CONVEX ROBUST OPTIMIZATION

Boris Houska

Numerical Optimization

Typical objectives:

- Minimize traveling time,
- Minimze costs,
- Reduce emissions,
- Save energy, ...

Mathematical Formulation:

minimize $F_0(x)$

subject to $F_i(x) \leq 0$

Many engineering applications:

What is Robust Optimization?

In practice:

- Mismatch between mathematical model and real world
- External disturbances
- How to ensure safe operation?

Robust formulation:

$$\min_{x} \quad \max_{w \in W} F_0(x, w)$$

$$\text{s.t.} \qquad \max_{w \in W} F_i(x, w) \leq 0$$

Overview: Robust Optimization

Convex Analysis and **Optimization**

- Duality in Convex Optimization
- Reformulate min-max -> min-min
- Adjustable Robust Counterparts

Numerics

- Interior Point Methods
- Polynomial Run-Time (if convex)
- Sequential Convex Optimization Algorithms

Nonlinear Analysis Semi-Infinite Optimization

- Optimalty Conditions (1970-2000)
- Constraint Qualifications
- Differential Inclusions

Robust Optimization

Matrix Analysis, LMIs

- Positive Polynomials/Moment Problems
- Sum-of-Squares Decompositions
- Semi-Definite Programming (SDP)

Game Theory

- Leader-Follower Games
- Differential Games
- Hamilton-Jacobi-Bellman Isaacs Eq.

Control Theory

- Linear System Theory
- S-procedure [Yakubovich, 1977]
- H-infinity control
- Robust Model Predictive Control
- Set Theoretic Methods in Control

PhD Thesis

Part I:

 Finite Dimensional Robust Optimization

Part II:

 Robust Optimization of Dynamic Systems

Overview

- The convex optimization perspective on robust optimization
- The S-procedure for Quadratic Forms
- Inner- and Outer Ellipsoidal Approximations

Semi-Infinite Optimization Problems

Notation: x denotes optimization variable, w denotes uncertainty.

Semi-Infinite Optimization Problems

Notation: x denotes optimization variable, w denotes uncertainty. **Robust Feasibility Problem:**

$$\mathcal{F} := \left\{ x \in \mathbb{R}^{n_x} \middle| \begin{array}{c} \forall w \in W : & F_1(x, w) \leq 0 \\ \vdots & & \vdots \\ \forall w \in W : & F_m(x, w) \leq 0 \end{array} \right\}.$$

Semi-Infinite Optimization Problems

Notation: x denotes optimization variable, w denotes uncertainty. **Robust Feasibility Problem:**

$$\mathcal{F} := \left\{ x \in \mathbb{R}^{n_x} \middle| \begin{array}{c} \forall w \in W : & F_1(x, w) \leq 0 \\ \vdots & \vdots & \\ \forall w \in W : & F_m(x, w) \leq 0 \end{array} \right\}.$$

Semi-Infinite Optimization Problem (SIP):

$$\min_{x} \max_{w \in W} F_0(x, w) \quad \text{s.t.} \quad x \in \mathcal{F} ,$$

Equivalent Min-Max Formulation

Lower-level robust counterpart functions:

$$\forall x \in \mathbb{R}^n$$
: $V_i(x) = \max_{w \in W} F_i(x, w)$ with $i \in \{0, \dots, m\}$.

Equivalent Min-Max Formulation

Lower-level robust counterpart functions:

$$\forall x \in \mathbb{R}^n : V_i(x) = \max_{w \in W} F_i(x, w) \quad \text{with } i \in \{0, \dots, m\} .$$

Equivalent bi-level formulation:

$$\min_{x} V_0(x)$$
 s.t. $V_i(x) \leq 0$ for all $i \in \{1, \dots, m\}$.

Equivalent Min-Max Formulation

Lower-level robust counterpart functions:

$$\forall x \in \mathbb{R}^n : V_i(x) = \max_{w \in W} F_i(x, w) \quad \text{with } i \in \{0, \dots, m\} .$$

Equivalent bi-level formulation:

$$\min_{x} \ V_0(x) \quad \text{s.t.} \quad V_i(x) \leq 0 \quad \text{for all} \ i \in \{1, \dots, m\} \ .$$

Problem: we have a bi-level problem: parametric lower-level maximization and upper level minimization.

Special Cases

Observation: If we can find $V_i(x)$ explicitly, we obtain a standard NLP.

Special Cases

Observation: If we can find $V_i(x)$ explicitly, we obtain a standard NLP. **Notation for Ellipsoids:**

$$\mathcal{E}(Q,q) = \left\{ q + Q^{\frac{1}{2}}v \mid \exists v \in \mathbb{R}^n : v^T v \leq 1 \right\}.$$

Special Cases

Observation: If we can find $V_i(x)$ explicitly, we obtain a standard NLP. **Notation for Ellipsoids:**

$$\mathcal{E}(Q,q) = \left\{ q + Q^{\frac{1}{2}}v \mid \exists v \in \mathbb{R}^n : v^T v \leq 1 \right\}.$$

Example: Functions F_i uncertainty affine:

$$F_i(x, w) = c_i(x)^T w + d_i(x)$$

for some functions $c_i: \mathbb{R}^{n_x} \to \mathbb{R}^{n_w}$ and $d_i: \mathbb{R}^{n_x} \to \mathbb{R}$, while the set $W:=\mathcal{E}(Q,q)$ is an ellipsoid. Then:

$$V_i(x) = \max_{w \in \mathcal{E}(Q,q)} c_i(x)^T w + d_i(x) = \sqrt{c_i(x)^T Q c_i(x)} + c_i(x)^T q + d_i(x)$$

Example: robust least squares [El-Ghaoui and Lebret, 1997]

$$F_i(x, w) := \| (A + \Delta)x \|_2 - d$$

Uncertainty vector can be written as $w := \text{vec}(\Delta)$. For ellipsoidal uncertainty we may assume suitable scaling:

$$W := \{ \Delta \mid \|\Delta\|_{\mathrm{F}} \leq 1 \}.$$

Example: robust least squares [El-Ghaoui and Lebret, 1997]

$$F_i(x, w) := \| (A + \Delta)x \|_2 - d$$

Uncertainty vector can be written as $w := \text{vec}(\Delta)$. For ellipsoidal uncertainty we may assume suitable scaling:

$$W := \{ \Delta \mid \|\Delta\|_{\mathcal{F}} \leq 1 \}.$$

Use the triangle inequality:

$$\|(A + \Delta)x\|_{2} \le \|Ax\|_{2} + \|\Delta x\|_{2} \le \|Ax\|_{2} + \|x\|_{2}$$
.

This inequality is tight for $\Delta^* := rac{A \, x x^T}{\|Ax\| \, \|x\|}$.

Example: robust least squares [El-Ghaoui and Lebret, 1997]

$$F_i(x, w) := \| (A + \Delta)x \|_2 - d$$

Uncertainty vector can be written as $w := \text{vec}(\Delta)$. For ellipsoidal uncertainty we may assume suitable scaling:

$$W := \{ \Delta \mid \|\Delta\|_{\mathcal{F}} \leq 1 \} .$$

We have found that

$$V_i(x) = \max_{\Delta \in W} \| (A + \Delta)x \|_2 - d = \| Ax \|_2 + \| x \|_2 - d.$$

Example: robust least squares [El-Ghaoui and Lebret, 1997]

$$F_i(x, w) := \| (A + \Delta)x \|_2 - d$$

Uncertainty vector can be written as $w := \text{vec}(\Delta)$. For ellipsoidal uncertainty we may assume suitable scaling:

$$W := \{ \Delta \mid \|\Delta\|_{\mathcal{F}} \leq 1 \}.$$

For
$$A:=\left(\widehat{A},b\right)$$
, $\Delta:=\left(\widehat{\Delta},\,\delta\right)$, and $x:=\left(y^T,\,1\right)^T$:

$$\begin{split} & \min_{y} \max_{\|\Delta\|_{\mathrm{F}}^2 + \|\delta\|_2^2 \leq 1} \ \left\| (\widehat{A} + \widehat{\Delta}) y + (b + \delta) \right\|_2 \\ & = \min_{y} \left\| \widehat{A} y + b \right\|_2 + \sqrt{\left\| y \right\|_2^2 + 1} \ , \end{split}$$

Special Cases (cont.)

Robust SOCP (Ben-Tal and Nemirovski, 1998)

$$F_i(x, w) := \| (A + \Delta)x \|_2 - (c + \delta)^T x,$$

 $\Delta \in \mathbb{R}^{m imes n}$ and $\delta \in \mathbb{R}^n$ are unknown:

$$W = \{ (\Delta, \delta) \mid \|\Delta\|_{\mathrm{F}} \leq 1 \text{ and } \|\delta\|_2 \leq 1 \}$$

Special Cases (cont.)

Robust SOCP (Ben-Tal and Nemirovski, 1998)

$$F_i(x, w) := \| (A + \Delta)x \|_2 - (c + \delta)^T x,$$

 $\Delta \in \mathbb{R}^{m imes n}$ and $\delta \in \mathbb{R}^n$ are unknown:

$$W = \{ (\Delta, \delta) \mid \|\Delta\|_{\mathrm{F}} \leq 1 \text{ and } \|\delta\|_2 \leq 1 \}$$

Combine the results from the previous two examples:

$$V_i(x) := \max_{(\Delta,\delta) \in W} \left\| \left(A + \Delta\right) x \right\|_2 - (c + \delta)^T x \right. = \left\| Ax \right\|_2 - c^T x + 2 \left\| x \right\|_2 \ .$$

With the same triangle-inequality trick: LPs, QPs, or QCQPs with uncertain data can all be written as SOCPs.

The Convex Optimization Perspective

Recall:

$$\min_{x} V_0(x)$$
 s.t. $V_i(x) \leq 0$ for all $i \in \{1, \dots, m\}$.

Definition of Lower Level Convexity: We say that a robust optimization problem is lower level convex if the uncertainty set W is convex, while the functions $F_i(x,\cdot):W\to\mathbb{R}$ are for all indices $i\in\{1,\ldots,m\}$ and for all $x\in\mathcal{F}$ concave functions in w.

Duality: from Min-Max to Min-Min

Assume lower-level convexity and

$$W = \{ w \in \mathbb{R}^{n_w} \mid B(w) \le 0 \} .$$

If W has a non-empty interior (Slater's constraint qualification):

$$V_i(x) = \inf_{\lambda_i > 0} D_i(x, \lambda_i)$$
.

with
$$D_i(x, \lambda_i) := \max_w F_i(x, w) - \lambda_i^T B(w)$$
.

Duality: from Min-Max to Min-Min

Assume lower-level convexity and

$$W = \{ w \in \mathbb{R}^{n_w} \mid B(w) \le 0 \} .$$

If W has a non-empty interior (Slater's constraint qualification):

$$V_i(x) = \inf_{\lambda_i > 0} D_i(x, \lambda_i)$$
.

with
$$D_i(x, \lambda_i) := \max_w F_i(x, w) - \lambda_i^T B(w)$$
.

Main Idea: augment the upper level optimization variable x by the dual optimization variables $\lambda := (\lambda_0 \dots, \lambda_m)$:

$$\inf_{x,\lambda>0} D_0(x,\lambda_0)$$
 s.t. $D_i(x,\lambda_i) \leq 0$.

Special Case: Polytopic Uncertainty

Example:

$$F_i(x, w) = c_i(x)^T w + d_i(x)$$
 and $W := \{ w \mid Aw \leq b \}$

Special Case: Polytopic Uncertainty

Example:

$$F_i(x, w) = c_i(x)^T w + d_i(x)$$
 and $W := \{ w \mid Aw \leq b \}$

We can use dual linear programming:

$$V_i(x) = \max_w c_i(x)^T w + d_i(x)$$
 s.t. $Aw \leq b$
$$= \min_{\lambda_i \geq 0} b^T \lambda_i + d_i(x)$$
 s.t. $A^T \lambda_i = c_i(x)$.

Special Case: Polytopic Uncertainty

Example:

$$F_i(x, w) = c_i(x)^T w + d_i(x)$$
 and $W := \{ w \mid Aw \leq b \}$

Robust counterpart problem reduces to a standard NLP:

$$\min_{x,\lambda_0,...,\lambda_m} b^T \lambda_0 + d_0(x)$$
 s.t.
$$0 \ge b^T \lambda_i + d_i(x)$$

$$0 \le \lambda_i$$

$$0 = A^T \lambda_i - c_i(x)$$
 for all $i \in \{1,\ldots,m\}$.

Remark: if c_i and d_i are affine in x, we obtain an LP.

Special Case: Semi-Definite Uncertainty Set Models

Remark: The above example generalizes one-to-one for

$$W := \left\{ w \middle| \sum_{j=1}^{n_w} A_j w_j \leq B \right\} ,$$

in this case the robust counterpart functions are of the form

$$V_i(x) = \max_{w \in W} c_i(x)^T w + d_i(x)$$
$$= \min_{\Lambda_i \succeq 0} \operatorname{Tr} \left(B^T \Lambda_i \right) + d_i(x) \quad \text{s.t.} \quad \operatorname{Tr} \left(A_j^T \Lambda_i \right) = c_{i,j}(x) .$$

Upper Level Convexity

Simple but important observation:

We always have upper-level convexity if the functions F_i are convex in x. This result is independent of how the uncertainty w enters.

Upper Level Convexity

Simple but important observation:

We always have upper-level convexity if the functions F_i are convex in x. This result is independent of how the uncertainty w enters.

Proof: The maximum over convex functions is convex!

Upper Level Convexity

Simple but important observation:

We always have upper-level convexity if the functions F_i are convex in

x. This result is independent of how the uncertainty w enters.

Proof: The maximum over convex functions is convex!

Remark: The reverse statement is not true.

Example: Upper Level Convexity

Example: Consider the unconstrained scalar min-max problem

$$\min_{x} \max_{w} F_0(x,w) \qquad \text{with} \quad F_0(x,w) := -x^2 + bxw - w^2$$

for some constant $b \geq 2$. The function F_0 is for no fixed w convex in x, but

$$V_0(x) = -x^2 + \frac{1}{4}(bx)^2$$

is convex for $b \geq 2$.

Example: Upper Level Convexity

Example: Consider the unconstrained scalar min-max problem

$$\min_{x} \max_{w} F_0(x,w) \qquad \text{with} \quad F_0(x,w) := -x^2 + bxw - w^2$$

for some constant $b \geq 2$. The function F_0 is for no fixed w convex in x, but

$$V_0(x) = -x^2 + \frac{1}{4}(bx)^2$$

is convex for $b \geq 2$.

The robust counterpart problem can be "easier" to solve than the original optimization problem;

"Robustificiation" can lead to "Convexification".

Overview

- The convex optimization perspective on robust optimization
- The S-procedure for Quadratic Forms
- Inner- and Outer Ellipsoidal Approximations

The S-Procedure for Quadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

$$V := \max_{x} x^T H_0 x + g_0^T x + s_0 \qquad \text{s.t.} \quad x^T H_i x + g_i^T x + s_i \leq 0$$

$$s.t. \quad x^T H_i x + g_i^T x + s_i \leq 0$$

The S-Procedure for Quadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

$$V := \max_{x} x^T H_0 x + g_0^T x + s_0 \qquad \text{s.t.} \quad x^T H_i x + g_i^T x + s_i \leq 0$$

Notation:

$$H(\lambda) := H_0 - \sum_{i=1}^m \lambda_i H_i , \quad g(\lambda) := g_0 - \sum_{i=1}^m \lambda_i g_i , \qquad (1)$$
and $s(\lambda) := s_0 - \sum_{i=1}^m \lambda_i s_i .$

The S-Procedure for Quadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

$$V := \max_{x} x^T H_0 x + g_0^T x + s_0 \qquad \text{s.t.} \quad x^T H_i x + g_i^T x + s_i \leq 0$$

Dual Problem:

$$\begin{split} \widehat{V} &:= & \inf_{\lambda > 0} \; \max_{x} \; x^T H(\lambda) x \, + \, g(\lambda)^T x \, + \, s(\lambda) \\ &= & \inf_{\lambda > 0} \; \frac{1}{4} \, g(\lambda)^T \, H(\lambda)^{-1} \, g(\lambda) \, + \, s(\lambda) \quad \text{s.t.} \quad H(\lambda) \, \prec \, 0 \; . \end{split}$$

The S-Procedure for Quadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

$$V := \max_{x} x^T H_0 x + g_0^T x + s_0 \qquad \text{s.t.} \quad x^T H_i x + g_i^T x + s_i \leq 0$$

Dual Problem:

$$\begin{split} \widehat{V} &:= & \inf_{\lambda > 0} \, \max_{x} \, x^T H(\lambda) x \, + \, g(\lambda)^T x \, + \, s(\lambda) \\ &= & \inf_{\lambda > 0} \, \frac{1}{4} \, g(\lambda)^T \, H(\lambda)^{-1} \, g(\lambda) \, + \, s(\lambda) \quad \text{s.t.} \quad H(\lambda) \, \prec \, 0 \; . \\ &= & \min_{\lambda \geq 0 \, , \, \gamma} \, \gamma \quad \text{s.t.} \, \left(\begin{array}{c} s(\lambda) \, - \, \gamma & \frac{1}{2} g(\lambda)^T \\ \frac{1}{2} g(\lambda) & H(\lambda) \end{array} \right) \, \preceq \, 0 \end{split}$$

S-Lemma

Standard duality: $V \leq \widehat{V}$.

S-Lemma

Standard duality: $V \leq \widehat{V}$.

Remark on Suboptimality Estimates: For special classes of QCQPs explicit bounds on the sub-optimality of the approximation \widehat{V} are known. For example, in the context of the Maximum Cut problem (Goemans). More general sub-optimality estimates have been developed by Henrion, Nemirovski, and Nesterov.

- M.X. Goemans and D.P. Williamson. Improved approximation algorithms for Maximum Cut and satisfiability problems using semidefinite programming. *Journal* of ACM, 42:1115–1145, 1995.
- Y. Nesterov. Semidefinite relaxation and non-convex quadratic optimization.
 Optimization Methods and Software, 12:1–20, 1997.
- D. Henrion, S. Tarbouriech, and D. Arzelier. LMI Approximations for the Radius of the Intersection of Ellipsoids: A Survey. *Journal of Optimization Theory and Applications*, 108(1):1–28, 2001.

S-Lemma

Standard duality: $V \leq \widehat{V}$.

Remark on Suboptimality Estimates: For special classes of QCQPs explicit bounds on the sub-optimality of the approximation \widehat{V} are known. For example, in the context of the Maximum Cut problem (Goemans). More general sub-optimality estimates have been developed by Henrion, Nemirovski, and Nesterov.

- M.X. Goemans and D.P. Williamson. Improved approximation algorithms for Maximum Cut and satisfiability problems using semidefinite programming. *Journal* of ACM, 42:1115–1145, 1995.
- Y. Nesterov. Semidefinite relaxation and non-convex quadratic optimization.
 Optimization Methods and Software, 12:1–20, 1997.
- D. Henrion, S. Tarbouriech, and D. Arzelier. LMI Approximations for the Radius of the Intersection of Ellipsoids: A Survey. *Journal of Optimization Theory and Applications*, 108(1):1–28, 2001.

S-Procedure in Robust Optimization

Example:

$$F_i(x, w) = w^T H_i(x) w + g_i(x)^T w.$$

Assume that the uncertainty set is an intersection of ellipsoids,

$$W := \bigcap_{j \in \{1, \dots, N\}} \mathcal{E}(Q_j, q_j) .$$

S-Procedure in Robust Optimization

Example:

$$F_i(x, w) = w^T H_i(x) w + g_i(x)^T w.$$

Assume that the uncertainty set is an intersection of ellipsoids,

$$W := \bigcap_{j \in \{1, \dots, N\}} \mathcal{E}(Q_j, q_j) .$$

$$\widehat{V}_i(x) \,:=\, \min_{\lambda_i \,\geq\, 0 \,,\, \gamma_i} \,\,\,\, \gamma_i \quad ext{s.t.} \quad \left(egin{array}{ccc} s_i(x,\lambda_i) \,-\, \gamma_i & rac{1}{2} g_i(x,\lambda_i)^T \ rac{1}{2} g_i(x,\lambda_i) & H_i(x,\lambda_i) \end{array}
ight) \,\, \preceq \,\, 0$$

are upper bounds on the functions V_i , $\widehat{V}_i(x) \geq V_i(x)$.

S-Procedure in Robust Optimization

Example:

$$F_i(x, w) = w^T H_i(x) w + g_i(x)^T w.$$

Assume that the uncertainty set is an intersection of ellipsoids,

$$W := \bigcap_{j \in \{1, \dots, N\}} \mathcal{E}(Q_j, q_j) .$$

Conservative reformulation given by

$$\min_{x,\gamma,\lambda_0,\ldots,\lambda_m} \quad \gamma_0 \quad \text{s.t.} \quad \left\{ \begin{array}{l} \forall i \in \{1,\ldots,m\}: \quad 0 \, \geq \, \gamma_i \quad , \quad 0 \, \leq \, \lambda_i \; , \\ \\ 0 \, \succeq \, \left(\begin{array}{l} s_i(x,\lambda_i) \, - \, \gamma_i & \frac{1}{2} g_i(x,\lambda_i)^T \\ \\ \frac{1}{2} g_i(x,\lambda_i) & H_i(x,\lambda_i) \end{array} \right) \; . \end{array} \right.$$

Tight Version of the S-Procedure

Theorem [Yakubovich, 1977] If we have a QCQP with only one constraint, the S-procedure yields a tight bound.

- The proof is not so trivial.
- Basis for LMI formulations of H_{∞} control and almost all LMI-based robust control results from 1980-2000.
- V.A. Yakubovich. S-procedure in nonlinear control theory. *Vestnik Leningrad University*, 4:73–93, 1977.

Robust optimization problem:

$$\min_{x,y} y$$

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all
$$(v, w) \in \mathcal{E}$$
.

Robust optimization problem:

$$\min_{x,y} y$$

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all
$$(v, w) \in \mathcal{E}$$
.

Robust optimization problem:

$$\min_{x,y} y$$

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all $(v, w) \in \mathcal{E}$.

Robust optimization problem:

$$\min_{x,y}$$
 y

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all
$$(v, w) \in \mathcal{E}$$
.

Robust optimization problem:

$$\min_{x,y} y$$

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all $(v, w) \in \mathcal{E}$.

Robust optimization problem:

$$\min_{x,y} y$$

s.t.
$$(x+v)^2 - (y+w) \le 0$$

for all $(v, w) \in \mathcal{E}$.

Assumption: \mathcal{E} is a given ellipsoidal uncertainty set.

Question: How to find optimal solution numerically?

Regard as a min-max problem:

$$\min_{x,y}$$
 y

$$\text{s.t.} \qquad \max_{(v,w)\in\mathcal{E}} (x+v)^2 - (y+w) \le 0$$

Regard as a min-max problem:

$$\min_{x,y} y$$

$$\text{s.t.} \qquad \max_{(v,w)\in\mathcal{E}} (x+v)^2 - (y+w) \le 0$$

Problem: There are two local maxima in the optimal solution.

Regard as a min-max problem:

$$\min_{x,y} y$$

s.t.
$$\max_{(v,w)\in\mathcal{E}}(x+v)^2 - (y+w) \le 0$$

Problem: There are two local maxima in the optimal solution.

One Possibility: Check the inequality for all points in the ellipsoid.

Selection of Literature on Semi-Infinite Optimization

- R. Hettich and H.T. Jongen. Semi-infinite programming: Conditions of optimality and applications. Optimization Techniques, Lecture Notes in Control and Inform. Sci. 7, J. Stoer, Springer, 1978.
- R. Hettich and K. Kortanek. Semi infinite programming: Theory, Methods, and Application, volume 35. SIAM Review, 1993.
- H.T. Jongen, J.J. Rückmann, and O. Stein. Generalized semi-infinite optimization: A first order optimality condition and examples. Mathematical Programming, pages 145-158, 1998.
- C.A. Floudas and O. Stein. The Adaptative Convexification Algorithm: a Feasible Point Method for Semi-Infinite Programming. SIAM Journal on Optimization, 18(4):1187-1208, 2007.

•

Solution using the S-Procedure

Find the solution $(x^*, y^*) = (-0.35..., 1.08...)$ by convex optimization:

Define:

$$Q := \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \quad q(x) := \left(\begin{array}{c} 2x \\ -1 \end{array} \right)$$

and

$$\Sigma := \left(\begin{array}{cc} 0.8 & -0.6 \\ -0.6 & 0.8 \end{array} \right)^{-1}$$

$$\min_{x,y,\lambda > 0.8} \ y \ \text{ s.t. } \ x^2 - y + \frac{1}{4} q(x)^T \left(\lambda \Sigma - Q \right)^{-1} q(x) + \lambda \ \le \ 0 \ .$$

Solution using the S-Procedure

Find the solution $(x^*, y^*) = (-0.35..., 1.08...)$ by convex optimization:

Alternative formulation as LMI:

$$\begin{array}{cccc} \min_{x,y,\lambda} & y \\ \text{s.t.} & \begin{pmatrix} y-\lambda & q(x)^T & x \\ q(x) & \lambda \Sigma - Q & 0 \\ x & 0 & 1 \end{pmatrix} \succeq 0 \end{array}$$

$$\left| \min_{x,y,\lambda>0.8} \quad y \quad \text{s.t.} \quad x^2 - y + \frac{1}{4} q(x)^T \left(\lambda \Sigma - Q\right)^{-1} q(x) + \lambda \right| \leq 0 \; .$$

S-Procedure in Robust Stability Analysis

Question: Under which conditions is the system

$$\dot{x}(t) = Ax(t) + Bw(t) , \quad z(t) = Cx(t)$$

quadratically stable for all w with $w(t)^2 \leq \gamma^2 z(t)^2$?

S-Procedure in Robust Stability Analysis

Question: Under which conditions is the system

$$\dot{x}(t) = Ax(t) + Bw(t) , \quad z(t) = Cx(t)$$

quadratically stable for all w with $w(t)^2 \leq \gamma^2 z(t)^2$?

- Lyapunov stability condition: $\exists P \succeq 0, \quad 2x^T P(Ax + Bw) < 0.$
- Non-convex quadratic constraint: $w(t)^2 \le \gamma^2 z(t)^2$

S-Procedure in Robust Stability Analysis

Question: Under which conditions is the system

$$\dot{x}(t) = Ax(t) + Bw(t) , \quad z(t) = Cx(t)$$

quadratically stable for all w with $w(t)^2 \leq \gamma^2 z(t)^2$?

- Lyapunov stability condition: $\exists P \succeq 0, \quad 2x^T P(Ax + Bw) < 0.$
- Non-convex quadratic constraint: $w(t)^2 \le \gamma^2 z(t)^2$

S-Procedure yields "Circle Criterion":

$$\begin{pmatrix} AP + PA^T + \gamma^2 C^T C & PB \\ B^T P & -2 \end{pmatrix} \prec 0, \quad P \succeq 0$$

Overview

- The convex optimization perspective on robust optimization
- The S-procedure for Quadratic Forms
- Inner- and Outer Ellipsoidal Approximations

Support Functions

Definition of support function:

$$V(c) \ := \ \max_{x} \ c^T x \quad \text{s.t.} \quad x \in \mathcal{F} \ .$$

Support Functions

Definition of support function:

$$V(c) \ := \ \max_{x} \ c^T x \quad \text{s.t.} \quad x \in \mathcal{F} \ .$$

Support of an ellipsoid:

$$V(c) = \max_{x \in \mathcal{E}(Q,q)} c^T x = \sqrt{c^T Q c} + c^T q ,$$

Support Functions

Definition of support function:

$$V(c) := \max_{x} c^{T}x$$
 s.t. $x \in \mathcal{F}$.

Support of an ellipsoid:

$$V(c) = \max_{x \in \mathcal{E}(Q,q)} c^T x = \sqrt{c^T Q c} + c^T q ,$$

If \mathcal{F} is compact and convex:

$$\mathcal{F} = \bigcap_{c \in \mathbb{R}^n \setminus \{0\}} \mathcal{H}(c) ,$$

where
$$\mathcal{H}(c) := \{ x \in \mathbb{R}^n \mid c^T x \leq V(c) \}$$
.

Minkowski Sum of Ellipsoids

 The sum of these ellipsoids is defined as the standard Minkowski sum:

$$\sum_{i=1}^{N} \mathcal{E}(Q_i, q_i) := \left\{ \left. \sum_{i=0}^{N} x_i \in \mathbb{R}^n \right| x_i \in \mathcal{E}(Q_i, q_i) \right\}.$$

Minkowski Sum of Ellipsoids

 The sum of these ellipsoids is defined as the standard Minkowski sum:

$$\sum_{i=1}^{N} \mathcal{E}(Q_i, q_i) := \left\{ \left. \sum_{i=0}^{N} x_i \in \mathbb{R}^n \right| x_i \in \mathcal{E}(Q_i, q_i) \right\}.$$

Examples: intervals and zonotopes:

$$\sum_{i=1}^{m} \mathcal{E}\left(a_{i} a_{i}^{T}\right) = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \in \mathbb{R}^{n} \middle| -1 \leq \lambda_{i} \leq 1 \right\}.$$

Minkowski Sum of Ellipsoids

 The sum of these ellipsoids is defined as the standard Minkowski sum:

$$\sum_{i=1}^{N} \mathcal{E}(Q_i, q_i) := \left\{ \left. \sum_{i=0}^{N} x_i \in \mathbb{R}^n \right| x_i \in \mathcal{E}(Q_i, q_i) \right\}.$$

Examples: intervals and zonotopes:

$$\sum_{i=1}^{m} \mathcal{E}\left(a_{i} a_{i}^{T}\right) = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \in \mathbb{R}^{n} \middle| -1 \leq \lambda_{i} \leq 1 \right\}.$$

Application: discrete-time systems

$$x^+ = Ax + Bw$$
, $x \in \mathcal{E}(Q_x)$; $w \in \mathcal{E}(Q_w)$
then $x^+ \in \mathcal{E}(AQ_xA^T) + \mathcal{E}(BQ_wB^T)$

Support Function of the Sum of Ellipsoids

Let's compute the support function

$$V(c) = \max_{x_1,...,x_N} c^T \left(\sum_{i=1}^N x_i \right)$$
 s.t. $x_i^T Q_i^{-1} x_i \le 1$.

• Convex maximization problem; $x_1 = \ldots = x_N = 0$ is feasible.

Support Function of the Sum of Ellipsoids

Let's compute the support function

$$V(c) = \max_{x_1,...,x_N} c^T \left(\sum_{i=1}^N x_i \right)$$
 s.t. $x_i^T Q_i^{-1} x_i \le 1$.

- Convex maximization problem; $x_1 = \ldots = x_N = 0$ is feasible.
- We can use duality to find

$$\begin{split} V(c) &= \inf_{\lambda>0} \max_{x_1,\dots,x_N} \sum_{i=1}^N \left(c^T x_i - \lambda_i x_i^T Q_i^{-1} x_i + \lambda_i \right) \\ &= \inf_{\lambda>0} \sum_{i=1}^N \frac{c^T Q_i c}{4\lambda_i} + \sum_{i=1}^N \lambda_i \;. \end{split}$$

Support Function of the Sum of Ellipsoids

Let's compute the support function

$$V(c) = \max_{x_1,...,x_N} c^T \left(\sum_{i=1}^N x_i \right)$$
 s.t. $x_i^T Q_i^{-1} x_i \le 1$.

- Convex maximization problem; $x_1 = \ldots = x_N = 0$ is feasible.
- We can use duality to find

$$\begin{split} V(c) &= \inf_{\lambda>0} \max_{x_1,\dots,x_N} \sum_{i=1}^N \left(c^T x_i - \lambda_i x_i^T Q_i^{-1} x_i + \lambda_i \right) \\ &= \inf_{\lambda>0} \sum_{i=1}^N \frac{c^T Q_i c}{4\lambda_i} + \sum_{i=1}^N \lambda_i \;. \end{split}$$

Support Function: Sum of Ellipsoids

We can use duality to find

$$\begin{split} V(c) &= \inf_{\lambda > 0} \max_{x_1, \dots, x_N} \sum_{i=1}^N \left(c^T x_i - \lambda_i x_i^T Q_i^{-1} x_i + \lambda_i \right) \\ &= \inf_{\lambda > 0} \sum_{i=1}^N \frac{c^T Q_i c}{4 \lambda_i} + \sum_{i=1}^N \lambda_i \;. \end{split}$$

Support Function: Sum of Ellipsoids

We can use duality to find

$$\begin{split} V(c) &= \inf_{\lambda>0} \max_{x_1,\dots,x_N} \sum_{i=1}^N \left(c^T x_i - \lambda_i x_i^T Q_i^{-1} x_i + \lambda_i \right) \\ &= \inf_{\lambda>0} \sum_{i=1}^N \frac{c^T Q_i c}{4\lambda_i} + \sum_{i=1}^N \lambda_i \;. \end{split}$$

Idea: use the tight version of the AM-GM inequality:

$$\inf_{\kappa > 0} \frac{a}{4\kappa} + \kappa b = \sqrt{ab} , \qquad (2)$$

which holds for all $a, b \in \mathbb{R}_+$.

Support Function: Sum of Ellipsoids

We can use duality to find

$$\begin{split} V(c) &= \inf_{\lambda>0} \max_{x_1,\dots,x_N} \sum_{i=1}^N \left(\, c^T x_i \, - \lambda_i x_i^T Q_i^{-1} x_i + \lambda_i \right) \\ &= \inf_{\lambda>0} \sum_{i=1}^N \frac{c^T Q_i c}{4 \lambda_i} + \sum_{i=1}^N \lambda_i \; . \end{split}$$

$$V(c) = \inf_{\lambda > 0} \inf_{\kappa > 0} \sum_{i=1}^{N} \frac{c^T Q_i c}{4\kappa \lambda_i} + \sum_{i=1}^{N} \kappa \lambda_i = \inf_{\lambda > 0} \sqrt{c^T Q(\lambda) c}.$$

with
$$\forall \lambda \in \mathbb{R}^N_{++}: \qquad Q(\lambda) := \left(\sum_{i=1}^N \frac{1}{\lambda_i} Q_i\right) \left(\sum_{i=1}^N \lambda_i\right)$$
 .

Ellipsoidal Calculus (Outer Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

$$\mathbb{D}^+ := \left\{ \lambda \in \mathbb{R}^N_{++} \mid \sum_{i=1}^N \lambda_i \leq 1 \right\}.$$

For every $\lambda \in \mathbb{D}^+$ we have

$$\forall \lambda \in \mathbb{D}^+: \sum_{i=1}^N \mathcal{E}(Q_i) \subseteq \mathcal{E}\left(\sum_{i=1}^N \frac{1}{\lambda_i} Q_i\right).$$

Ellipsoidal Calculus (Outer Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

$$\mathbb{D}^+ := \left\{ \lambda \in \mathbb{R}^N_{++} \mid \sum_{i=1}^N \lambda_i \leq 1 \right\}.$$

For every $\lambda \in \mathbb{D}^+$ we have

$$\forall \lambda \in \mathbb{D}^+: \sum_{i=1}^N \mathcal{E}(Q_i) \subseteq \mathcal{E}\left(\sum_{i=1}^N \frac{1}{\lambda_i} Q_i\right).$$

The parameterized outer approximation is tight, i.e.,

$$\sum_{i=1}^{N} \mathcal{E}(Q_i) = \bigcap_{\lambda \in \mathbb{D}^+} \mathcal{E}\left(\sum_{i=1}^{N} \frac{1}{\lambda_i} Q_i\right).$$

Ellipsoidal Calculus (Inner Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

$$\mathbb{D}^{-} := \left\{ S \in \left(\mathbb{R}^{n \times n}\right)^{N} \mid S_{i} S_{i}^{T} \leq I \quad \text{for all } i \in \{1, \dots, N\} \right\}.$$

For every set of matrices $S \in \mathbb{D}^-$ we have

$$\forall S \in \mathbb{D}^-: \sum_{i=1}^N \mathcal{E}(Q_i) \supseteq \mathcal{E}\left(\left(\sum_{i=1}^N Q_i^{\frac{1}{2}} S_i\right) \left(\sum_{i=1}^N Q_i^{\frac{1}{2}} S_i\right)^T\right).$$

Ellipsoidal Calculus (Inner Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

$$\mathbb{D}^{-} := \left\{ S \in \left(\mathbb{R}^{n \times n}\right)^{N} \mid S_{i} S_{i}^{T} \leq I \quad \text{for all } i \in \{1, \dots, N\} \right\}.$$

For every set of matrices $S \in \mathbb{D}^-$ we have

$$\forall S \in \mathbb{D}^-: \sum_{i=1}^N \mathcal{E}(Q_i) \supseteq \mathcal{E}\left(\left(\sum_{i=1}^N Q_i^{\frac{1}{2}} S_i\right) \left(\sum_{i=1}^N Q_i^{\frac{1}{2}} S_i\right)^T\right).$$

The inner approximation is tight, i.e.,

$$\sum_{i=1}^{N} \mathcal{E}(Q_i) = \bigcup_{S \in \mathbb{D}^-} \mathcal{E}\left(\left(\sum_{i=1}^{N} Q_i^{\frac{1}{2}} S_i\right) \left(\sum_{i=1}^{N} Q_i^{\frac{1}{2}} S_i\right)^T\right).$$

Summary

- Upper- and lower level convexity (max over convex fcns is convex)
- Robust counterpart functions + explicit examples
- S-procedure (approximations and tight version)
- Support functions of convex sets
- Inner- and outer ellipsoidal approximations