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Optimal Control Problem (OCP)

.
n;’if E (z(T)) —i—/o L(z(t), u(t))dt
subject to 2(t) = f(z(t), u(t))
0 < s(z(t), u(t))
0 < r(z(0),2(T))

where
@ zc R  state variables
@ u e R"™ control variables

@ problem is often high-dimensional and stiff ~~ Model Reduction
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Singular Perturbed Problem (SPP)

variables evolve on different time scales. Instead of z(t) = ?(t,z(t))
consider

SPP

x(t) = £ (x(t), y(t), u(t)) (2a)
ey(t) = g(x(t), y(t), u(t)) (2b)

with fixed 0 < € < 1.

Decomposition of variables:

@ z = (x,y) where x is a slow variable (also called reaction progress
variable) and y is a fast variable.

@ & measure for time scale separation
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Singular Perturbed Problem (SPP)
What happens in the limit ¢ — 07
SPP fore =0

X(t) = f(x(t), y(t), u(t)) (3a)
0= g(x(t),y(t), u(t)) (3b)

@ = We get a system of differential algebraic equations (DAEs)! Can be
seen as system of ODEs on manifold M = {g(x(t), y(t), u(t)) = 0}

o If partial derivative g, is non-singular, use implicit function theorem:
3 function h such that y = h(x, u). System becomes

x(t) = £ (x(t), h(x(t), u(t)), u(t))
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Manifold also for & > 07
Geometrically: Bundling of trajectories onto manifolds
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Figure : Courtesy of A.N. Al-Khateeb, J.M. Powers, S. Paloucci
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Analytically, under some assumptions it holds

Theorem (Fenichel)

Jeg >0 V0 < e < g there is a function h(-;¢) : K C R™TM — R™
such that
ME = {(X7y7 U) Yy = h(X’ U;E)’(X’ U) € K}

is locally invariant under the flow of (3).

v
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Boundary Value Problem by Lebiedz and Unger for calculation of h(x*,¢):

. . 2
z(-)zw,y(o) el )
s.t. z(t) = ?( z(t)), t€ [to, tr] (4b)
0 = c(z(t)) (4¢)
x(tr) = x* (4d)

where

e funktion c includes conservation of mass etc. (in case of chemical
reactions)

o F=(f i)
o l0<tr—thxk1

Marcus Heitel Model Reduction in OC 19th July 2016 8 /16



Outline

© Model Reduction in Optimal Control

o & = E DA
Marcus Heitel Model Reduction in OC



OCP for singular perturbed systems

T
min E (x(T), y(T)) +/0 L(x(t),y(t), u(t))dt

subject to X(8) = £(t,x(1), ¥(1), u(t))
ey(t) = g(t,x y(f u(t))
0< s(x(t), t), u(t))
0< r(x(O),y(O),X(T)’Y( T))

with stiff dynamics (time scale separation)
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reduced OCP

.
mn  E(x(T), h(x(T),u(T),e))—l—/O L(x(8), h(x, u, 2), u(t)) dt
subject to x(t) = f(t,x(t), h(x, u,€), u(t))
0 < s(x(t), h(x, u,£), u(t))
0 < r(x(0), h(x(0), u(0), &), x(T), h(x(T),u(T),e))

where
@ reduced model order: ny + n, ~~ ny state variables

o resulting ODE s less stiff
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But still some issues

@ strong dependence on efficient calculation of derivatives %h(x, u;€)
for solving the reduced OCP

o efficient coupling of calculation of the manifold and the OCP
@ predecessor used two different tools:

» DOT: tool for solving OCPs with multiple shooting approach arround
IPOPT

» MoRe: tool for efficient calculation of manifold
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Calculation of derivatives of h

Boundary value problem is transformed into NLP (with collocation or
shooting method) with parameter p € R? (values for x*, u)

min f(x,p)

(P(p)) st gilx,p) <0 (i=1,...,m)
gilx,p)=0 (i=m+1,...,k)

Sensitivity Theorem

Let X be a local minimum of P(pp) satisfying LICQ and the second order
sufficient conditions (SOSC) of the NLP P(pg) with strict complementarity
and Lagrangian multpliers \;. Then 3Py C RY open and 3 continuously
differentiable functions x : Py — R"”, \; : Pp — R such that

(i) x(po) =X, Ai(po) = Ai

(ii) x(p), Ai(p) satisfy SOSC for P(p) for all p € Py.
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Calculation of derivatives of h (2)

Corollary

Denote the Lagrangian of P(p) by L(x, A, p). Define

J(x)={1<i<k : gi(x,p) =0} and G(x,p) := (&i(x, P))icsx). Then
it holds

= derivatives can be calculated with low extra costs.
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results of my predecessor
Example (enzyme kinetics - Michaelis-Menten)
Kk
S+E=C3P+E
ki

used for optimal control with artificial objective function:

5
min / —50y + v dt
0

X,y U
st. x=-x+(x+05)y+u
ey= x—(x+1)y
x(0)=1,y(0)=n
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results of my predecessor (2)

0.025 0.05 0.075 0.1

Figure : time in seconds for each iteration of the resulting NLP
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