(x^{*}, u^{*}, p\right) \\
& x^{*}(0, t)=x(t) \\
& \lambda_{\tau}^{*}=-H_{x}^{\mathrm{T}}\left(x^{*}, \lambda^{*}, u^{*}, \mu^{*}, p\right) \\
& \lambda^{*}(T, t)=\varphi_{x}^{\mathrm{T}}\left(x^{*}(T, t), p(t+T)\right) \\
& H_{u}\left(x^{*}, \lambda^{*}, u^{*}, \mu^{*}, p\right)=0 \\
& C\left(x^{*}, u^{*}, p\right)=0
\end{aligned}
$$

with Hamiltonian
$H\left(x^{*}, \lambda^{*}, u^{*}, \mu^{*}, p\right):=L\left(x^{*}, u^{*}, p\right)+\lambda^{\mathrm{T}} f\left(x^{*}, u^{*}, p\right)+\mu^{\mathrm{T}} C\left(x^{*}, u^{*}, p\right)$,
$\lambda^{*} \in \mathbb{R}^{n} \quad: \quad$ costate vector
$\mu^{*} \in \mathbb{R}^{m_{c}} \quad: \quad$ Lagrange multiplier associated with the equality constraints

Discretized Formulation (1/3)

$x_{i+1}^{*}(t)=x_{i}^{*}(t)+f\left(x_{i}^{*}(t), u_{i}^{*}(t), p_{i}^{*}(t)\right) \Delta \tau(t)$,
$x_{0}^{*}(t)=x(t)$,
$\lambda_{i}^{*}(t)=\lambda_{i+1}^{*}(t)+H_{x}^{\mathrm{T}}\left(x_{i}^{*}(t), \lambda_{i+1}^{*}(t), u_{i}^{*}(t), \mu_{i}^{*}(t), p_{i}^{*}(t)\right) \Delta \tau(t)$,
$\lambda_{N}^{*}(t)=\varphi_{x}^{\mathrm{T}}\left(x_{N}^{*}(t), p_{i}^{*}(t)\right)$,
$H_{u}\left(x_{i}^{*}(t), \lambda_{i+1}^{*}(t), u_{i}^{*}(t), \mu_{i}^{*}(t), p_{i}^{*}(t)\right)=0$,
$C\left(x_{i}^{*}(t), u_{i}^{*}(t), p_{i}^{*}(t)\right)=0$,

$$
\begin{aligned}
& \Delta \tau(t):=T(t) / N \\
& x_{i}(t)^{*}:=x^{*}(i \Delta \tau, t) \\
& p_{i}^{*}(t):=p(t+i \Delta \tau)
\end{aligned}
$$

Discretized Formulation (2/3)

$$
\begin{aligned}
& x_{i+1}^{*}(t)=x_{i}^{*}(t)+f\left(x_{i}^{*}(t), u_{i}^{*}(t), p_{i}^{*}(t)\right) \Delta \tau(t), \\
& x_{0}^{*}(t)=x(t) \\
& \lambda_{i}^{*}(t)=\lambda_{i+1}^{*}(t)+H_{x}^{\mathrm{T}}\left(x_{i}^{*}(t), \lambda_{i+1}^{*}(t), u_{i}^{*}(t), \mu_{i}^{*}(t), p_{i}^{*}(t)\right) \Delta \tau(t), \\
& \lambda_{N}^{*}(t)=\varphi_{x}^{\mathrm{T}}\left(x_{N}^{*}(t), p_{i}^{*}(t)\right), \\
& H_{u}\left(x_{i}^{*}(t), \lambda_{i+1}^{*}(t), u_{i}^{*}(t), \mu_{i}^{*}(t), p_{i}^{*}(t)\right)=0, \\
& C\left(x_{i}^{*}(t), u_{i}^{*}(t), p_{i}^{*}(t)\right)=0,
\end{aligned}
$$

Discretized Formulation (3/3)

Stack optimization variables in single vector:

$$
\begin{aligned}
& U(t):=\left[u_{0}^{* \mathrm{~T}}(t), \mu_{0}^{* \mathrm{~T}}(t), \cdots, u_{N-1}^{* \mathrm{~T}}(t), \mu_{N-1}^{* \mathrm{~T}}(t)\right]^{\mathrm{T}} \in \mathbb{R}^{m}, \\
& m:=m_{u}+m_{c}
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& F(U(t), x(t), t):= \\
& {\left[\begin{array}{c}
H_{u}^{\mathrm{T}}\left(x_{0}^{*}, \lambda_{1}^{*}, u_{0}^{*}, \mu_{0}^{*}, p(t)\right) \\
C\left(x_{0}^{*}, u_{0}^{*}, p(t)\right) \\
\vdots \\
H_{u}^{\mathrm{T}}\left(x_{N-1}^{*}, \lambda_{N}^{*}, u_{N-1}^{*}, \mu_{N-1}^{*}, p(t+(N-1) \Delta \tau)\right) \\
C\left(x_{N-1}^{*}, u_{N-1}^{*}, p(t+(N-1) \Delta \tau)\right)
\end{array}\right]=0 .}
\end{aligned}
$$

Continuation Method

$$
F(U(t), x(t), t)=0
$$

must be fulfilled at any time t.

$$
\begin{aligned}
& \Rightarrow \dot{F}(U(t), x(t), t)=0 \\
& \Leftrightarrow \dot{U}=F_{U}^{-1}\left(-F_{x} \dot{x}-F_{t}\right)
\end{aligned}
$$

Find initial solution for $U(0)$ and then integrate over $\dot{U}(t)$. Drawback: inverse and jacobians needed.

Forward Difference (1/3)

Approximate approach: employ forward difference approximation for products of Jacobians and vectors.

$$
D_{h} F(U, x, t: W, w, \omega):=\frac{F(U+h W, x+h w, t+h \omega)-F(U, x, t)}{h}
$$

Forward Difference (2/3)

Approximate

$$
\dot{F}=F_{U} \dot{U}-F_{x} \dot{x}-F_{t}
$$

by

$$
D_{h} F(U, x, t: \dot{U}, \dot{x}, 1)=A_{s} F(U, x, t)
$$

(A_{s} is a stable Matrix that stabilizes $F=0$ to suppress numerical errors that may accumulate through numerical integration)

Forward Difference (3/3)

Result: linear equation of the form $A x=b$:

$$
D_{h} F(U, x+h \dot{x}, t+h: \dot{U}, 0,0)=b(U, x, \dot{x}, t)
$$

with $b(U, x, \dot{x}, t):=A_{s} F(U, x, t)-D_{h} F(U, x, t: 0, \dot{x}, 1)$.
The solution \dot{U} can then be integrated to obtain the next optimal control vector U

GMRES

- How to solve linear equations fast?
- \rightarrow Ohtsuka uses Krylov subspace based iterative GMRES method
- Theoretically direct solver (for infinite precision)
- Matrices and vectors grow with every iteration
- Can be restarted

Questions

- Similarities between Ohtsuka's discretization method and direct methods?
- How 'exact' is the continuation method? Applicable to Power-Electronics?
- Can the GMRES algorithm generally be implemented on an FPGA?
- Alternative: other iterative solvers?

Microsecond timescale (N)MPC for Power-Electronics applications

Benjamin Stickan

September 7, 2016

