
Automatic Control Laboratory, ETH Zürich 

http://control.ee.ethz.ch

20 Aug, 2014

Generalized Gauss Inequalities in  
Optimization and Control

Paul Goulart 
!

http://control.ee.ethz.ch


P. Goulart  |  20-08–14  |  

Some Collaborators

2

Bart Van Parys 
ETH Zurich

Daniel Kuhn 
EPFL

Manfred Morari 
ETH Zurich



P. Goulart  |  20-08–14  |  

An Introduction
!
Controlling the probability and severity of extreme events 

•For power systems, monetary policy, water distribution, building control… 
!
!
How much information is required to make good decisions? 

•Two classical results from the 19th century. 
!
!
A Generalized Gauss bounding problem and its solution. 
!
!
Some applications and future directions.
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Simple Example: How Tall are the Swiss?
Problem : What percentage p of the Swiss are taller than 190cm?   
Assume only: 

• Mean : μ = 171.5cm 
• Standard deviation : σ = 7.5cm 

Statistics for social sciences dates to the astronomer Quetelet [1835].
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Chebyshev (1867) : Can bound the worst 
case probability using the inequality:  
!
!
!
providing the worst-case estimate:

P (x� µ � k�)  1

1 + k2

p  �2

�2 + (190� µ)2
⇡ 14.1%
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The Swiss according to Chebyshev

5

Im Durchschnitt sind       
      wir 171,5 cm gross.

Versicherungwww.css.ch

Wir interessieren uns nicht für den 
Durchschnitt, wir interessieren 
uns für Sie. Ganz persönlich.

Image Courtesy of CSS Group
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Gauss (1821) : For a unimodal distribution, 
can bound the worst case probability using: 
!
!
!!
• A unimodal probability density function     

is greater when closer to the mode.

Simple Example: How Tall are the Swiss?
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Problem : What percentage p of the Swiss are taller than 190cm?   
Assume only: 

• Mean : μ = 171.5cm 
• Standard deviation : σ = 7.5cm 

Statistics for social sciences dates to the astronomer Quetelet [1835].
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Example : Digital Communication Limits
!
!
!
Find a bound on the rate of correct signal transmission. 
!
!
!
!
!

Probability of correct transmission is : 
!
!
!
where Ci is the set of outputs that should 
be decoded as si.
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p = 1� P [(si + ⇠) /2 Ci]

Problem : Define a set of message S = {s1, . . . , sc} ✓ R2
. The messages

are communicated over a channel with additive noise.
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Generalized Chebyshev Bounds
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Problem : What is the worst case probability that

the random variable x falls outside of a set X ✓ Rn
?

X

Σ
μm

Assume only:

• Mean : µ 2 Rn

• Second moment : S = ⌃+ µµ

>

• Open set : X =
�
x

��
a

>
i x < bi, i = 1, . . . k

 

Classical Chebyshev inequality is a special case:

X = {x 2 R | x  � + µ, �x  � � µ}

with ⌃ = �2 > 0.
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Generalized Chebyshev Bounds
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An infinite-dimensional optimization problem:

Problem : What is the worst case probability that

the random variable x falls outside of a set X ✓ Rn
?

X

Σ
μm

Assume only:

• Mean : µ 2 Rn

• Second moment : S = ⌃+ µµ

>

• Open set : X =
�
x

��
a

>
i x < bi, i = 1, . . . k

 

P(µ, S) = Set of distributions consistent with moments (µ, S)

max

P
P(x /2 X)

subject to: P 2 P(µ, S)
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Example : Digital Communication Limits
!
!
!
Find a bound on the rate of correct signal transmission. 
!
Solution : The worst case error probability 
!
!
is achieved by a point distribution. 
!
!

10

p = 1� P [(si + ⇠) /2 Ci]

Problem : Define a set of message S = {s1, . . . , sc} ✓ R2
. The messages

are communicated over a channel with additive noise.
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• �i : Mass of each point

• zi/�i : Location of point masses
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Generalized Chebyshev Bounds (SDP form)
Theorem Vandenberghe and Boyd (2007) 
The Chebyshev bounding problem : 
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is equivalent to a finite-dimensional convex problem:

max

P
P(x /2 X)

subject to: P 2 P(µ, S)

max

{Zi,zi,�i}

kX

i=1

�i

subject to:

kX

i=1

 
Zi zi

z>i �i

!
�
 

S µ

µ>
1

!

✓
Zi zi
z>i �i

◆
⌫ 0

a>i zi � �ibi

9
>=

>;
8i = 1, . . . , k
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Generalized Gauss Bounds
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An infinite-dimensional optimization problem:

Problem : What is the worst case probability that

the random variable x falls outside of a set X ✓ Rn
?

X

Σ
μm

Assume only:

• Mean : µ 2 Rn

• Second moment : S = ⌃+ µµ

>

• Open set : X =
�
x

��
a

>
i x < bi, i = 1, . . . k

 

• Distribution is unimodal with mode m

max

P
P(x /2 X)

subject to: P 2 P(µ, S) \ Pn

P(µ, S) = Set of distributions consistent with moments (µ, S)

Pn = Set of unimodal distributions
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Unimodal Distributions in Rn
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Definition : If P has mode 0 and continuous density f, then P is unimodal    
if  
!
!
is non-increasing in t for any x.  The set of such measures is called P*.

f(tx), t � 0

Most common distributions are unimodal :  
• Beta, Chi, Dirichlet, Erlang, Fisher, Gamma, Hyperbolic, Inverse-Gauss, Laplace,….

x

m=0

Uniform distribution on a  
star-shaped set

f(x)

x1
x2

Normal distribution in R2
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How Unimodal is a Measure?
Definition : If P has mode 0 and continuous density f, then P is α-unimodal 
if  
!
!
is non-increasing in t for any x.  The set of such measures is called Pα.
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f(x)

x

f(x)

x

f(x)

x

↵ < n ↵ = n ↵ > n

f(tx)

t

↵�n
, t � 0

• Rate of increase/decrease along rays is controlled by ↵

• Pn : Worst-case uniform distributions (Gauss)

• lim
↵!1

P↵ : All possible distributions (Chebyshev)
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Some properties of α-unimodal measures
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Pn

P1

P1

�0

Some basic properties:

• P↵ is convex for every ↵ � 1

• The sets P↵ are nested, i.e.

P↵ ⇢ P 0
↵ for ↵  ↵0

• �0 is the ’most unimodal’ distribution

• P1 is the ’least unimodal’ set of distributions

Some standard models:

• Deterministic problems : correspond to P0

• Robust optimisation problems : correspond to P1 with no moment information
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From Infinite- to Finite-Dimensions
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Problem is an infinite-dimensional linear program:

Main Idea : Optimize over the extreme points of P(µ, S) \ P↵

max

P
P(x /2 X)

subject to: P 2 P(µ, S) \ P↵

1) The extreme points of Pα  are measures along lines 

�

↵

x

([0, tx]) = t

↵

, 8t 2 [0, 1]

) )
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From Infinite- to Finite-Dimensions
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Problem is an infinite-dimensional linear program:

Main Idea : Optimize over the extreme points of P(µ, S) \ P↵

max

P
P(x /2 X)

subject to: P 2 P(µ, S) \ P↵

P 2 P
↵

() 9µ 2 P1 : P(·) =
Z

�

↵

x

(·)µ(dx)

This is a Choquet representation for P.

P

�↵
x2

�↵
x1

�↵
x3

2) Every α-unimodal distribution is in the convex hull of the extreme points 
[Dharnadhikari, 1988]
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From Infinite- to Finite-Dimensions
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Problem is an infinite-dimensional linear program:

Main Idea : Optimize over the extreme points of P(µ, S) \ P↵

max

P
P(x /2 X)

subject to: P 2 P(µ, S) \ P↵

�

↵

xi
(x /2 X) = 1�

✓
b

i

a

>
i

x

i

◆
↵

• Maximize the sum of the violations

• Fix the distribution structure to

P =
kX

i=1

�

i

· �↵
xi
(x /2 X)

xi

X

3) The worst-case distribution is supported on a finite set of extreme points
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Chebyshev, Gauss and Everything in Between
Theorem (Van Parys, Goulart, Kuhn 2014)  
For any α ≥ 1, the infinite-dimensional problem:
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max

P
P(x /2 X)

subject to: P 2 P(µ, S) \ P↵

max

{Zi,zi,⌧i,�i}

kX

i=1

(�i � ⌧i)

subject to:

kX

i=1

 
Zi zi

z>i �i

!
�
 

↵+2
↵ S ↵+1

↵ µ
↵+1
↵ µ>

1

!

✓
Zi zi
z>i �i

◆
⌫ 0

a>zi � 0

⌧i(a
>
i zi)

↵ � �↵+1
i b↵i

9
>>>=

>>>;
8i = 1, . . . , k

is equivalent to a finite-dimensional convex problem.
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Example : Digital Communication Limits
Problem : What is the rate of correct signal detection for the central cell?
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α = ∞,  (Chebyshev-like) α = n,  (Gauss-like)
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Example : Digital Communication Limits (cont)
Problem : What is the rate of correct signal detection for the central cell?
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α = 1
α = n (Gauss-like)
α = ∞ (Chebyshev-like)
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Some immediate extensions
What other structural conditions can be added?
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✓
S µ
µ> 1

◆
2 M

• Multimodality : Can model multiple peaks in the distribution at points mi

•    

• Moment ambiguity : Moments (μ,S) need not be perfectly known

P =
mX

i=1

�iPi, � 2 �

P(x 2 B) = 1

Bounded support : Can require measure to be zero outside set B

• Symmetry : Can restrict P to be a symmetric distribution
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Applications: Controlling Extreme Events
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Find a controller that bounds the probability of outliers at the output.

Current Application Areas :  

• Control of Power Networks (with ABB) 

• Control of Water Distribution (with IWB) 

• Monetary Policy (with Swiss National Bank) 

• Wind Turbine Control (with Imperial College)

Problem : Consider an LTI system driven by noise wk with known moments.

uk yk

G

K

wk zk 2 Z
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Applications: Controlling Extreme Events
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Find a controller that bounds the probability of outliers at the output.

State Feedback Version: 
Steady-state moments satisfy relation 
!
!
!
(if zero mean noise, K stabilizing).

uk yk

G

K

wk zk 2 Z

Problem : Consider an LTI system driven by noise wk with known moments.

xk

xk 2 XA B
I 0

Bounding steady-state rate of violation P(x /2 X) is a Chebyshev-like problem.

E[xx>] = (A+BK)E[xx>](A+BK)> + E[ww>]
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Applications: Controlling Extreme Events
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Find a controller that bounds the probability of outliers at the output.

State Feedback Version: 
Steady-state moments satisfy relation 
!
!
!
(if zero mean noise, K stabilizing). 
!
What do we produce a bound for? 
!
!
!
The bounds produced are tight.

uk yk

G

K

wk zk 2 Z

Problem : Consider an LTI system driven by noise wk with known moments.

xk

xk 2 XA B
I 0

sup
P2P1


lim sup
k!1

P(xk /2 X)

�

E[xx>] = (A+BK)E[xx>](A+BK)> + E[ww>]
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Applications : Machine Learning with SVMs
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Problem : Given a collection of data points in Rn with associated labels, find   
a separating hyperplane (i.e. a linear classifier) with the lowest error rate.  

Current Application Area :  
• Credit Card Fraud Detection (FP7 ‘Big Data’ 

project with IBM / Feedzai) 
• Blue/red data represent ≈1 billion credit card 

transactions, each with ≈40 unique data points

min
a,✏

✏

subject to: P(⇠ /2 ⌅)  ✏, 8P 2 P(µ, S) \ P↵

P(⇠ /2 ⌅)  ✏, 8P 2 P(µ, S) \ P↵

⌅ =
�
⇠
�� a>⇠ > 1

 

⌅ =
�
⇠
�� a>⇠ < 1

 

a>⇠ = 1

Ξ

Ξ
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Modelling Severity of Violations
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Bounds on Conditional Value at Risk (CVaR)

max

P
P-CVaR✏(L(x))

subject to: P 2 P(µ, S) \ P↵

CVaR ingredients :  
!
!
!

• A loss function L measuring severity of outcomes

• A value ✏ characterising the fraction of outliers

CVaR computes the mean value of L(x) in the worst 100 · ✏% of cases

probability

L(x)

VaR

✏

1� ✏

CVaR
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Summary and Future Directions
!
A new fundamental result for bounding the probability of extreme events. 
!
Extends and connects classical methods of Gauss and Chebyshev. 
!
Applications in power systems, control design, machine learning, economics… 
!
Many extensions and variations are possible: 

•  Moment Ambiguity, Multi-modality, Symmetry 
•  Bounds on severity of violations 
!

 Thanks 
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