

University of Pisa

Periodic Optimal Control of a Bipedal Walking Robot

Silvia Manara

IMTEK
SysCOP Group Retreat, Freiburg, September 5, 2016

Class of problems

Multibody systems with intermittent contacts, problems such as robotic locomotion or manipulation.

Issues

- High dimensional systems
- Nonlinear dynamics
- Discontinuities due to intermittent contact forces
- Holonomic constraints (Index 3 DAE)

Planar humanoid robot model

Objective

We want to find a periodic walking behaviour in order to make the system climb up the slope in an optimal way.

Scheduled sequence of phases

Single support phase
TRANSITION
Double support phase

Both feet in contact with the ground

Periodicity of motion

Initial state

Final state

We are optimizing only half of a cycle!

Continuous time optimal control problem

$$
\min _{x(\cdot), u(\cdot), T} \int_{0}^{\frac{T}{2}} L(x(t), u(t)) d t
$$

subject to $\quad x_{\text {red }}(0)=\pi^{1} x_{\text {red }}\left(\frac{T}{2}\right) \quad$ periodicity constraints

$$
F(x, \dot{x}, z, u)=0 \quad \text { dynamics }
$$

$f_{\text {impulsive }}\left(x^{+}, x^{-}, \Psi\right)=0$ impulsive equations in transition $h(x(t)) \geq 0 \quad$ path constraints

States and controls

$$
x=\binom{q}{\dot{q}} \in \mathbb{R}^{22} \quad z=\binom{\ddot{q}}{F_{C}} \in \mathbb{R}^{15} \quad u=\tau \in \mathbb{R}^{8}
$$

${ }^{\mathbf{1}} \pi$ is a permutation matrix

Discrete time optimal control problem

 NLP$$
\begin{array}{cl}
\min _{w} & f(w) \\
\text { s.t. } & g(w)=0 \\
& h(w) \geq 0 \\
& w_{\min } \leq w \leq w_{\max }
\end{array}
$$

Constraints

- System dynamics, discretized using direct collocation (Lagrange polynomial of order 2, collocation at Radau points)
- Continuity of the differential states on the time grid
- Impulsive dynamics equations at transition between different phases
- No collision during single support phase
- Friction
- Periodicity on all the states, except for x

Multiphase dynamics...

$$
\begin{aligned}
t \in\left[0, t_{T R A N S}\right] & t \in\left[t_{T R A N S}, t_{E N D}\right] \\
\begin{cases}\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
g_{S}(x, z)=0\end{cases} & \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
g_{D}(x, z)=0
\end{array}\right.
\end{aligned}
$$

Multiphase dynamics...

$$
t \in\left[0, t_{T R A N S}\right]
$$

$$
t \in\left[t_{T R A N S}, t_{E N D}\right]
$$

$$
\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
g_{S}(x, z)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
g_{D}(x, z)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
p_{R}(q)=0 \\
F_{C_{L}}=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
p_{R}(q)=0 \\
p_{L}(q)=0
\end{array}\right.
$$

Multiphase dynamics...

$$
\begin{aligned}
& t \in\left[0, t_{T R A N S}\right] t \in\left[t_{T R A N S}, t_{E N D}\right] \\
& \begin{cases}\dot{x}=f(x, z) \\
g_{\text {dyn }}(x, z, u)=0 \\
F_{C_{L}}=0 \\
p_{R}(x)=0 & \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{\text {dyn }}(x, z, u)=0 \\
p_{R}(x)=0 \\
p_{L}(x)=0
\end{array}\right.\end{cases}
\end{aligned}
$$

index 3 DAE

Multiphase dynamics...

$$
\begin{array}{cl}
t \in\left[0, t_{\text {TRANS }}\right] & t \in\left[t_{\text {TRANS }}, t_{\text {END }}\right] \\
\begin{cases}\dot{x}=f(x, z) \\
g_{\text {dyn }}(x, z, u)=0 & \\
F_{C_{L}}=0 & \\
\dot{p}_{R}(x)=0 & \\
& \begin{array}{l}
\dot{x}=f(x, z) \\
g_{\text {dyn }}(x, z, u)=0 \\
\dot{p}_{R}(x)=0 \\
\dot{p}_{L}(x)=0
\end{array} \\
& p_{R}\left(x\left(t_{\text {TRANS }}\right)\right)=0 \\
p_{L}\left(x\left(t_{\text {TRANS }}\right)\right)=0\end{cases}
\end{array}
$$

index 2 DAE

Multiphase dynamics...

$$
t \in\left[0, t_{\text {TRANS }}\right] \quad t \in\left[t_{T R A N S}, t_{E N D}\right]
$$

$$
\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
F_{C_{L}}=0 \\
\ddot{p}_{R}(x)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
g_{d y n}(x, z, u)=0 \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.
$$

$$
\begin{aligned}
p_{R}\left(x\left(t_{\text {TRANS }}\right)\right) & =0 \\
p_{L}\left(x\left(t_{\text {TRANS }}\right)\right) & =0 \\
\dot{p}_{R}\left(x\left(t_{\text {TRANS }}\right)\right) & =0 \\
\dot{p}_{L}\left(x\left(t_{\text {TRANS }}\right)\right) & =0
\end{aligned}
$$

index 1 DAE

Multiphase dynamics....with invariants!

$$
\begin{aligned}
& t \in\left[0, t_{T R A N S}\right] \\
& t \in\left[t_{T R A N S}, t_{E N D}\right] \\
& \begin{array}{l}
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array} \quad \begin{array}{ll}
\dot{x}=f(x, z) & p_{R}\left(x\left(t_{\text {TRANS }}\right)\right)=0 \\
p_{L}\left(x\left(t_{\text {TRANS }}\right)\right)=0 \\
F_{C_{L}}=0 & \dot{p}_{R}\left(x\left(t_{\text {TRAN }}\right)\right)=0 \\
\ddot{p}_{R}(x)=0 & \dot{p}_{L}\left(x\left(t_{\text {TRANS }}\right)\right)=0
\end{array} \quad\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.
\end{aligned}
$$

Multiphase dynamics... with invariants!

$$
\begin{array}{r}
t \in\left[0, t_{\text {TRANS }}\right] \\
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array}\left\{\begin{array} { l }
{ \dot { x } = f (x , z) } \\
{ F _ { C _ { L } } = 0 } \\
{ \ddot { p } _ { R } (x) = 0 }
\end{array} \begin{array} { l }
{ p _ { R } (x (t _ { \text { TRANANS } })) = 0 } \\
{ p _ { L } (x (t _ { \text { TRANS } })) = 0 } \\
{ \dot { p } _ { R } (x (t _ { \text { TRANS } })) = 0 } \\
{ \dot { p } _ { L } (x (t _ { \text { TRANS } })) = 0 }
\end{array} \quad \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.\right.
$$

Transition

$$
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
$$

Multiphase dynamics....with invariants!

$$
\begin{aligned}
& t \in\left[0, t_{T R A N S}\right] \\
& t \in\left[t_{T R A N S}, t_{E N D}\right] \\
& \begin{array}{l}
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array}\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
F_{C_{L}}=0 \\
\ddot{p}_{R}(x)=0
\end{array} \quad p_{L}\left(x\left(t_{T R A N S}\right)\right)=0 \quad\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Transition } \\
& \left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
\end{aligned}
$$

Taking into account periodicity constraints

$$
\begin{aligned}
& t \in\left[0, t_{\text {TRANS }}\right] t \in\left[t_{\text {TRANS }}, t_{\text {END }}\right] \\
& p_{R}(x(0))=0 \\
& \dot{p}_{R}(x(0))=0
\end{aligned}\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
F_{C_{L}}=0 \\
\ddot{p}_{R}(x)=0
\end{array} \quad p_{L}\left(x\left(t_{\text {teANs }}\right)\right)=0 \quad\left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.\right.
$$

Transition

$$
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
$$

Taking into account periodicity constraints

$$
\begin{array}{cc}
t \in\left[0, t_{\text {TRANS }}\right] & t \in\left[\begin{array}{l}
\left.t_{\text {TRANS }}, t_{\text {END }}\right] \\
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array}\right. \\
\begin{cases}\dot{x}=f(x, z) & p_{L}\left(x\left(t_{T R A N S}\right)\right)=0 \\
F_{C_{L}}=0 & \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0
\end{array}\right. \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0\end{cases} \\
\text { Transition } \\
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
\end{array}
$$

Periodicity constraints implicitly imply

$$
\begin{aligned}
& p_{L_{y}}(x(0))=p_{R_{y}}\left(x\left(t_{E N D}\right)\right) \\
& p_{R_{y}}(x(0))=p_{L_{y}}\left(x\left(t_{E N D}\right)\right)
\end{aligned}
$$

Taking into account periodicity constraints

$$
\begin{array}{cc}
t \in\left[0, t_{\text {TRANS }}\right] & t \in\left[\begin{array}{l}
\left.t_{\text {TRANS }}, t_{E N D}\right] \\
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array}\right. \\
\begin{cases}\dot{x}=f(x, z) & p_{L_{x}}\left(x\left(t_{\text {TRANS }}\right)\right)=0 \\
F_{C_{L}}=0 & \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0
\end{array}\right. \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0\end{cases} \\
\text { Transition } \\
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
\end{array}
$$

Periodicity constraints implicitly imply

$$
\begin{array}{ll}
p_{L_{y}}(x(0))=p_{R_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{L}(x(0))=\dot{p}_{R}\left(x\left(t_{E N D}\right)\right) \\
p_{R_{y}}(x(0))=p_{L_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{R}(x(0))=\dot{p}_{L}\left(x\left(t_{E N D}\right)\right)
\end{array}
$$

Taking into account periodicity constraints

$$
\begin{array}{cc}
t \in\left[0, t_{\text {TRANS }}\right] & t \in\left[\begin{array}{l}
\left.t_{\text {TRANS }}, t_{E N D}\right] \\
p_{R}(x(0))=0 \\
\dot{p}_{R}(x(0))=0
\end{array}\right. \\
\begin{cases}\dot{x}=f(x, z) & p_{L_{x}}\left(x\left(t_{\text {TRANS }}\right)\right)=0 \\
F_{C_{L}}=0 & \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0
\end{array}\right. \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0\end{cases} \\
\text { Transition } \\
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0 \\
J_{C_{L}}(q) \dot{q}^{+}=0
\end{array}\right.
\end{array}
$$

Periodicity constraints implicitly imply

$$
\begin{array}{ll}
p_{L_{y}}(x(0))=p_{R_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{L}(x(0))=\dot{p}_{R}\left(x\left(t_{E N D}\right)\right) \\
p_{R_{y}}(x(0))=p_{L_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{R}(x(0))=\dot{p}_{L}\left(x\left(t_{E N D}\right)\right)
\end{array}
$$

Taking into account periodicity constraints

$$
\begin{aligned}
& t \in\left[0, t_{\text {TRANS }}\right] t \in\left[t_{\text {TRANS }}, t_{\text {END }}\right] \\
& p_{R}(x(0))=0 \\
& \dot{p}_{R}(x(0))=0
\end{aligned}\left\{\begin{array} { l }
{ \dot { x } = f (x , z) } \\
{ F _ { C _ { L } } = 0 } \\
{ \ddot { p } _ { R } (x) = 0 }
\end{array} \quad p _ { L _ { x } (x (t _ { \text { TRANS } })) = 0 } \quad \left\{\begin{array}{l}
\dot{x}=f(x, z) \\
\ddot{p}_{R}(x)=0 \\
\ddot{p}_{L}(x)=0
\end{array}\right.\right.
$$

Transition

$$
\left\{\begin{array}{l}
q^{+}=q^{-} \\
M(q)\left(\dot{q}^{+}-\dot{q}^{-}\right)=\text {Impulse } \\
J_{C_{R}}(q) \dot{q}^{+}=0
\end{array}\right.
$$

Periodicity constraints implicitly imply

$$
\begin{array}{ll}
p_{L_{y}}(x(0))=p_{R_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{L}(x(0))=\dot{p}_{R}\left(x\left(t_{E N D}\right)\right) \\
p_{R_{y}}(x(0))=p_{L_{y}}\left(x\left(t_{E N D}\right)\right) & \dot{p}_{R}(x(0))=\dot{p}_{L}\left(x\left(t_{E N D}\right)\right)
\end{array}
$$

What do we optimize for?

- Minimize the positive work:

$$
\sum_{k=0}^{N} \sum_{i \in \mathscr{A}} \max \left(\tau_{i, k} \dot{q}_{i, k}, 0\right) h_{k}
$$

Slack variables to deal with non-smooth objective:

$$
\sum_{k=0}^{N} \sum_{i \in \mathscr{A}} s_{i, k} h_{k} \quad\left\{\begin{array}{l}
s_{i, k} \geq 0 \\
s_{i, k} \geq \tau_{i, k} \dot{q}_{i, k}
\end{array}\right.
$$

- Minimize control variations:

What do we optimize for?

- Minimize the positive work:

$$
\sum_{k=0}^{N} \sum_{i \in \mathscr{A}} \max \left(\tau_{i, k} \dot{q}_{i, k}, 0\right) h_{k}
$$

Slack variables to deal with non-smooth objective:

$$
\sum_{k=0}^{N} \sum_{i \in \mathscr{A}} s_{i, k} h_{k} \quad\left\{\begin{array}{l}
s_{i, k} \geq 0 \\
s_{i, k} \geq \tau_{i, k} \dot{q}_{i, k}
\end{array}\right.
$$

- Minimize control variations:

$$
\sum_{k=0}^{N-1} \sum_{i \in \mathscr{A}}\left(\tau_{i, k+1}-\tau_{i, k}\right)^{2}
$$

Horizontal walk

Climb

Steep climb

Thank you!

