Towards slow manifold based model reduction in optimal control of multiple time scale ODE

Marcus Heitel

19th July 2016

Outline

(1) Optimal Control

(2) Singular Perturbed Problems

(3) Model Reduction in Optimal Control

Optimal Control Problem (OCP)

$$
\begin{array}{rl}
\min _{z, u} & E(z(T)) \\
\text { subject to } & +\int_{0}^{T} L(z(t), u(t)) \mathrm{d} t \\
& \\
& \\
& \\
& \\
& \\
& \leq s) \\
& =\tilde{f}(z(t), u(t)) \\
0 & \leq r(z(0), u(t)) \\
\end{array}
$$

where

- $z \in \mathbb{R}^{n_{z}}$ state variables
- $u \in \mathbb{R}^{n_{u}}$ control variables
- problem is often high-dimensional and stiff \rightsquigarrow Model Reduction

Outline

(1) Optimal Control

(2) Singular Perturbed Problems

(3) Model Reduction in Optimal Control

Singular Perturbed Problem (SPP)

variables evolve on different time scales. Instead of $\dot{z}(t)=\tilde{f}(t, z(t))$, consider
SPP

$$
\begin{align*}
\dot{x}(t) & =f(x(t), y(t), u(t)) \tag{2a}\\
\varepsilon \dot{y}(t) & =g(x(t), y(t), u(t)) \tag{2b}
\end{align*}
$$

with fixed $0<\varepsilon \ll 1$.
Decomposition of variables:

- $z=(x, y)$ where x is a slow variable (also called reaction progress variable) and y is a fast variable.
- ε measure for time scale separation

Singular Perturbed Problem (SPP)

What happens in the limit $\varepsilon \rightarrow 0$?
SPP for $\varepsilon=0$

$$
\begin{align*}
\dot{x}(t) & =f(x(t), y(t), u(t)) \tag{3a}\\
0 & =g(x(t), y(t), u(t)) \tag{3b}
\end{align*}
$$

- \Rightarrow We get a system of differential algebraic equations (DAEs)! Can be seen as system of ODEs on manifold $M=\{g(x(t), y(t), u(t))=0\}$
- If partial derivative g_{y} is non-singular, use implicit function theorem:
\exists function h such that $y=h(x, u)$. System becomes

$$
\dot{x}(t)=f(x(t), h(x(t), u(t)), u(t))
$$

Manifold also for $\varepsilon>0$?

Manifold also for $\varepsilon>0$?

Geometrically: Bundling of trajectories onto manifolds

Figure: Courtesy of A.N. Al-Khateeb, J.M. Powers, S. Paloucci

Manifold also for $\varepsilon>0$?
Geometrically: Bundling of trajectories onto manifolds

Figure: Courtesy of A.N. Al-Khateeb, J.M. Powers, S. Paloucci
Analytically, under some assumptions it holds

Theorem (Fenichel)

$\exists \varepsilon_{0}>0 \forall 0<\varepsilon \leq \varepsilon_{0}$ there is a function $h(\cdot ; \varepsilon): K \subset \mathbb{R}^{n_{x}+n_{u}} \rightarrow \mathbb{R}^{n_{y}}$ such that

$$
\mathcal{M}_{\varepsilon}:=\{(x, y, u): y=h(x, u ; \varepsilon),(x, u) \in K\}
$$

is locally invariant under the flow of (3).

Boundary Value Problem by Lebiedz and Unger for calculation of $h\left(x^{*}, \varepsilon\right)$:

$$
\begin{align*}
\min _{z(\cdot)=(x(\cdot), y(\cdot))} & & \left\|\ddot{z}\left(t_{0}\right)\right\|_{2}^{2} \tag{4a}\\
\text { s.t. } & \dot{z}(t) & =\tilde{f}(t, z(t)), \quad t \in\left[t_{0}, t_{f}\right] \\
& 0 & =c(z(t)) \tag{4b}\\
& x\left(t_{f}\right) & =x^{*} \tag{4c}
\end{align*}
$$

where

- funktion c includes conservation of mass etc. (in case of chemical reactions)
- $\tilde{f}=\left(f, \frac{1}{\varepsilon} g\right)$
- $0<t_{f}-t_{0} \ll 1$

Outline

(1) Optimal Control

(2) Singular Perturbed Problems

(3) Model Reduction in Optimal Control

OCP for singular perturbed systems

$$
\min _{x, y, u} \quad E(x(T), y(T))+\int_{0}^{T} L(x(t), y(t), u(t)) \mathrm{d} t
$$

with stiff dynamics (time scale separation)

reduced OCP

$\min _{x, u}$
subject to

$$
\begin{aligned}
E(x(T), & h(x(T), u(T), \varepsilon))+\int_{0}^{T} L(x(t), h(x, u, \varepsilon), u(t)) \mathrm{d} t \\
\dot{x}(t) & =f(t, x(t), h(x, u, \varepsilon), u(t)) \\
0 & \leq s(x(t), h(x, u, \varepsilon), u(t)) \\
0 & \leq r(x(0), h(x(0), u(0), \varepsilon), x(T), h(x(T), u(T), \varepsilon))
\end{aligned}
$$

where

- reduced model order: $n_{x}+n_{y} \rightsquigarrow n_{x}$ state variables
- resulting ODE is less stiff

But still some issues

- strong dependence on efficient calculation of derivatives $\frac{\partial}{\partial x, u} h(x, u ; \varepsilon)$ for solving the reduced OCP
- efficient coupling of calculation of the manifold and the OCP
- predecessor used two different tools:
- DOT: tool for solving OCPs with multiple shooting approach arround IPOPT
- MoRe: tool for efficient calculation of manifold

Calculation of derivatives of h

Boundary value problem is transformed into NLP (with collocation or shooting method) with parameter $p \in \mathbb{R}^{q}$ (values for x^{\star}, u)

$$
\begin{array}{lll}
\min _{x} & f(x, p) \\
(P(p)) & \text { s.t. } & g_{i}(x, p) \leq 0(i=1, \ldots, m) \\
& g_{i}(x, p)=0(i=m+1, \ldots, k)
\end{array}
$$

Sensitivity Theorem

Let \bar{x} be a local minimum of $P\left(p_{0}\right)$ satisfying LICQ and the second order sufficient conditions (SOSC) of the NLP $P\left(p_{0}\right)$ with strict complementarity and Lagrangian multpliers $\bar{\lambda}_{i}$. Then $\exists P_{0} \subset \mathbb{R}^{q}$ open and \exists continuously differentiable functions $x: P_{0} \rightarrow \mathbb{R}^{n}, \lambda_{i}: P_{0} \rightarrow \mathbb{R}$ such that
(i) $x\left(p_{0}\right)=\bar{x}, \lambda_{i}\left(p_{0}\right)=\bar{\lambda}_{i}$
(ii) $x(p), \lambda_{i}(p)$ satisfy SOSC for $P(p)$ for all $p \in P_{0}$.

Calculation of derivatives of $h(2)$

Corollary

Denote the Lagrangian of $P(p)$ by $L(x, \lambda, p)$. Define
$J(x)=\left\{1 \leq i \leq k: g_{i}(x, p)=0\right\}$ and $G(x, p):=\left(g_{i}(x, p)\right)_{i \in J(\bar{x})}$. Then
it holds
$\binom{x^{\prime}\left(p_{0}\right)}{\lambda^{\prime}\left(p_{0}\right)}=\left(\begin{array}{cc}\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} L\left(\bar{x}, \bar{\lambda}, p_{0}\right) & \frac{\mathrm{d}}{\mathrm{d} x} G\left(\bar{x}, p_{0}\right)^{T} \\ \frac{\mathrm{~d}}{\mathrm{~d} x} G\left(\bar{x}, p_{0}\right) & 0\end{array}\right)^{-1} \cdot\binom{\frac{\mathrm{~d}^{2}}{\mathrm{~d} x \mathrm{dp}} L\left(\bar{x}, \bar{\lambda}, p_{0}\right)}{\frac{\mathrm{d}}{\mathrm{d} p} G\left(\bar{x}, p_{0}\right)}$
\Rightarrow derivatives can be calculated with low extra costs.

results of my predecessor

Example (enzyme kinetics - Michaelis-Menten)

$$
S+E \underset{k_{1}^{-}}{\stackrel{k_{1}^{+}}{\rightleftharpoons}} C \xrightarrow{k_{2}} P+E
$$

used for optimal control with artificial objective function:

$$
\begin{array}{cc}
\min _{x, y, u} & \int_{0}^{5}-50 y+u^{2} \mathrm{~d} t \\
\text { s.t. } & \dot{x}=-x+(x+0.5) y+u \\
& \varepsilon \dot{y}=x-(x+1) y \\
& x(0)=1, y(0)=\eta
\end{array}
$$

results of my predecessor (2)

Figure : time in seconds for each iteration of the resulting NLP

