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An Introduction

Controlling the probability and severity of extreme events

e For power systems, monetary policy, water distribution, building control...

How much information is required to make good decisions?

e Two classical results from the 19th century.

A Generalized Gauss bounding problem and its solution.

Some applications and future directions.
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Simple Example: How Tall are the Swiss?

Problem : What percentage p of the Swiss are taller than 190cm?

Assume only:
e Mean : u = 171.5cm

e Standard deviation : ¢ = 7.5cm

Statistics for social sciences dates to the astronomer Quetelet [1835].

Chebyshev (1867) : Can bound the worst
case probability using the inequality:
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The Swiss according to Chebyshev
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Simple Example: How Tall are the Swiss?

Problem : What percentage p of the Swiss are taller than 190cm?

Assume only:
e Mean : u = 171.5cm

e Standard deviation : ¢ = 7.5cm

Statistics for social sciences dates to the astronomer Quetelet [1835].

Gauss (1821) : For a unimodal distribution,  °

0.18f

can bound the worst case probability using: 016l
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e A unimodal probability density function 0.08/

Is greater when closer to the mode. ZZZ
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Example : Digital Communication Limits

Problem : Define a set of message S = {s1,...,5.} € R?. The messages

are communicated over a channel with additive noise.

Find a bound on the rate of correct signal transmission.

3

channel s . . — .

S S S L
t 'C) *>| Decoder — S
3F 0

Probability of correct transmission is :

p=1=P[(s;+&) & Ci

where C} is the set of outputs that should

be decoded as s.. e =
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Generalized Chebyshev Bounds

Problem : What is the worst case probability that

the random variable x falls outside of a set X C R"™7

Assume only:
e Mean: ueR"
e Second moment : S =%+ up'
e Openset: X = {u ‘ aj v <by, i=1,...k}

Classical Chebyshev inequality is a special case:

X={zeR |z<ko+pu —x<ko—u}

with ¥ = o2 > 0.
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Generalized Chebyshev Bounds

Problem : What is the worst case probability that

the random variable x falls outside of a set X C R"™7

Assume only:
e Mean: ueR"
e Second moment : S =%+ up'
e Openset: X = {u ‘ aj v <by, i=1,...k}

An infinite-dimensional optimization problem:

max P(x ¢ X)

subject to: P € P(u,S)

.

P(u,S) = Set of distributions consistent with moments (u, .S)
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Example : Digital Communication Limits

Problem : Define a set of message S = {s1,...,5.} € R?. The messages

are communicated over a channel with additive noise.

Find a bound on the rate of correct signal transmission.

Solution : The worst case error probability
p=1-Pl(si+¢) ¢ Cil

Is achieved by a point distribution.

e )\, : Mass of each point Os;”-:}

e 2;/)\; : Location of point masses
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Generalized Chebyshev Bounds (SDP form)

Theorem Vandenberghe and Boyd (2007)
The Chebyshev bounding problem :

max P(x ¢ X)

subject to: P € P(u,S)

V.

is equivalent to a finite-dimensional convex problem:

k
subject to: E (z-T )\i> < (MT 1)

1=1
L 2 )
(/ 1 >'O
(ZZT Az)_ \Vi=1,... .k

J
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Generalized Gauss Bounds

Problem : What is the worst case probability that
the random variable x falls outside of a set X C R"™7
Assume only:

e Mean: u e R"

e Second moment : S =X+ up'
e Open set : X:{az ‘aiTx<bz-, izl,...k}

e Distribution is unimodal with mode m

An infinite-dimensional optimization problem:

max P(x ¢ X)

subject to: P € P(u,S) N P,

.

P(u,S) = Set of distributions consistent with moments (u, .S)

P.. = Set of unimodal distributions
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Unimodal Distributions in R”
Definition : If P has mode 0 and continuous density f, then P is unimodal
if
f(tx), t>0

is non-increasing in ¢ for any z. The set of such measures is called P..

Most common distributions are unimodal :

e Beta, Chi, Dirichlet, Erlang, Fisher, Gamma, Hyperbolic, Inverse-Gauss, Laplace,....
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Uniform distribution on a
star-shaped set Normal distribution in R?
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How Unimodal is a Measure?

Definition : If P has mode 0 and continuous density f, then P is c-unimodal

f
fltz) o J

ta—n’

Is non-increasing in ¢ for any x. The set of such measures is called P..

o Rate of increase/decrease along rays is controlled by «
e P, : Worst-case uniform distributions (Gauss)

e lim P, : All possible distributions (Chebyshev)

o—> OO

4 /() 4 f() A f(z)

a<<n a=1mn a>n
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Some properties of a-unimodal measures

Some basic properties:

e P, is convex for every a > 1 /

e [he sets P, are nested, I.e.

P, C P, for a < o'

® 0p Is the 'most unimodal’ distribution

o P is the 'least unimodal’ set of distributions

\_

Some standard models:

e Deterministic problems : correspond to Py

e Robust optimisation problems : correspond to P,, with no moment information
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From Infinite- to Finite-Dimensions

Problem is an infinite-dimensional linear program:

max P(x ¢ X)
subject to: P € P(u, S) N Py,

Y,

Main Idea : Optimize over the extreme points of P(u,.S) N P,
1) The extreme points of P, are measures along lines

5[0, tz]) = %, Wt e [0, 1]
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From Infinite- to Finite-Dimensions

Problem is an infinite-dimensional linear program:

max P(x ¢ X)
subject to: P € P(u, S) N Py,

Y,

Main Idea : Optimize over the extreme points of P(u,.S) N P,

2) Every a-unimodal distribution is in the convex hull of the extreme points
[Dharnadhikari, 1988]

PeP,<— duec Py : P(+) = /65‘;‘(-),u(dx)
PR
This is a Choquet representation for P.
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From Infinite- to Finite-Dimensions

Problem is an infinite-dimensional linear program:

max P(x ¢ X)
subject to: P € P(u,S) N Py,

Y,

Main Idea : Optimize over the extreme points of P(u,.S) N P,

3) The worst-case distribution is supported on a finite set of extreme points

e Fix the distribution structure to

k X
P=> )60 (z¢X)
i=1
e Maximize the sum of the violations

5;(3;5;)():1—( ? )a
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Chebyshev, Gauss and Everything in Between

Theorem (Van Parys, Goulart, Kuhn 2014)

For any o = 1, the infinite-dimensional problem:

max P(x ¢ X)
subject to: P € P(u, S) N Py,
Y
is equivalent to a finite-dimensional convex problem.
k
max )\z — T3
{Z:,25,Ti,Ai } 2221( )
k o+2 oa+1
7 2 at2g  atl),
subject to: < . o
J ; (Z? Az') ) (“T“ﬂ : )
Zz <4 )
>—
(& 3) =0
T =0 \i=1,... .k
mi(a) 2)% > Aot
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Example : Digital Communication Limits

Problem : What is the rate of correct signal detection for the central cell?

§
channel

S S S
¢ -C) 2 »| Decoder —»

o = 0o, (Chebyshev-like) o = n, (Gauss-like)
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Example : Digital Communication Limits (cont)

Problem : What is the rate of correct signal detection for the central cell?

channel
S S S
¢ -C) 2 »| Decoder —»
I —— S R R _
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C o — ©O
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Some immediate extensions

What other structural conditions can be added?

« Moment ambiguity : Moments (u,5) need not be perfectly known
S u
(uT 1) e M

e Multimodality : Can model multiple peaks in the distribution at points m;

P = f:%lpi, yel
i—1

e Bounded support : Can require measure to be zero outside set 15

Pz e B)=1

e Symmetry : Can restrict [P to be a symmetric distribution

P. Goulart | 20-08-14 | 22



Applications: Controlling Extreme Events

Problem : Consider an LTI system driven by noise w; with known moments.

Find a controller that bounds the probability of outliers at the output.

Current Application Areas :

e Control of Power Networks (with ABB) Tk, e LA

e Control of Water Distribution (with IWB) —

e Monetary Policy (with Swiss National Bank) Uk Yk
K «~—

e Wind Turbine Control (with Imperial College)
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Applications: Controlling Extreme Events

Problem : Consider an LTI system driven by noise w; with known moments.

Find a controller that bounds the probability of outliers at the output.

State Feedback Version:

Steady-state moments satisfy relation Yk o AlB Tk X»
— 1|0
Elzz'] = (A+ BK)E[zz"](A+ BK)' + E[lww'] " -
K ~—
(if zero mean noise, K stabilizing).

Bounding steady-state rate of violation P(x ¢ X) is a Chebyshev-like problem.
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Applications: Controlling Extreme Events

Problem : Consider an LTI system driven by noise w; with known moments.

Find a controller that bounds the probability of outliers at the output.

State Feedback Version:

Steady-state moments satisfy relation We  oalp FEEE X,
— 1|0
Elzz'] = (A+ BK)E[zz"](A+ BK)' + E[lww'] " -
K ~—
(if zero mean noise, K stabilizing).

What do we produce a bound for?

sup |limsup P(zy ¢ X)
PEP k— o0

The bounds produced are tight.
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Applications : Machine Learning with SVMs

Problem : Given a collection of data points in R" with associated labels, find

a separating hyperplane (i.e. a linear classifier) with the lowest error rate.

min €
a,e€

subject to: P(¢
§

Current Application Area :

e Credit Card Fraud Detection (FP7 ‘Big Data’
project with IBM / Feedzai)

e Blue/red data represent =1 billion credit card
transactions, each with =40 unique data points
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Modelling Severity of Violations
Bounds on Conditional Value at Risk (CVaR)

max P-CVaR.(L(x))
subject to: P € P(u,S) N P,

y,

CVaR computes the mean value of L(x) in the worst 100 - €% of cases

CVaR ingredients :

e A loss function L measuring severity of outcomes

e A value € characterising the fraction of outliers

R\; / CVaR

Va

>

probability

__~

L(z)
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Summary and Future Directions

A new fundamental result for bounding the probability of extreme events.
Extends and connects classical methods of Gauss and Chebyshev.

Applications in power systems, control design, machine learning, economics...

Many extensions and variations are possible:

e Moment Ambiguity, Multi-modality, Symmetry

e Bounds on severity of violations

Thanks
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