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Numerical Optimization
I

Typical objectives:
« Minimize traveling time, Mathematical Formulation:
* Minimze costs, minimize Fo(x)
x
* Reduce emissions, subject to Fi(z) <0
* Save energy, ...

Many engineering applications:
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What is Robust Optimization?

In practice:

* Mismatch between mathematical
model and real world

* External disturbances

* How to ensure safe operation?

Robust formulation:

min Qrpee% Fo(x,w)

S.t. max F;(z,w) < 0
weW
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Overview:. Robust Optimization

Nonlinear Analysis
Semi-Infinite Optimization

- Optimalty Conditions (1970-2000)
- Constraint Qualifications
- Differential Inclusions

Convex Analysis
and Optimization

- Duality in Convex Optimization ‘

- Reformulate min-max -> min-min \
- Adjustable Robust Counterparts

Game Theory

- Leader-Follower Games

/ - Differential Games

- Hamilton-Jacobi-Bellman Isaacs Eq.

\ Control Theory
- Linear System Theory

- S-procedure [Yakubovich, 1977]

Robust
Optimization

Numerics /

- Interior Point Methods
- Polynomial Run-Time (if convex)
- Sequential Convex Optimization Algorithms

. . - H-infinity control
Matrix Analysis, LMIs - Robust Model Predictive Control
- Positive Polynomials/Moment Problems - Set Theoretic Methods in Control

- Sum-of-Squares Decompositions
- Semi-Definite Programming (SDP)
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Overview

* The convex optimization perspective on robust optimization
* The S-procedure for Quadratic Forms

* Inner- and Outer Ellipsoidal Approximations
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Semi-Infinite Optimization Problems
I

Notation: x denotes optimization variable, w denotes uncertainty.
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Semi-Infinite Optimization Problems
I

Notation: x denotes optimization variable, w denotes uncertainty.
Robust Feasibility Problem:

( )

VweW: Fi(zr,w) < 0
F = K xeR"™ -

VweW: Fy(x,w)

IN
-
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Semi-Infinite Optimization Problems
I

Notation: x denotes optimization variable, w denotes uncertainty.
Robust Feasibility Problem:

( )

Yw e W : F1($,w) < 0
F = K xeR"™ -

VweW: Fy(x,w)

IN
-

\

Semi-Infinite Optimization Problem (SIP):

min max Fy(z,w) St x€F,
xr weWw
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Equivalent Min-Max Formulation
I

Lower-level robust counterpart functions:

Ve € R™: Vi) = max Fi(x,w) with i € {0,...,m} .
we
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Equivalent Min-Max Formulation
I

Lower-level robust counterpart functions:

Ve € R™: Vi) = max Fi(x,w) with i € {0,...,m} .
we

Equivalent bi-level formulation:

min Vp(z) st Vi(x) <0 forall i €{1,...,m}.
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Equivalent Min-Max Formulation
I

Lower-level robust counterpart functions:

Ve € R™: Vi) = max Fi(x,w) with i € {0,...,m} .
we

Equivalent bi-level formulation:

min Vo(x) st Vi(x) <0 forall i€ {1,...,m}.

Problem: we have a bi-level problem: parametric lower-level
maximization and upper level minimization.
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Special Cases
I

Observation: If we can find V;(x) explicitly, we obtain a standard NLP.
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Special Cases
I

Observation: If we can find V;(x) explicitly, we obtain a standard NLP.
Notation for Ellipsoids:

£(Q,q) = {q—l—Q%v|E|fUER”: vTvgl}.
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Special Cases
I

Observation: If we can find V;(x) explicitly, we obtain a standard NLP.
Notation for Ellipsoids:

£(Q,q) = {q—l—Q%v| JveR": vlov < 1} .
Example: Functions F; uncertainty affine:
Fi(z,w) = ci(x) w4+ d;(x)

for some functions ¢; : R"» — R"» and d, : R"* — R, while the set
W = £(Q,q) is an ellipsoid. Then:

Vile) = max e(a)Twdi(x) = Ve@)TQei(x) + ¢i(@)"q + di(x)
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Other Special Cases
I

Example: robust least squares [EI-Ghaoui and Lebret, 1997]
Fi(z,w) = || (A+ Az, —d

Uncertainty vector can be written as w := vec(A). For ellipsoidal
uncertainty we may assume suitable scaling:

W= {Al|Allr < 1},
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Other Special Cases
I

Example: robust least squares [EI-Ghaoui and Lebret, 1997]
Fi(z,w) = || (A+ Az, —d

Uncertainty vector can be written as w := vec(A). For ellipsoidal
uncertainty we may assume suitable scaling:

W o= {A]l]Allp <1} .
Use the triangle inequality:
1A+ A)z ], < [[Azfl, +[[Az]l, < [[Az|,+ |z, .

AxzT

This inequality is tight for A* := Azl 2]
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Other Special Cases
I

Example: robust least squares [EI-Ghaoui and Lebret, 1997]
Fi(z,w) = || (A+ Az, —d

Uncertainty vector can be written as w := vec(A). For ellipsoidal
uncertainty we may assume suitable scaling:

W = {A]]Alp < 1}.
We have found that

Vile) = max [(A+A)z]l, —d = [[Azf, + =], — d.
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Other Special Cases
I

Example: robust least squares [EI-Ghaoui and Lebret, 1997]
Fi(z,w) = || (A+ Az, —d

Uncertainty vector can be written as w := vec(A). For ellipsoidal
uncertainty we may assume suitable scaling:

W= {Al|Allr < 1},

For A := (ﬁ,b), A = (3, 5>,andx = (y?, 1)T:

min max ||(2+ 3)y+(b+5)H
Yo llAlg+I6lE <1 2

n 2
Ay -+ + g3+,

= min
Yy
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Special Cases (cont.)

Robust SOCP (Ben-Tal and Nemirovski, 1998)
Fi(z,w) = [[(A+A)z|, —(c+d)'z,
A € R™*™ and 6 € R™ are unknown:

W = 1(4,9) [ [[Allr < 1 and |oflz < 1}
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Special Cases (cont.)

Robust SOCP (Ben-Tal and Nemirovski, 1998)
Fi(z,w) = || (A+ Ay~ (c+6) Tz,
A € R™*™ and 6 € R™ are unknown:
W = {(4,9) | [[Allrp < 1 and |[of]z <1}
Combine the results from the previous two examples:

Vilw) = max A+ A)zlly=(c+d)s = || Az, ~cTx 42 ],

With the same triangle-inequality trick: LPs, QPs, or QCQPs with
uncertain data can all be written as SOCPs.
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The Convex Optimization Perspective
I

Recall:
min Vy(x) st Vi(x) <0 forall ie{l,...,m}.

Definition of Lower Level Convexity:  We say that a robust
optimization problem is lower level convex if the uncertainty set WW is
convex, while the functions F;(z,-) : W — R are for all indices

i € {1,...,m} and for all z € F concave functions in w.
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Duality: from Min-Max to Min-Min
I
Assume lower-level convexity and
W ={weR™ | Blw) <0} .
If W has a non-empty interior (Slater’s constraint qualification):

Vi(z) = Ai.fgo Di(z, A;) .
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Duality: from Min-Max to Min-Min

I
Assume lower-level convexity and
W ={weR™ | Blw) <0} .

If W has a non-empty interior (Slater’s constraint qualification):

Vi(z) = Ai.rgo Di(z, A;) .

Main Idea: augment the upper level optimization variable x by the dual
optimization variables A := (Ag ..., A\ ):

Inf Do(aj, )\0) S.t. DZ(QJ, )\z) < 0.
z,A>0
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Special Case: Polytopic Uncertainty

Example:

Fi(z,w) = ci(x) w4+ d;i(x) and W:={w | Aw < b}
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Special Case: Polytopic Uncertainty

Example:
Fi(z,w) = ci(x) w4+ d;i(x) and W:={w | Aw < b}

We can use dual linear programming:

Vi(z) = max c¢i(z)'w+di(x) st Aw <
i >0

Convex Robust Optimization — p. 14




Special Case: Polytopic Uncertainty

Example:
Fi(z,w) = ci(x) w4+ d;i(x) and W:={w | Aw < b}
Robust counterpart problem reduces to a standard NLP:

min bT)\O —i—do(ZC)

$,>\0,...,>\m

0 < N\
0 = AN, —¢i(x)  forall ie{l,...,m}.

Remark: if ¢; and d; are affine in x, we obtain an LP.
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Special Case: Semi-Definite Uncer-
tainty Set Models

Remark: The above example generalizes one-to-one for

W .= {w ZAjwj<B},
j=1

In this case the robust counterpart functions are of the form

Vi()

. T .
max ci(x)" w+ d;(x)

/{?iino Tr (BTAZ-) +d;(x) st Tr (A?Ai) = ¢ j(x) .
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Upper Level Convexity

Simple but important observation:
We always have upper-level convexity if the functions F; are convex in
x. This result is independent of how the uncertainty w enters.
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Upper Level Convexity

Simple but important observation:

We always have upper-level convexity if the functions F; are convex in
x. This result is independent of how the uncertainty w enters.

Proof: The maximum over convex functions is convex!
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Upper Level Convexity

Simple but important observation:

We always have upper-level convexity if the functions F; are convex in
x. This result is independent of how the uncertainty w enters.

Proof: The maximum over convex functions is convex!

Remark: The reverse statement is not true.
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Example: Upper Level Convexity

Example: Consider the unconstrained scalar min-max problem

min max Fy(z,w) with Fy(z,w) = —2? + brw — w?

x w

for some constant b > 2. The function Fy is for no fixed w convex in z,
but

Volz) = —x% + %(baz)Q

IS convex for b > 2.
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Example: Upper Level Convexity

Example: Consider the unconstrained scalar min-max problem

min max Fy(z,w) with Fy(z,w) = —2? + brw — w?

x w

for some constant b > 2. The function Fy is for no fixed w convex in z,
but

Volz) = —x% + %(baz)2

IS convex for b > 2.
The robust counterpart problem can be “easier” to solve than the
original optimization problem;
“Robustificiation” can lead to “Convexification®
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Overview

* The convex optimization perspective on robust optimization
* The S-procedure for Quadratic Forms

* Inner- and Outer Ellipsoidal Approximations
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The S-Procedure for guadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

V = max xTH0x+ggx+so S.t. xTHz-:c—l—giTa:—Fsi < 0
T

Convex Robust Optimization — p. 19




The S-Procedure for guadratic Forms

Basic Idea: Consider possibly non-convex QCQPs

V = max CUTH()ZU + ggx + So S.t. xTHz-:L' + gz-Ta: +s;, < 0
Notation:
H(A) = Hy— Z)\z‘Hz' , 9(A) = go— Z)\z‘gi ; (1)
i=1 i=1
and s(\) = sg— Z)‘isi :
i=1
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The S-Procedure for guadratic Forms

Basic Idea: Consider possibly non-convex QCQPs
V = max z! Hyx + ggx + S0 st. xlHx + gz-Ta: +s5;, <0

Dual Problem:

Vo= inf max «"H\z + g7z + s(\)
> T
P s 1
= nf 2gWTHM) g + s(A) st H() < 0.
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The S-Procedure for Quadratic Forms

Basic Idea: Consider possibly non-convex QCQPs
V = max z! Hyx + ggx + S0 st. xlHx + gz-T:z: +s5;, <0

Dual Problem:

Vo= inf max «"H\z + g7z + s(\)
> T
P s 1
= nf 2gWTHM) g + s(A) st H() < 0.
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S-Lemma

AN

Standard duality: V < V.

Convex Robust Optimization — p. 20




S-Lemma

AN

Standard duality: V < V.

Remark on Suboptimality Estimates:  For special classes of QCQPs
explicit bounds on the sub-optimality of the approximation V are
known. For example, in the context of the Maximum Cut problem
(Goemans). More general sub-optimality estimates have been
developed by Henrion, Nemirovski, and Nesterov.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
Maximum Cut and satisfiability problems using semidefinite programming. Journal
of ACM, 42:1115-1145, 1995.

Y. Nesterov. Semidefinite relaxation and non-convex quadratic optimization.
Optimization Methods and Software, 12:1-20, 1997.

D. Henrion, S. Tarbouriech, and D. Arzelier. LMI Approximations for the Radius of
the Intersection of Ellipsoids: A Survey. Journal of Optimization Theory and
Applications, 108(1):1-28, 2001.
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S-Lemma

AN

Standard duality: V < V.

Remark on Suboptimality Estimates:  For special classes of QCQPs
explicit bounds on the sub-optimality of the approximation V are
known. For example, in the context of the Maximum Cut problem
(Goemans). More general sub-optimality estimates have been
developed by Henrion, Nemirovski, and Nesterov.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
Maximum Cut and satisfiability problems using semidefinite programming. Journal
of ACM, 42:1115-1145, 1995.

Y. Nesterov. Semidefinite relaxation and non-convex quadratic optimization.
Optimization Methods and Software, 12:1-20, 1997.

D. Henrion, S. Tarbouriech, and D. Arzelier. LMI Approximations for the Radius of
the Intersection of Ellipsoids: A Survey. Journal of Optimization Theory and
Applications, 108(1):1-28, 2001.
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S-Procedure in Robust Optimization
I

Example:
Fi(z,w) = w!'Hj(x)w+ gi(x) w.
Assume that the uncertainty set is an intersection of ellipsoids,

W = ﬂ g(Qj?Qj)'
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S-Procedure in Robust Optimization
I

Example:
Fiz,w) = wHiz)w+ g;(z) w.

Assume that the uncertainty set is an intersection of ellipsoids,

W= ) €@j4)
je{l,...,N}
R si(xNi) — v 5gi(z, )T
Vi(z) :== min ~; st = 0
i >0,y %gz(:c,)\z) Hz(x,)\z)

are upper bounds on the functions V;, V;(z) > V;(z).
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S-Procedure in Robust Optimization
I

Example:

Fi(x,w) =

wl Hy(2)w + g;(x)" w .

Assume that the uncertainty set is an intersection of ellipsoids,

- N

je{1,....N}

Conservative reformulation given by

min
xaf}/))\O?"'a)\m

Y0

S.t.

9

(
Vie{l,...om}: 0> , 0<\.

si(m, N) — v 3gi(m, )T

0 ~

\ 59i(z, \) Hi(z, \;)
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Tight Version of the S-Procedure

Theorem [Yakubovich, 1977] If we have a QCQP with only one
constraint, the S-procedure yields a tight bound.
The proof is not so trivial.

Basis for LMI formulations of H., control and almost all LMI-based
robust control results from 1980-2000.

V.A. Yakubovich. S-procedure in nonlinear control theory. Vestnik
Leningrad University, 4:73-93, 1977.
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Robust Optimization: An Example

Robust optimization problem:

min J
L,y

S.t. (x+0v)* = (y+w) <0

X

N for all (v, w) € €.

Assumption:

£ 1s a given ellipsoidal uncertainty set.
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Robust Optimization: An Example

Robust optimization problem:
min J
T,y

S.t. (x+0v)° = (y+w) <0

X for all (v, w) € €.

Assumption:

£ 1s a given ellipsoidal uncertainty set.
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Robust Optimization: An Example

Robust optimization problem:
min J
T,y

S.t. (x+0v)° = (y+w) <0

X for all (v, w) € €.

Assumption:

£ 1s a given ellipsoidal uncertainty set.
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Robust Optimization: An Example

Robust optimization problem:
min J
T,y

S.t. (x+0v)° = (y+w) <0

X for all (v, w) € €.

Assumption:

£ 1s a given ellipsoidal uncertainty set.
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Robust Optimization: An Example

Robust optimization problem:
min J
T,y

S.t. (x+0v)° = (y+w) <0

X for all (v, w) € €.

Assumption:

£ 1s a given ellipsoidal uncertainty set.
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Robust Optimization: An Example

Robust optimization problem:

min J
L,y

S.t. (x+0v)° = (y+w) <0

X for all (v, w) € €.

Assumption: £ is a given ellipsoidal uncertainty set.

Question: How to find optimal solution numerically?

Convex Robust Optimization — p. 23




Robust Optimization: An Example

Regard as a min-max problem:

min Y

x,y

s.t max (z +v)* — (y +w) <0
(v,w)e€

N\
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Robust Optimization: An Example

Q)
4
- Regard as a min-max problem:
2 7 min Y

T,y
L 2

S.t. max (xr+v)"—(y+w) <0
0 (v,w)ES( ) (y ) -

X

Problem: There are two local maxima in the optimal solution.
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Robust Optimization: An Example

Q)
4
- Regard as a min-max problem:
2 7 min Y

T,y
L 2

S.t. max (xr+v)"—(y+w) <0
0 (v,w)ES( ) (y ) -

X

Problem: There are two local maxima in the optimal solution.

One Possibility: Check the inequality for all points in the ellipsoid.
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Selection of Literature on Semi-

Infinite Optimization
I

R. Hettich and H.T. Jongen. Semi-infinite programming: Conditions
of optimality and applications. Optimization Techniques, Lecture
Notes in Control and Inform. Sci. 7, J. Stoer, Springer, 1978.

R. Hettich and K. Kortanek. Semi infinite programming:Theory,
Methods, and Application, volume 35. SIAM Review, 1993.

H.T. Jongen, J.J. Ruckmann, and O. Stein. Generalized
semi-infinite optimization: A first order optimality condition and
examples. Mathematical Programming, pages 145-158, 1998.

C.A. Floudas and O. Stein. The Adaptative Convexification
Algorithm: a Feasible Point Method for Semi-Infinite Programming.
SIAM Journal on Optimization, 18(4):1187-1208, 2007.
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Solution using the S-Procedure

Find the solution (z*,y*) = (—0.35..., 1.08... ) by convex optimization:

Define:
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Solution using the S-Procedure

Find the solution (z*,y*) = (—0.35..., 1.08... ) by convex optimization:

Alternative formulation as LMI:

min
T,Y,A Y
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S-Procedure in Robust Stability Anal-
ySIS
I
Question: Under which conditions is the system
t(t) = Az(t) + Bw(t) , z(t) = Cx(t)

quadratically stable for all w with w(t)? < ~2z(t)??
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S-Procedure in Robust Stability Anal-
ySIS
I
Question: Under which conditions is the system
©(t) = Axz(t) + Bw(t) , z(t) = Cx(t)
quadratically stable for all w with w(t)? < ~2z(t)??

Lyapunov stability condition: 3P = 0, 2z P(Ax + Bw) < 0.

Non-convex quadratic constraint: w(t)? < 72z(t)?
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S-Procedure in Robust Stability Anal-
ySIS
I
Question: Under which conditions is the system
©(t) = Axz(t) + Bw(t) , z(t) = Cx(t)
quadratically stable for all w with w(t)? < ~2z(t)??

Lyapunov stability condition: 3P = 0, 2z P(Ax + Bw) < 0.

Non-convex quadratic constraint: w(t)? < 72z(t)?

S-Procedure yields “Circle Criterion™:

AP+ PAT ++2CTC PB
<0, P=0
BTP —2
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Overview

* The convex optimization perspective on robust optimization
* The S-procedure for Quadratic Forms

* Inner- and Outer Ellipsoidal Approximations
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Support Functions
I

Definition of support function:

T

V(iec) = max cx st ze€F.
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Support Functions
I

Definition of support function:

T

V(iec) = max cx st ze€F.

Support of an ellipsoid:

V(c) = max e = v/cTQc+clq,

re€(Q,q)
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Support Functions
I

Definition of support function:

Vi) == max c'z st zeF.

Support of an ellipsoid:

V(c) = max e = v/cTQc+clq,

re€(Q,q)

If 7 is compact and convex:

F o= (] Hlo,

ceR™\{0}

where H(c) :=={z eR" | Tz < V(e) }.
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Minkowski Sum of Ellipsoids

* The sum of these ellipsoids is defined as the standard Minkowski
sum:

ZE(Qi7Qi> = {ZCE@ c R"

1=1 1=0

z; € E(Qi, qi) } :
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Minkowski Sum of Ellipsoids

* The sum of these ellipsoids is defined as the standard Minkowski
sum:

1=1 1=0

Zg(Qia%l) = {ZCI% c R"

z; € E(Qi, qi) } :

1}.

* Examples: intervals and zonotopes:

ig(aza?) = { f:)\za@ c R"

1=1

—1 <\

IA
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Minkowski Sum of Ellipsoids

The sum of these ellipsoids is defined as the standard Minkowski
sum:

1=1 1=0

Zg(Qiy%) = {ZCI% c R"

z; € E(Qi, qi) } :

1}.

Examples: intervals and zonotopes:

ig(aza?) — { f:)\za@ c R"

—1 <\

IA

Application: discrete-time systems

T = Arx + Bw, 1€&(Q.); we&(Qy)
then zt e & (AQAY) + £ (BQuBY)
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Support Function of the Sum of Ellip-
soids

Let’s compute the support function

Vie) = max (Zx,L) st. 2/ Q7 'x; <1

.....

* Convex maximization problem; x; = ... = xn = 0 Is feasible.

Convex Robust Optimization — p. 31




Support Function of the Sum of Ellip-
soids

Let’s compute the support function

Vie) = max (Zx,L) st. 2/ Q7 'x; <1

.....

Convex maximization problem; x; = ... = xny = 0 Is feasible.

We can use duality to find

N
V(ic) = inf max Z(c xi — Niw; Q twi + N;)

A>0 x1,..., TN -
=1

N N
. ct Q;c

Inf A
A>0 “ 4)\7, + ;

1=1
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Support Function of the Sum of Ellip-
soids

Let’s compute the support function

Vie) = max (Zx,L) st. 2/ Q7 'x; <1

.....

Convex maximization problem; x; = ... = xny = 0 Is feasible.

We can use duality to find

N
V(ic) = inf max Z(c xi — Niw; Q twi + N;)

A>0 x1,..., TN -
=1

N N
. ct Q;c

Inf A
A>0 “ 4)\7, + ;

1=1
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Support Function: Sum of Ellipsoids

* We can use duality to find
N

V(c) = Inf max Z (cTazi — )\Z-xiTQ,L-_lxi + )\Z-)

A>0 xq,..., TN -
1=1

N CTQ'C N
= iInf - A .
A>0 ; 4)\1 + ;
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Support Function: Sum of Ellipsoids

* We can use duality to find

N
V(c) = Inf max Z (cTazi — )\ixiTQ,i_lxi + )\Z-)

A>0 xq,..., TN :
1=1

N CTQ'C N
= iInf - A .
A>0 ; 4\; + ;

* ldea: use the tight version of the AM-GM inequality:

inf — 4+ kb = Vab, (2)

k>0 4k

which holds for all a,b € R,..
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Support Function: Sum of Ellipsoids

* We can use duality to find

N
V(ie) = inf max Z(c zi — Nix; Q; tmi + A;)

A>0 xq,..., TN :
1=1

N T N
. ctQ;c
A .
A>0 4\; +;

Vie) = /\IQE) /J;gfo 4/<:A

with VA e RY, : Q) = (zz - QZ) (z: )\Z-) .
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Ellipsoidal Calculus (Outer Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

N
ZAZ- < 1}.
=1

D = {AeRL

For every X\ € D' we have

N
VAeDT: ) E(Q))
1=1

1M
o
—
M-
|-
<
~—
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Ellipsoidal Calculus (Outer Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define

The parameterized outer approximation is tight, i.e.,

N

S @) = N 5(%&@)

1=1 AeD+
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Ellipsoidal Calculus (Inner Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define
D~ = {Se RN | 5,87 < forall i€ {l,...,N} } .

For every set of matrices S € D~ we have

vSeDT: D Q) 2 5((2@%&-) <Z@§si> )

1=1
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Ellipsoidal Calculus (Inner Approx.)

Theorem [Kurzhanski (and earlier Russian literature)]: Define
D~ = {Se RN | 5,87 < forall i€ {l,...,N} } .
For every set of matrices S € D~ we have

VS EDT: Y EQ) 2 5((2@%&-) <Z@§si> )

1=1

The inner approximation is tight, i.e.,

ig(@) = U 5(<§:QS> (iQS>T> |

1=1 Seh— 1=1
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Summary
I

Semi-infinite programs <> min-max NLP

Upper- and lower level convexity (max over convex fcns is convex)
Robust counterpart functions + explicit examples

Using duality: min-max < min-min.

S-procedure (approximations and tight version)

Support functions of convex sets

Inner- and outer ellipsoidal approximations
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