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The Class of Factorable Functions

Factorable Function: Defined by a finite recursive composition of

binary sums

binary products

a given library of univariate functions

f (x) =
x exp(x)

(x + 5)2
factored−−−−−−→
form


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







v1(x) = x

v2(x) = exp(v1(x))
v3(x) = v1(x)v2(x)
v4(x) = v1(x) + 5
v5(x) = v4(x)

2

v6(x) =
1

v5(x)
f (x) = v3(x)v5(x)

Extremely inclusive class of functions

Nearly every function that can be represented finitely on a computer
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What is Interval Analysis?

x
x x

f (x)

[f , f ]

f

f
Enclosing the set of solutions to
computational problems

◮ E.g., range of functions; enclosure of
integral value; enclosure of ODE
solutions; enclosure of LE/NLE
solutions; etc.

Cheap, but inherently conservative!
(over-approximation)

Requires new arithmetic for intervals of real numbers,
[x , x ] := {x | x ≤ x ≤ x}

◮ Combine set operations on intervals with interval function evaluations

Available Interval Packages: INTLAB (MATLAB), Profil/Bias
(C++), FILIB++ (C++), etc.

◮ Outward Rounding: Guarantee of rigorous enclosure despite round-off
errors inherent to finite machine arithmetic
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Interval Analysis: Usual Binary Operations

X ⊙ Y := {x ⊙ y : x ∈ X , y ∈ Y }, ⊙ ∈ {+,−,×,÷}

Let X := [x , x ], Y := [y , y ]

Addition:
X + Y = [x + y , x + y ]

Subtraction:
X − Y = [x − y , x − y ]

◮ We have X − X = [x − x , x − x ] ⊆ 0 in general!

Multiplication:

X × Y = [minM,maxM], M := {xy , xy , xy , xy}
◮ We have X (Y + Z ) ⊆ XY + XZ , with equality only if YZ > 0

(subdistributivity)

Division:

X/Y = X × (1/Y ), 1/Y = [1/y , 1/y ], if 0 /∈ Y
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Interval Analysis: Usual Unary Operations

f (X ) := {f (x) : x ∈ X}

x 7→ exp(x):
exp(X ) = [exp(x), exp(x)]

x 7→ log(x):
log(X ) = [log(x), log(x)], x > 0

x 7→ √
x :√
X = [

√
x ,
√
x ], x ≥ 0

x 7→ x2k+1:
X 2k+1 = [(x)2k+1, (x)2k+1]

x 7→ x2k :

X 2k = [mid{0, x, x}2k ,
max{(x)2k , (x)2k}]
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IA - Example

Let us use the same example as before:

f (x) =
x exp(x)

(x + 5)2

v1(x) = x

v2(x) = exp(v1(x))

v3(x) = v1(x)v2(x)

v4(x) = v1(x) + 5

v5(x) = v4(x)
2

v6(x) =
1

v5(x)

f (x) = v3(x)v6(x)

V X
1 = [−1, 1]

V X
2 = [exp(−1), exp(1)] = [0.367, 2.719]

V X
3 = [−1, 1][0.367, 2.719] = [−2.719, 2.719]

V X
4 = [−1, 1] + 5 = [4, 6]

V X
5 = [4, 6]2 = [16, 36]

V X
6 =

[

1

36
,
1

16

]

= [0.027, 0.063]

FX = [−2.719, 2.719][0.027, 0.063] = [−0.171, 0.172]
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Convergence of Interval Estimators

Hausdorff Metric: q(X ,Y ) := max{|x − y |, |x − y |}
Hausdorff Convergence Order, β:

q(Th(Y ), h̄(Y )) ≤ τ w(Y )β, ∀Y ⊆ Z

Classical Results: Hausdorff convergence order of natural interval
extensions is (no less than) 1; of centered forms (no less than) 2
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IA - Issues
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We calculated FX = [−0.171, 0.172], however we can see from the graph
that the tightest possible interval would have been
FX = [f (−1), f (1)] = [−0.023, 0.076]
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IA - Issues

Let us consider a simple example, we have g(x) = x − x , we can see
instantly that g(x) = 0, we would want our Interval bound GX = [0, 0].
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Let us consider a simple example, we have g(x) = x − x , we can see
instantly that g(x) = 0, we would want our Interval bound GX = [0, 0].

GX = [−1, 1] − [−1, 1] = [−2, 2]
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IA - Issues

Let us consider a simple example, we have g(x) = x − x , we can see
instantly that g(x) = 0, we would want our Interval bound GX = [0, 0].

GX = [−1, 1] − [−1, 1] = [−2, 2]

We lose all dependency information with interval analysis.

We will now move on to a method which does keep some dependency
information in order to provide tighter bounds.
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Taylor expansion

A Taylor expansion is a representation of a function as an infinite sum of
terms that are calculated from the values of the function’s derivatives at a
single point.
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Taylor expansion

A Taylor expansion is a representation of a function as an infinite sum of
terms that are calculated from the values of the function’s derivatives at a
single point.

We can represent this in the following way:

f (x) =
∞
∑

n=0

f (n)(x0)

n!
(x − x0)

n

where f (n)(x0) is the nth derivative evaluated at the reference point x0.
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We can also simplify things for ourselves by taking x0 = 0, so that we have:

f (x) =
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xn =
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anx
n = P∞

f (x)
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Taylor model

A Taylor model is a truncated Taylor expansion with a remainder term.
The remainder term bounds the rest of the infinite sum.
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A Taylor model is a truncated Taylor expansion with a remainder term.
The remainder term bounds the rest of the infinite sum.

So a Taylor model of order q for f (x) is:

T q
f (x) = Pq

f (x) +Rq
f
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A Taylor model is a truncated Taylor expansion with a remainder term.
The remainder term bounds the rest of the infinite sum.

So a Taylor model of order q for f (x) is:

T q
f (x) = Pq

f (x) +Rq
f

We have to create an equivalent of Interval analysis for Taylor models,
which will allow us to evaluate the individual parts of the factored function.
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A Taylor model is a truncated Taylor expansion with a remainder term.
The remainder term bounds the rest of the infinite sum.

So a Taylor model of order q for f (x) is:

T q
f (x) = Pq

f (x) +Rq
f

We have to create an equivalent of Interval analysis for Taylor models,
which will allow us to evaluate the individual parts of the factored function.

Addition is trivial once again, for T q
A
(x) = T q

B
(x) + T q

C
(x)

We get T q
A (x) =

∑q
n=0(a(B,n) + a(C ,n))x

n +Rq
B +Rq

C
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TM - Multiplication I

Lets consider T q
A (x) = Pq

A(x) +Rq
A = T q

B (x)T q
C (x)
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TM - Multiplication I

Lets consider T q
A (x) = Pq

A(x) +Rq
A = T q

B (x)T q
C (x)

If we do a simple multiplication we get:

T q
A
(x) = Pq

B
(x)Pq

C
(x) + Pq

B
(x)Rq

C
+ Pq

C
(x)Rq

B
+Rq

B
Rq

C
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C
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B
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C
+ Pq

C
(x)Rq

B
+Rq

B
Rq

C

If we examine the first term we have:

Pq
B
(x)Pq

C
(x) =

q
∑

n=0

a(B,n)

(

q
∑

m=0

a(C ,m)x
n+m

)
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Pq
B
(x)Pq

C
(x) =

q
∑

n=0

a(B,n)

(

q
∑

m=0

a(C ,m)x
n+m

)

We want to keep all the terms where n +m ≤ q, so we have

Pq
A(x) =

q
∑

n=0

a(B,n)

(

q−n
∑

m=0

a(C ,m)x
n+m

)
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TM - Multiplication II

Lets consider T q
A
(x) = Pq

A
(x) +Rq

A
= T q

B
(x)T q

C
(x)

If we do a simple multiplication we get:

T q
A (x) = Pq

B(x)P
q
C (x) + Pq

B(x)R
q
C + Pq

C (x)R
q
B +Rq

BR
q
C
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TM - Multiplication II

Lets consider T q
A
(x) = Pq

A
(x) +Rq

A
= T q

B
(x)T q

C
(x)

If we do a simple multiplication we get:

T q
A (x) = Pq

B(x)P
q
C (x) + Pq

B(x)R
q
C + Pq

C (x)R
q
B +Rq

BR
q
C

We know that everything remaining has to end up in Rq
A
, so we can

overestimate what is left by substituting X for x ,

Rq
A
=

q
∑

n=1

a(B,n)





q
∑

m=q+1−n

a(C ,m)X
n+m





+ Pq
B
(X )Rq

C
+ Pq

C
(X )Rq

B
+Rq

B
Rq

C
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TM - Remainder

It is possible to show that the remainder of a Taylor expansion is:

f (x) −Pq
f
(x) =

f (q+1)(c)

(q + 1)!
xq+1

where c is between 0 and x , one way of getting Rq
f
is to overestimate this

as follows:

Rq
f =

f (q+1)(X )

(q + 1)!
X q+1
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TM - Remainder

It is possible to show that the remainder of a Taylor expansion is:

f (x) −Pq
f
(x) =

f (q+1)(c)

(q + 1)!
xq+1

where c is between 0 and x , one way of getting Rq
f
is to overestimate this

as follows:

Rq
f =

f (q+1)(X )

(q + 1)!
X q+1

More recently we have shown for definite functions that are monotonically
increasing or decreasing that the maximum error of a Taylor function
occurs at an endpoint of the approximation range.

So a valid interval for Rq
f can be calculated by examining the endpoints of

f (x) −Pq
f (x).
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TM - Composition

We wish to be able to evaluate T q
o (T q

i (x)), in order to evaluate all of the
operations in our factorable function.
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TM - Composition

We wish to be able to evaluate T q
o (T q

i (x)), in order to evaluate all of the
operations in our factorable function.

First we can see that T q
o (T q

i (x)) = Pq
o (T q

i (x)) +Rq
o . The linear

combination of monomials can be evaluated using the Horner scheme.
Where

bq = ao,q

bq−1 = ao,q−1 + xbq

...

b0 = ao,0 + xb1

Pq
o (x) = b0
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TM - Composition
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o (T q

i (x)), in order to evaluate all of the
operations in our factorable function.

First we can see that T q
o (T q

i (x)) = Pq
o (T q

i (x)) +Rq
o . The linear

combination of monomials can be evaluated using the Horner scheme.
Where

bq = ao,q

bq−1 = ao,q−1 + xbq

...

b0 = ao,0 + xb1

Pq
o (x) = b0

We replace x with T q
i (x) in the scheme and compute the recursion using

addition and multiplication of TMs.
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TM - Bounding

When composing functions, for the outer function we would like to create
an approximation which is valid for the whole range of the inner function.
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TM - Bounding

When composing functions, for the outer function we would like to create
an approximation which is valid for the whole range of the inner function.

The remainder can be evaluated using Rq
f = f (q+1)(X )

(q+1)! X q+1

In this case we replace X with interval bounds for T q
i (x). In order to do

this we need methods for bounding a Taylor model.
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TM - Bounding

When composing functions, for the outer function we would like to create
an approximation which is valid for the whole range of the inner function.

The remainder can be evaluated using Rq
f = f (q+1)(X )

(q+1)! X q+1

In this case we replace X with interval bounds for T q
i (x). In order to do

this we need methods for bounding a Taylor model.

The naive way to bound this is to simply evaluate T q
i (X )

We are also able to use some smarter methods where we can get better
bounds for the lower order terms.
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TM - Example

Let us use the same example as before:

f (x) =
x exp(x)

(x + 5)2

v1(x) = x

v2(x) = exp(v1(x))

v3(x) = v1(x)v2(x)

v4(x) = v1(x) + 5

v5(x) = v4(x)
2

v6(x) =
1

v5(x)

f (x) = v3(x)v6(x)

T 3
v1

= x

T 3
v2

= 1 + x + 0.5x2 + 0.167x3 + [0, 0.0114]

T 3
v3

= x + x2 + 0.5x3 + [−0.280, 0.280]

T 3
v4

= 5 + x

T 3
v5

= 25 + 10x + x2

T 3
v6

= 0.040 − 0.016x + 0.005x2

− 0.001x3 + [−0.001, 0.010]

T 3
f = 0.040x + 0.024x2 + 0.009x3 + [−0.048, 0.063]
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TM - Issues

Taylor expansions approximate functions in the neighbourhood of a point.
We are interested in approximating functions over an Interval.

M. E. Villanueva (Imperial College London) Enclosing the Range of Factorable Functions September 2014 18 / 30



TM - Issues

Taylor expansions approximate functions in the neighbourhood of a point.
We are interested in approximating functions over an Interval.

This can end up badly for as in the example of g(x) = 1
x+1.8

-3

-2

-1

 0

 1

 2

 3

 4

 5

-1 -0.5  0  0.5  1

f(
x)

x

Actual function

Order 1

Order 2

Order 3
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Chebyshev polynomials

Chebyshev polynomials are a different basis to monomials used in Taylor
expansions. We can approximate a function, f (x), where x ∈ [−1, 1].

f (x) = Pf (x) =

∞
∑

n=0

anTn(x)
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expansions. We can approximate a function, f (x), where x ∈ [−1, 1].

f (x) = Pf (x) =

∞
∑

n=0

anTn(x)

where the Chebyshev polynomials,
Tn(x), are

Tn(x) = cos(n arccos(x))
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Chebyshev polynomials

Chebyshev polynomials are a different basis to monomials used in Taylor
expansions. We can approximate a function, f (x), where x ∈ [−1, 1].

f (x) = Pf (x) =

∞
∑

n=0

anTn(x)

where the Chebyshev polynomials,
Tn(x), are

Tn(x) = cos(n arccos(x))

and the coefficients, an can be
calculated via

an =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx
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where the Chebyshev polynomials,
Tn(x), are

Tn(x) = cos(n arccos(x))

and the coefficients, an can be
calculated via

an =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx

We can convert exactly from the
Chebyshev basis back to the monomial
basis.

Chebyshev Monomial

T0(x) 1
T1(x) x

T2(x) 2x2 − 1
T3(x) 4x3 − 3x
T4(x) 8x4 − 8x2 + 1
T5(x) 16x5 − 20x3 + 5x
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Chebyshev polynomials
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Chebyshev Models

A Chebyshev model is created via the propagation of truncated Chebyshev
expansions with a remainder term. The remainder term bounds the rest of
the infinite sum.
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f

We have to create an arithmetic which will allow us to evaluate the
individual parts of the factored function.
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So a Chebyshev model of order q for f (x) is:

Cq
f
(x) = Pq

f
(x) +Rq

f

We have to create an arithmetic which will allow us to evaluate the
individual parts of the factored function.

Addition is trivial once again, for Cq
A(x) = Cq

B(x) + Cq
C (x)

We get Cq
A(x) =

∑q
n=0(a(B,n) + a(C ,n))Tn(x) +Rq

B +Rq
C
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CM - Multiplication I

The multiplication of two Chebyshev basis functions is different to the
monomial basis. Tn(x)Tm(x) =

1
2(T|n−m|(x) + Tn+m(x))

This is an advantage as with Taylor models when n +m > q we had to
bound the whole term, but with Chebyshev models only half the result has
to be bound.
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CM - Multiplication I

The multiplication of two Chebyshev basis functions is different to the
monomial basis. Tn(x)Tm(x) =

1
2(T|n−m|(x) + Tn+m(x))

This is an advantage as with Taylor models when n +m > q we had to
bound the whole term, but with Chebyshev models only half the result has
to be bound.

However this is also a disadvantage, as before when you multiplied two
terms together the result was only one term. With this basis you get at
least twice as many terms.

For multivariate multiplication you get 2nv terms, where nv is the number
of variables.
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CM - Multiplication II

Lets consider Cq
A(x) = Pq

A(x) +Rq
A = Cq

B(x)C
q
C (x)
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CM - Multiplication II

Lets consider Cq
A(x) = Pq

A(x) +Rq
A = Cq

B(x)C
q
C (x)

If we do a simple multiplication we get:

Cq
A
(x) = Pq

B
(x)Pq

C
(x) + Pq

B
(x)Rq

C
+ Pq

C
(x)Rq

B
+Rq

B
Rq

C

M. E. Villanueva (Imperial College London) Enclosing the Range of Factorable Functions September 2014 23 / 30



CM - Multiplication II

Lets consider Cq
A(x) = Pq

A(x) +Rq
A = Cq

B(x)C
q
C (x)

If we do a simple multiplication we get:

Cq
A
(x) = Pq

B
(x)Pq

C
(x) + Pq

B
(x)Rq

C
+ Pq

C
(x)Rq

B
+Rq

B
Rq

C

Following a similar procedure to Taylor models

Pq
A(x) =

1

2

q
∑

n=0

a(B,n)

(

q−n
∑

m=0

a(C ,m)Tn+m(x) +

q
∑

m=0

a(C ,m)T|n−m|(x)

)
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CM - Multiplication II

Lets consider Cq
A(x) = Pq
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Following a similar procedure to Taylor models

Pq
A(x) =

1

2

q
∑

n=0

a(B,n)

(

q−n
∑

m=0

a(C ,m)Tn+m(x) +

q
∑

m=0

a(C ,m)T|n−m|(x)

)

We bound what is left over by replacing x with X

Rq
A =

1

2

q
∑

n=1

a(B,n)





q
∑

m=q+1−n

a(C ,m)Tn+m(X )





+ Pq
B(X )Rq

C + Pq
C (X )Rq

B +Rq
BR

q
C
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CM - Coefficients

Unlike for the coefficients of Taylor expansion, calculating the coefficients
of a Chebyshev expansion is a lot more difficult.
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CM - Coefficients

Unlike for the coefficients of Taylor expansion, calculating the coefficients
of a Chebyshev expansion is a lot more difficult.

aA,n =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx

Directly evaluating this integral can be impossible.
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CM - Coefficients

Unlike for the coefficients of Taylor expansion, calculating the coefficients
of a Chebyshev expansion is a lot more difficult.

aA,n =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx

Directly evaluating this integral can be impossible.

The options are numerical integration or interpolation.
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CM - Remainder

We can evaluate the remainder of a Chebyshev expansion using the
derivative, in a similar way to the Taylor expansion.

Rq
f =

f q+1(X )

2q(q + 1)!
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CM - Remainder

We can evaluate the remainder of a Chebyshev expansion using the
derivative, in a similar way to the Taylor expansion.

Rq
f =

f q+1(X )

2q(q + 1)!

More recently we have shown for convex or concave functions that are
monotonically increasing or decreasing that the maximum error of a Taylor
function occurs at an endpoint of the approximation range.

So a valid interval for Rq
f can be calculated by examining the endpoints of

f (x) −Pq
f (x).
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CM - Composition

The Clenshaw method is a recurrence relation used to evaluate linear
combinations of Chebyshev polynomials.
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CM - Composition

The Clenshaw method is a recurrence relation used to evaluate linear
combinations of Chebyshev polynomials.

Pq
o (x) = ao,0 + xb1(x)− b2(x)

where b1(x) and b2(x) can be calculated by knowing ∀k > q, bk(x) = 0
and

bk(x) = ao,k + 2xbk+1(x)− bk+2(x)

M. E. Villanueva (Imperial College London) Enclosing the Range of Factorable Functions September 2014 26 / 30



CM - Composition

The Clenshaw method is a recurrence relation used to evaluate linear
combinations of Chebyshev polynomials.

Pq
o (x) = ao,0 + xb1(x)− b2(x)

where b1(x) and b2(x) can be calculated by knowing ∀k > q, bk(x) = 0
and

bk(x) = ao,k + 2xbk+1(x)− bk+2(x)

This method can be used to evaluate the composition Pq
o (Cq

i (x)), by
replacing x in the relations above with Cq

i (x)

Note that we could replace x with T q
i (x) if we desire to keep the

monomial basis.
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CM - Bounding

For the composition of Chebyshev models we need to ensure that the
range of Cq

i (x) is [−1, 1]. This is because the expansion only creates an
approximation for this part of the outer function.
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CM - Bounding

For the composition of Chebyshev models we need to ensure that the
range of Cq

i (x) is [−1, 1]. This is because the expansion only creates an
approximation for this part of the outer function.

If the range of the Cq
i (x) is [α, β] we can do a linear transformation on it.

Cq
i ′
(x) = (Cq

i (x)−
α+β
2 )β−α

2 as well as modifying the outer function

fo′(x) = fo

(

β−α
2 x + α+β

2

)
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CM - Bounding

For the composition of Chebyshev models we need to ensure that the
range of Cq

i (x) is [−1, 1]. This is because the expansion only creates an
approximation for this part of the outer function.

If the range of the Cq
i (x) is [α, β] we can do a linear transformation on it.

Cq
i ′
(x) = (Cq

i (x)−
α+β
2 )β−α

2 as well as modifying the outer function

fo′(x) = fo

(

β−α
2 x + α+β

2

)

We can bound Chebyshev models in a similar way to Taylor models.

The naive way to bound this is to simply evaluate Cq
i (X )

We are also able to use some smarter methods where we can get better
bounds for the lower order terms.
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CM - Example

Let us use the same example as before, f (x) = x exp(x)
(x+5)2

v1(x) = x

v2(x) = exp(v1(x))

v3(x) = v1(x)v2(x)

v4(x) = v1(x) + 5

v5(x) = v4(x)
2

v6(x) =
1

v5(x)

f (x) = v3(x)v6(x)

C3
v1

= x

C3
v2

= 1.267 + 1.130x + 0.272T2(x)

+ 0.044T3(x) + [−0.007, 0.007]

C3
v3

= 0.565 + 1.402x + 0.587T2(x)

+ 0.136T3(x) + [−0.029, 0.029]

C3
v4

= 5 + x

C3
v5

= 25.5 + 10x + 0.5T2(x)

C3
v6

= 0.043 − 0.017x + 0.003T2(x)

− 0.0003T3(x) + [−0.0003, 0.0003]

C3
f = 0.013 − 0.047x + 0.013T2(x)

− 0.002T3(x) + [−0.005, 0.005]
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Example

Lets examine bounds for the function f (x) = x exp(x)
(x+5)2

with x ∈ X = [−1, 1]
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x)

x
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Interval bounds
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