
Recent advances in the HPMPC and BLASFEO
software packages

Gianluca Frison

Syscop group retreat

6 September 2016

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



HPMPC

I library for High-Performance implementation of solvers for
MPC

I the QP solver is a Riccati based IPM

I linear algebra tailored for small-scale performance, hand
optimized for many computer architectures

I outperforming similar solvers (e.g. FORCES) thanks to much
better compuational performance

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



HPMPC ⇒ HPMPC + BLASFEO

I HPMPC: big software library (about 370k lines of code)
I split the library (work in progress...)

I HPMPC: optimization algorithms for MPC
I BLASFEO: linear algebra for embedded optimization

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



HPMPC

Improve reliability:

I more accurate solution

I possibly at the expense of a small preformance loss

Investigated techniques:

I in IPM, compute search direction step v.s. ’iterate’

I Riccati recursion as factorization of the KKT matrix: iterative
refinement

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

Given the QP

min
x

1
2x

THx + gT x

s.t. Ax = b

Cx ≥ d

the KKT conditions are

Hx + g − ATπ − CTλ = 0

Ax − b = 0

Cx − d − t = 0

λT t = 0 ⇒ ΛTe = 0

(λ, t) ≥ 0

The first 4 conditions are a system of nonlinear equations f (y) = 0.

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

Search direction as Newton method step on the KKT conditions

∇f (yk)∆y = −f (yk)

giving 
H −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆x
∆π
∆λ
∆t

 = −


rH
rA
rC
rT


with the residuals at the RHS

rH
rA
rC
rT

 =


Hxk − ATπk − CTλk + g

Axk − b
Cxk − tk − d

ΛkTke



Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

Rewritten as augmented system[
H + CTT−1

k ΛkC −AT

−A 0

] [
∆x
∆π

]
= −

[
rH + CTT−1

k (rT + Λk rC )
−rA

]
where the RHS expression is

−
[

(H + CTT−1
k ΛkC )xk − ATπk + (g − CT (λk + T−1

k Λkd))
b − Axk

]
It is possible to compute directly the iterate ỹk+1 = yk + ∆y as[

H + CTT−1
k ΛkC −AT

−A 0

] [
x̃k+1

π̃k+1

]
=

[
g − CT (λk + T−1

k Λkd)
b

]
and the step in the search direction step as ∆y = ỹk+1 − yk

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

I the direct computation of ∆y requires the computation of
residuals at the RHS (O(n2) flops)

I the computation of ∆y from ỹk+1 does not require the
computation of residuals at the RHS (O(n) flops)

I the procedures are equivalent in exact arithmetric...

I ... but not on finite-precision arithmetic

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

I suppose y∗ = 5.0, your current iterate yk has 5 digits of
accuracy but the conditioning of the LHS matrix gives 3 digits
of accuracy

I not using residuals, ∆y is computed as

∆y = ỹk+1 − yk = 5.00365958− 5.00004213 = 0.00361745

so (for α ≈ 1) the next iterate actually loses accuracy!!!

yk+1 = yk + α∆y = 5.00004213 + α0.00361745 ≈ 5.0036

I using residuals, we have directy ∆y with 3 digits of accuracy

∆y = −0.00004215

and then (for α ≈ 1) the next iterate has about 8 digits of
accuracy

yk+1 = yk +α∆y = 5.00004213−α0.00004215 ≈ 4.99999998

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Search direction in IPM

I in IPM, 3 digits of accuracy in the step ∆y are enough (there
is a safety factor of about 0.995 anyway to keep (λ, t) > 0)

I but conditioning gets increasingly worse at late IPM iterations

I idea: compute ỹk+1 at early IPM iterations (possibly in single
precision), use residuals close to solution (few iterations:
region of quadratic convergence) for high-accuracy solution

I issue: switch point depends on conditioning of the system

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Iterative refinement

I idea: use residual computation also in the solution of the
equality-constrained QP giving the search direction

I may help if the system is badly conditioned and gives only a
couple of digits of accuracy (e.g. late IPM iterations)

I e.g. iterative refinement in the solution of M∆y = m

1: factorize M
2: compute solution ∆y = M−1m
3: for i = 1, 2, . . . , nir do
4: compute residuals rm = m −M∆y
5: solve for residuals δy = M−1rm
6: update solution ∆y = ∆y + δy
7: end for

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Partial condensing

I finally (being) embedded in the high-level HPMPC interface
I invisible to the user, only one new argument Np

I allows for arbitrary values for the new horizon length
1 ≤ Np ≤ N (i.e. also different block sizes)

I uses the N2 n3x condensing algorithm (best choice for free x0)

I recovers full space solution after QP solution (multipliers too)
I still work in progress:

I general constraints to be done
I atm the partial condensing happens in the feedback phase
I needs extensive testing and debugging

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



BLASFEO

I BLAS For Embedded Optimization

I idea: take the linear algebra out of HPMPC, and make it
available to implement other algorithms

I LA in HPMPC
I focus on best possible performance for small matrices
I use panel-major matrix format
I main loop of each LA kernel is the gemm loop
I LA kernels written as C function with intrinsics

I LA in BLASFEO
I trade-off between performance and code size
I focus on code reuse
I use panel-major matrix format
I LA kernels coded in assembly using custom function calling

convention

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Function calling convention in X86 64

I In Linux and Mac
I first 6 arguments passed in GP registers (rdi, rsi, rdx, rcx, r8,

r9)
I the other arguments passed on the stack, one evey 64-bit

(regardless the data type)
I GP registers rbx, rbp, r12, r13, r14, r15 have to be saved on

the stack and restored by the called function
I the other GP registers can be freely modified
I no arguments can be passed on the FP registers
I the upper 256-bit of the FP registers must be set to zero

before returning to the caller function

I On Windows, only the first 4 arguments are passed in GP
registers

I not suitable to efficiently code small functions working on FP:
I large overhead (lot of stuff to be saved on the stack)
I FP registers can not be used to pass arguments

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Function calling convention in BLASFEO

I LA kernels with same interface as in HPMPC
I but implemented calling many ’lightweight’ functions

(procedures) with local scope and custom calling convention
I no use of stack
I content of GP registers rdi, rsi, rdx, rcx, r8, r9 is untouched
I int and pointers passed in GP registers r10, r11, r12, r13, 14,

r15, also used for local int and pointers operations
I first n = 4, 8 or 12 FP registers used as accumulation registers
I remaining (16− n) FP registers used for local FP operations

I suitable to efficiently and modularly code LA kernels
I procedures have very small overhead (about the same as 2

unconditional jumps - one for call and one for ret)
I a procedure codes for an ’atomic’ operation on FP registers
I same procedure called by many LA kernels

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



Macro use in BLASFEO

I procedures can be easily replaced by macros
I trade-off between code size and number of call and ret (and

taget address misprediction)

I 3 levels of macros use
I level 0: all procedures, no macros
I level 1: gemm procedure, all others macros
I level 2: no procedures, all macros

I trade-off small performance loss (1-2%) with substantial code
size reduction (getting larger as more LA kernels are
implemented)

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages



BLASFEO

I still work in progress as well

I atm only LA routines needed for Riccati and condensing
I atm 4 architectures (plus generic code)

I Intel Haswell 64-bit
I Intel Sandy-Bridge 64-bit
I Intel Core 64-bit
I AMD Bulldozer 64-bit

I next ARMv8A ?

I code showcase

Gianluca Frison Recent advances in the HPMPC and BLASFEO software packages


