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Outline of the Talk

• Uncertain Nonlinear Dynamic Systems

• Computation of Robust Positive Invariant Tubes

• Robust Optimization of Dynamic Systems

• Application: Robust Control of a Tubular Reactor

• Robust Optimization of Periodic Systems

• Open-Loop Stable Orbits of an Inverted Spring Pendulum

• Conclusions and Outlook
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Uncertain Nonlinear Dynamic System

Notation:

• General uncertain system:

∀τ ∈ [t1, t2] : ẋ(τ) = f( τ, x(τ), w(τ) ) , x(t1) = x1 .

• Knowlegde about the uncertainty: (x1, w) ∈ W.
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Uncertain Nonlinear Dynamic System

Notation:

• General uncertain system:

∀τ ∈ [t1, t2] : ẋ(τ) = f( τ, x(τ), w(τ) ) , x(t1) = x1 .

• Knowlegde about the uncertainty: (x1, w) ∈ W.

Definition of a Solution-Tube:

• The solution X : [t1, t2] → Π(Rnx) is defined as:

X(t) :=















x(t) ∈ R
nx

∣

∣

∣

∣

∣

∣

∣

∣

∃x(·), w(·) :
ẋ(τ) = f( τ, x(τ), w(τ) )

(x(t1), w) ∈ W ∀τ ∈ [t1, t]















.
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Example 1

Scalar Linear System:

• ẋ = ax+ bw with a, b, c ∈ R .

• W := { (x1, w) | ∀t ∈ R : −1 ≤ w(t) ≤ 1 , x1 = c}.

Visualization:

• We use a = −1, b =

1, and c = 1
2 .
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Example 2

Linear System with L2-bounded Uncertainty:

• f(t, x, w) = Ax+Bw

• W :=
{

(x1, w)
∣

∣

∣
x2
1 +

∫∞
−∞ ‖w(τ)‖22 dτ ≤ 1

}

.

Visualization:

Solution:

• X(t) = E(Q(t) ) with

Q̇ = AQ+QAT +BBT

and Q(t1) = I.
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The Set Propagation Operator

Question:

• Can we build up the tube X(·) recursively?
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The Set Propagation Operator

Question:

• Can we build up the tube X(·) recursively?

Assumption:

• W = { (x1, w) | x1 ∈ X1 , w(τ) ∈ W (τ) ∀τ ∈ R } .
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The Set Propagation Operator

Question:

• Can we build up the tube X(·) recursively?

Assumption:

• W = { (x1, w) | x1 ∈ X1 , w(τ) ∈ W (τ) ∀τ ∈ R } .

Definition:

• T (t2, t1)[X1] :=



























y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃(x,w) :
ẋ(τ)= f(τ, x(τ), w(τ))

w(τ)∈W (τ) ∀τ ∈ [t1, t2]

x(t1) ∈ X1 , x(t2) = y



























.
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Associativity of the Set Propagation
Operator

Associativity:

• (T (t4, t3) ◦ T (t3, t2) ) ◦ T (t2, t1) = T (t4, t3) ◦ (T (t3, t2) ◦ T (t2, t1) ) .

• For automouos systems: (T , ◦) ∼= (R+,+).

Robust Optimization of Dynamic Systems – p. 7



Associativity of the Set Propagation
Operator

Associativity:

• (T (t4, t3) ◦ T (t3, t2) ) ◦ T (t2, t1) = T (t4, t3) ◦ (T (t3, t2) ◦ T (t2, t1) ) .

• For automouos systems: (T , ◦) ∼= (R+,+).

Infinitesimal Set Generation (Euler’s method):

• X(τ + dτ) := T (τ + dτ, τ)[X(τ)] ,
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Associativity of the Set Propagation
Operator

Associativity:

• (T (t4, t3) ◦ T (t3, t2) ) ◦ T (t2, t1) = T (t4, t3) ◦ (T (t3, t2) ◦ T (t2, t1) ) .

• For automouos systems: (T , ◦) ∼= (R+,+).

Infinitesimal Set Generation (Euler’s method):

• X(τ + dτ) := T (τ + dτ, τ)[X(τ)] ,

Formal Definition of a Set Valued ODE:

• ∀τ ∈ [t1, t2] : X(τ+) = F (τ,X(τ),W (τ))

⇐⇒

∀τ ∈ [t1, t2] : X(τ) := T (τ, t1)[X(t1)].
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Aim of the Talk

• Learn how to formulate and solve optimal control problems of the
following form

min
u(·),p,Te,X(·)

∫ Te

0
L(τ, u(τ), X(τ),W (τ)) dτ + M( p, Te, X(Te) )

s.t.























X(τ+) = F (τ, u(τ), p,X(τ),W (τ))

X(0) = X0

0 ≥ H(τ, u(τ), p,X(τ),W (τ))

(for all τ ∈ [0, Te]).

• Generalizations: Other boundary conditions (e.g. periodicity), etc.
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Outline of the Talk

• Uncertain Nonlinear Dynamic Systems

• Computation of Robust Positive Invariant Tubes

• Robust Optimization of Dynamic Systems

• Application: Robust Control of a Tubular Reactor

• Robust Optimization of Periodic Systems

• Open-Loop Stable Orbits of an Inverted Spring Pendulum

• Conclusions and Outlook
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Monotonicity of the Set Propagation
Operator

Numerical Problem:

• Propagating X(τ+) = F (τ,X(τ),W (τ)) expensive.
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Monotonicity of the Set Propagation
Operator

Numerical Problem:

• Propagating X(τ+) = F (τ,X(τ),W (τ)) expensive.

Idea: Use Monotonicity

• X ⊆ Y ⇒ T (t2, t1)[X] ⊆ T (t2, t1)[Y ].
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Monotonicity of the Set Propagation
Operator

Numerical Problem:

• Propagating X(τ+) = F (τ,X(τ),W (τ)) expensive.

Idea: Use Monotonicity

• X ⊆ Y ⇒ T (t2, t1)[X] ⊆ T (t2, t1)[Y ].

Definition:

• A function X : [t1, t2] → Π(Rnx) is called a robust positive invariant
tube if

∀τ ∈ [t1, t2] : X(τ+) ⊇ F (τ,X(τ),W (τ)) .
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Computational Methods for Linear
Systems

Aim:

• Provide efficient methods for the computation of robust positive
invariant tubes.

• Canditate sets: ellipsoids, polytopes, zonotopes, ...
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Computational Methods for Linear
Systems

Aim:

• Provide efficient methods for the computation of robust positive
invariant tubes.

• Canditate sets: ellipsoids, polytopes, zonotopes, ...

Strategy:

• Start with analysis of linear system of the form

∀τ ∈ R : ẋ(τ) = A(τ)x(τ) +B(τ)w(τ)

and generalize for nonlinear systems later.
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Conservation Laws of Linear Uncer-
tainty Propagation

Proposition:

• Let A and B be L1-integrable, X(t) := T (t, t1)[X1] .

• If X1 and W (τ) (τ ∈ [t1, t]) compact ⇒ X(t) compact.

• If X1 and W (τ) (τ ∈ [t1, t]) convex ⇒ X(t) convex.

• If X1 and W (τ) (τ ∈ [t1, t]) *-sym. ⇒ X(t) *-sym.
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Conservation Laws of Linear Uncer-
tainty Propagation

Proposition:

• Let A and B be L1-integrable, X(t) := T (t, t1)[X1] .

• If X1 and W (τ) (τ ∈ [t1, t]) compact ⇒ X(t) compact.

• If X1 and W (τ) (τ ∈ [t1, t]) convex ⇒ X(t) convex.

• If X1 and W (τ) (τ ∈ [t1, t]) *-sym. ⇒ X(t) *-sym.

Idea: Employ Techniques from Convex Analysis

• Given a compact and convex set F ⊆ R
nx .

• Search lifted outer approximation F =
⋂

λ∈D+

F+(λ) .
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Example: Lifted Approximation of a
Polytope

Problem:

• Given polytope F := {x ∈ R
n | Ax ≤ b }, A ∈ R

m×n.

• Construct a polytope with l < m facets which approximates F from
outside.
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Example: Lifted Approximation of a
Polytope

Problem:

• Given polytope F := {x ∈ R
n | Ax ≤ b }, A ∈ R

m×n.

• Construct a polytope with l < m facets which approximates F from
outside.

Solution:

• Take any (m× l)-matrix Λ ∈ D
+ := { Λ | Λi,j ≥ 0 }.

• Choose F+(Λ) := {x | C(Λ)x ≤ d(Λ) } with

C(Λ) := ΛTA and d(Λ) := ΛT b

• Then we have F =
⋂

λ∈D+

F+(λ) .
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Construction of Lifted Outer Approxi-
mations

General Technique:

• Support function of convex and compact set F :

V (c) := max
x

cTx s.t. x ∈ F .

• Represent V by dual problem V (c) = inf
λ∈D+

D(c, λ).

Robust Optimization of Dynamic Systems – p. 14



Construction of Lifted Outer Approxi-
mations

General Technique:

• Support function of convex and compact set F :

V (c) := max
x

cTx s.t. x ∈ F .

• Represent V by dual problem V (c) = inf
λ∈D+

D(c, λ).

• Define a parameterized outer approximation as

∀λ ∈ D
+ : F+(λ) :=

⋂

c∈Rn

{

x ∈ R
n | cTx ≤ D(c, λ)

}

.

• No duality gap =⇒ F =
⋂

λ∈D+

F+(λ) .
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Example: Sums of Ellipsoids

Problem:

• Find Q ∈ S
n
++ with

∑N
i=1 E(Qi) ⊆ E(Q) , Qi ∈ S

n
+ given.
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Example: Sums of Ellipsoids

Problem:

• Find Q ∈ S
n
++ with

∑N
i=1 E(Qi) ⊆ E(Q) , Qi ∈ S

n
+ given.

Motivation:

• Assume x ∈ E(Qx) and w ∈ E(Qw).

• Then x+ = Gxx+Gww ∈ E
(

GxQxG
T
x

)

+ E
(

GwQwG
T
w

)

.
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Example: Sums of Ellipsoids

Problem:

• Find Q ∈ S
n
++ with

∑N
i=1 E(Qi) ⊆ E(Q) , Qi ∈ S

n
+ given.

Motivation:

• Assume x ∈ E(Qx) and w ∈ E(Qw).

• Then x+ = Gxx+Gww ∈ E
(

GxQxG
T
x

)

+ E
(

GwQwG
T
w

)

.

Solution (Step 1):

V (c) = max
x1,...,xN

cT
(

∑N
i=1 xi

)

s.t. xT
i Q

−1
i xi ≤ 1

= inf
λ≥0

∑N
i=1

cTQic
4λi

+
∑N

i=1 λi .
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Example: Sums of Ellipsoids

Problem:

• Find Q ∈ S
n
++ with

∑N
i=1 E(Qi) ⊆ E(Q) , Qi ∈ S

n
+ given.

Motivation:

• Assume x ∈ E(Qx) and w ∈ E(Qw).

• Then x+ = Gxx+Gww ∈ E
(

GxQxG
T
x

)

+ E
(

GwQwG
T
w

)

.

Solution (Step 2):

V (c) = inf
λ≥0

∑N
i=1

cTQic
4λi

+
∑N

i=1 λi

D
+ =

{

λ ∈ R
N

∣

∣

∣

∑N
i=1 λi = 1

}

∀λ ∈ D
+ : F+(λ) = E

(

∑N
i=1

1
λi
Qi

)

⊇ ∑N
i=1 E(Qi) .
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Back to Continous Time Systems...

Uncertain Linear System:

• ẋ(t) = A(t)x(t) +B(t)w(t) with x(0) = 0

• Uncertainty assumption ‖w(t)‖∞ ≤ 1 for all t ∈ [0, T ].
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Back to Continous Time Systems...

Uncertain Linear System:

• ẋ(t) = A(t)x(t) +B(t)w(t) with x(0) = 0

• Uncertainty assumption ‖w(t)‖∞ ≤ 1 for all t ∈ [0, T ].

Example:

Linearized Pendulum:

ϕ̇(t) = ω(t)

ω̇(t) = − g

L
ϕ(t) +

w(t)

mL
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Back to Continous Time Systems...

Uncertain Linear System:

• ẋ(t) = A(t)x(t) +B(t)w(t) with x(0) = 0

• Uncertainty assumption ‖w(t)‖∞ ≤ 1 for all t ∈ [0, T ].

Example:

Linearized Pendulum:

ϕ̇(t) = ω(t)

ω̇(t) = − g

L
ϕ(t) +

w(t)

mL

The horizontal force w is unknown.
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Computation of the Uncertainty Tube

Example:

• The set X(t) for the linearized
pendulum.

t [s] L [m] g [m/s2] m [kg]

1.2 1 9.81 1
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Computation of the Uncertainty Tube

Example:

• The set X(t) for the linearized
pendulum.

t [s] L [m] g [m/s2] m [kg]

1.2 1 9.81 1

Question: How can we compute the set X(t) ?
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Computation of the Uncertainty Tube

Solution: Solve the LP

max
x(·),w(·)

cTx(t)

s.t.















ẋ(τ) = Ax(τ) +Bw(τ)

x(0) = 0

‖w(τ)‖∞ ≤ 1 τ ∈ [0, t].

for all directions c.

Question: How can we compute the set X(t) ?
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Computation of the Uncertainty Tube

CPU-time:

• Solve 100 LP’s.

• Need approximately 1s for com-
puting X(t).

Problem: Computing X(t) exactly takes very long if nx ≫ 2.

Strategy: Search for cheaper lifted outer approximations.
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Example: Ellipsoidal Method

Assumption:

• ∆n :=
{

λ ∈ R
n
++ |

∑n
i=1 λi = 1

}

• W (τ) := {w ∈ R
nw | ∀λ ∈ ∆n : w ∈ E( Ωτ (λ) ) }

• Ωτ : Rn
++ → S

nw

+ anti-homogeneous, i.e. Ωτ (αλ) = 1
αΩτ (λ).
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Example: Ellipsoidal Method

Assumption:

• ∆n :=
{

λ ∈ R
n
++ |

∑n
i=1 λi = 1

}

• W (τ) := {w ∈ R
nw | ∀λ ∈ ∆n : w ∈ E( Ωτ (λ) ) }

• Ωτ : Rn
++ → S

nw

+ anti-homogeneous, i.e. Ωτ (αλ) = 1
αΩτ (λ).

Theorem:

Let Q : [t1, t2] → S
nx

+ and κ : [t1, t2] → R
n
++ be any functions satisfying

Q̇(τ) = A(τ)Q(τ) +Q(τ)A(τ)T +
n
∑

i=1

κi(τ)Q(τ) +B(τ)Ωτ (κ(τ))B(τ)T .

Then X(·) := E(Q(·) ) is a robust positive invariant tube on [t1, t2].

Robust Optimization of Dynamic Systems – p. 18



Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
tions c.
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be optimized for given direc-
tions c.

Robust Optimization of Dynamic Systems – p. 19



Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
tions c.

Robust Optimization of Dynamic Systems – p. 19



Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
tions c.

Robust Optimization of Dynamic Systems – p. 19



Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
tions c.

Robust Optimization of Dynamic Systems – p. 19



Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
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Ellipsoidal Outer Approximations

Visualization:

Application:

• Above Theorem allows to com-
pute family of ellipoidal outer
approximations which can e.g.
be optimized for given direc-
tions c.
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What about Nonlinear Dynamics?

Example: Pendulum with uncertain forces |w(t)| ≤ 1N, |v(t)| ≤ 3N.

ϕ̇(t) = ω(t)

ω̇(t) = − g

L
sin(ϕ(t)) +

cos(ϕ(t))w(t) + sin(ϕ(t))v(t)

mL
.
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Strategy for Nonlinear Dynamics

General Strategy:

• Define a central path q : [t1,∞) → R
nx as

∀τ ∈ [t1,∞) : q̇(τ) = ϕ(τ, q(τ)) := f(τ, q(τ), 0) , q(t1) = q1 .

• Decompose the system into linear and nonlinear parts

ẋ(τ) = d(τ) +A(τ) (x(τ)− q(τ)) +B(τ)w(τ) + fn(τ, q(τ), x(τ), w(τ)).

• Employ “lifted” overestimate for influence of the nonlinear terms fn.
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Strategy for Nonlinear Right-Hand
Sides

Assumption (Ellipsoidal Method):

• There exists an explicit nonlinearity estimate ΩN with

∀λ ∈ ∆m−n : fn (τ, q(τ), x(τ), w(τ)) ∈ E ( ΩN(τ, q(τ), Q, λ) )

for all x(τ) ∈ E(Q, q(τ)), w ∈ W, τ ∈ [t1,∞), and for all Q ∈ S
nx

+ .
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Strategy for Nonlinear Right-Hand
Sides

Assumption (Ellipsoidal Method):

• There exists an explicit nonlinearity estimate ΩN with

∀λ ∈ ∆m−n : fn (τ, q(τ), x(τ), w(τ)) ∈ E ( ΩN(τ, q(τ), Q, λ) )

for all x(τ) ∈ E(Q, q(τ)), w ∈ W, τ ∈ [t1,∞), and for all Q ∈ S
nx

+ .

Strategy:

• Define Ωtotal(τ, q,Q, κ) := B(τ)Ωτ (κ
1)B(τ)T +ΩN(τ, q,Q, κ2) .

• Use Φ(τ, q,Q, κ) := A(τ)Q+QA(τ)T +
m
∑

i=1

κiQ+Ωtotal(τ, q,Q, κ) .

• Now, if κ and Q are any functions which satisfy

Q̇(τ) = Φ(τ, q(τ), Q(τ), κ(τ))

then X(·) := E(Q(·), q(·)) is a robust positive invariant tube.

Robust Optimization of Dynamic Systems – p. 22



Examples for Nonlinearity Estimates

Example 1: Consider fn,i(τ, q, x, w) = xTCx with C � 0.

1. ΩN( τ, q(τ), Q, λ ) := [Tr (QC) ]
2
diag (λ)

−1.

2. ΩN( τ, q(τ), Q, λ ) :=
[

σmax

(

Q
1
2 C Q

1
2

) ]2

diag (λ)
−1.
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Examples for Nonlinearity Estimates

Example 1: Consider fn,i(τ, q, x, w) = xTCx with C � 0.

1. ΩN( τ, q(τ), Q, λ ) := [Tr (QC) ]
2
diag (λ)

−1.

2. ΩN( τ, q(τ), Q, λ ) :=
[

σmax

(

Q
1
2 C Q

1
2

) ]2

diag (λ)
−1.

Example 2: f2(x,w) = − g
L sin(x1) +

cos(x1)w1+3 sin(x1)w2

mL .

• On the domain |x1| ≤ π
2 may use

fnonlinear,2(x,w) ≤ χ(Q) :=
g

L

[

√

Q11 − sin(
√

Q11)
]

+
1 − cos(

√
Q11) + 3 sin(

√
Q11)

mL

leading to the nonlinearity estimate ΩN := 1
λ





0 0

0 χ(Q)2



 .
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Ellipsoidal Outer Approximations

Visualization for the Pendulum:

• Use theorem to generate
ellipsoidal outer approximation
of the set X(t).

• The dual control input κ can
be optimized for different direc-
tions.

ΩN( t, q(t), Q, κ ) :=







0 0

0 1
κ

[

g
L

[√
Q11 − sin(

√
Q11)

]

+
1−cos(

√
Q11)+3 sin(

√
Q11)

mL

]2






. (1)
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Ellipsoidal Outer Approximations

Visualization for the Pendulum:

• Use theorem to generate
ellipsoidal outer approximation
of the set X(t).

• The dual control input κ can
be optimized for different direc-
tions.

ΩN( t, q(t), Q, κ ) :=







0 0

0 1
κ

[

g
L

[√
Q11 − sin(

√
Q11)

]

+
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√
Q11)+3 sin(

√
Q11)

mL

]2






. (2)
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Ellipsoidal Outer Approximations

Visualization for the Pendulum:

• Use theorem to generate
ellipsoidal outer approximation
of the set X(t).

• The dual control input κ can
be optimized for different direc-
tions.

ΩN( t, q(t), Q, κ ) :=







0 0

0 1
κ

[

g
L

[√
Q11 − sin(

√
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]

+
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√
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√
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mL

]2






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Ellipsoidal Outer Approximations

Visualization for the Pendulum:

• Use theorem to generate
ellipsoidal outer approximation
of the set X(t).

• The dual control input κ can
be optimized for different direc-
tions.

ΩN( t, q(t), Q, κ ) :=







0 0

0 1
κ

[

g
L

[√
Q11 − sin(

√
Q11)

]

+
1−cos(

√
Q11)+3 sin(

√
Q11)

mL

]2






. (4)
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Outline of the Talk

• Uncertain Nonlinear Dynamic Systems

• Computation of Robust Positive Invariant Tubes

• Robust Optimization of Dynamic Systems

• Application: Robust Control of a Tubular Reactor

• Robust Optimization of Periodic Systems

• Open-Loop Stable Orbits of an Inverted Spring Pendulum

• Conclusions and Outlook

Robust Optimization of Dynamic Systems – p. 25



Formulation of Robust Optimal Con-
trol Problems

Problem Formulation:

• Let us start with a robust optimal control problem of the form:

min
u(·),p,Te,X(·)

M( p, Te, X(Te) )

s.t.























X(τ+) = F (τ, u(τ), p,X(τ),W (τ))

X(0) = X0

0 ≥ H(τ, u(τ), p,X(τ),W (τ))

• Aim: Solve the above problem in a conservative approximation.
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Definition of Monotonicity

Definition:

• A function Z : Π(Rnx) → R is monotonically increasing, if for any
sets X,Y ⊆ R

nx with X ⊆ Y , we have that Z(X) ≤ Z(Y ).

Robust Optimization of Dynamic Systems – p. 27



Definition of Monotonicity

Definition:

• A function Z : Π(Rnx) → R is monotonically increasing, if for any
sets X,Y ⊆ R

nx with X ⊆ Y , we have that Z(X) ≤ Z(Y ).

Assumptions:

1. The Mayer term M( p, Te, X(Te) ) is mononically increasing with
respect to the variable X(Te).

2. The constraint function H(τ, u(τ), p,X(τ),W (τ)) is
componentwise mononically increasing in X(τ).

Robust Optimization of Dynamic Systems – p. 27



Definition of Monotonicity

Definition:

• A function Z : Π(Rnx) → R is monotonically increasing, if for any
sets X,Y ⊆ R

nx with X ⊆ Y , we have that Z(X) ≤ Z(Y ).

Assumptions:

1. The Mayer term M( p, Te, X(Te) ) is mononically increasing with
respect to the variable X(Te).

2. The constraint function H(τ, u(τ), p,X(τ),W (τ)) is
componentwise mononically increasing in X(τ).

Question:

• Are the above assumption reasonable?
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Example: Robust Counterpart Formu-
lations

Robust Mayer Term:

• Assume nominal Mayer term m : Rnp × R+ × R
nx → R is given.

• Define M( p, Te, X(Te) ) := sup
x∈X(Te)

m( p, Te, x ).

• M is monotonically increasing in X(Te).
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Example: Robust Counterpart Formu-
lations

Robust Mayer Term:

• Assume nominal Mayer term m : Rnp × R+ × R
nx → R is given.

• Define M( p, Te, X(Te) ) := sup
x∈X(Te)

m( p, Te, x ).

• M is monotonically increasing in X(Te).

Robust Constraint Function:

• Analogous formulation of a constraint:

Hi(τ, u(τ), p,X(τ),W (τ)) := sup

x ∈ X(τ)

w ∈ W (τ)

hi( τ, u(τ), p, x, w ) .
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Example: Robustness Design Criteria

Minimize Maximum Distance of Two Points in the Terminal Set:

• M( p, Te, X(Te) ) := diag(X(Te)) := sup
x,y∈X(Te)

‖x− y‖ .

• M is monotonically increasing in X(Te).
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Example: Robustness Design Criteria

Minimize Maximum Distance of Two Points in the Terminal Set:

• M( p, Te, X(Te) ) := diag(X(Te)) := sup
x,y∈X(Te)

‖x− y‖ .

• M is monotonically increasing in X(Te).

Minimize the Inertia of the Terminal Set:

• M( p, Te, X(Te) ) :=
∫

X(Te)

∥

∥

∥
x−

∫

X(Te)
x dx

∥

∥

∥

2

dx .

• M is monotonically increasing in X(Te).
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Example: Robustness Design Criteria

Minimize Maximum Distance of Two Points in the Terminal Set:

• M( p, Te, X(Te) ) := diag(X(Te)) := sup
x,y∈X(Te)

‖x− y‖ .

• M is monotonically increasing in X(Te).

Minimize the Inertia of the Terminal Set:

• M( p, Te, X(Te) ) :=
∫

X(Te)

∥

∥

∥
x−

∫

X(Te)
x dx

∥

∥

∥

2

dx .

• M is monotonically increasing in X(Te).

Minimize the Volume of the Terminal Set:

• M( p, Te, X(Te) ) :=
∫

X(Te)
1 dx .

• M is monotonically increasing in X(Te).
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Ellipsoidal Approximation Assump-
tion

Assumption:

• We have functions ϕ, Φ, q0, and Q0 such that: for any function
κ : [0, Te] → R

m
++, and any vector κ0 ∈ R

n0
++, which admit solutions

q : [0, Te] → R
nx and Q : [0, Te] → S

nx

+ of the coupled differential
equation

q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) q(0) = q0(κ0)

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) Q(0) = Q0(κ0) ,

(∀τ ∈ [0, Te]) the set valued function X(·) := E(Q(·), q(·)) is a
robust positive invariant tube on the interval [0, Te] for which the
condition X0 ⊆ X(0) is also satisfied.
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Ellipsoidal Approximation Strategy

• Consider an auxiliary problem of the form

inf
ξ(·),ζ(·),π,Te

M( p, Te, E(Q(Te), q(Te)) )

s.t.























q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) q(0) = q0(κ0)

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) Q(0) = Q0(κ0) ,

0 ≥ H(τ, u(τ), E(Q(τ), q(τ)), W (τ)) ∀ τ ∈ [0, Te] .

(

• If H is componentwise monotonically increasing: every feasible
input (u, p) corresponds to a feasible point of the original problem.

• If additionally M is monotonically increasing: objective value of the
above problem is an upper bound on exact objective value.
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Nonlinear Jacketed Tubular Reactor
(joint work with Filip Logist)

Model Equations:

• Consider tubular reactor with length L and perfect radial mixing.

• Assume: const. density & heat capacity of fluid, Arrhenius law.

• States: concentration and temperature

C(z) = CF(1− x1(z)) T (z) = TF(1 + x2(z))− 273.15◦C
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Nonlinear Jacketed Tubular Reactor
(joint work with Filip Logist)

Model Equations:

• Consider tubular reactor with length L and perfect radial mixing.

• Assume: const. density & heat capacity of fluid, Arrhenius law.

• States: concentration and temperature

C(z) = CF(1− x1(z)) T (z) = TF(1 + x2(z))− 273.15◦C

• Steady state depends on the spatial coordinate z ∈ [0, L]:

∂z x1(z) = (α/v)(1− x1(z))e
γx2(z)

1+x2(z)

∂z x2(z) = (αδ/v)(1− x1(z))e
γx2(z)

1+x2(z) + (β(z)/v)(u(z)− x2(z))

• Jacket temperature u is controlled, heat transfer β is uncertain.
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Nonlinear Jacketed Tubular Reactor
(joint work with Filip Logist)

Aim: Maximize conversion, i.e minimize m := CF(1− x1(L)) s.t.:

• model equations with x1(0) = 0, x2(0) = 0,

• control bounds, and maximum temperature constraint
T (z) ≤ Tmax.
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Nonlinear Jacketed Tubular Reactor
(joint work with Filip Logist)

Aim: Maximize conversion, i.e minimize m := CF(1− x1(L)) s.t.:

• model equations with x1(0) = 0, x2(0) = 0,

• control bounds, and maximum temperature constraint
T (z) ≤ Tmax.

Problem: 6% uncertainty in β(z) leads to contraint violation.
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How to Construct a
Nonlinearity Estimate?

Aim:

• Find a nonlinearity estimate of the form

|fi(q +∆x,w)− fi(q, 0)− ∂xfi(q, 0)∆x− ∂wfi(q, 0)w| ≤ li(q,Q)

for all w with |w(t)| ≤ 1 and all ∆x ∈ E(Q).
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How to Construct a
Nonlinearity Estimate?

Aim:

• Find a nonlinearity estimate of the form

|fi(q +∆x,w)− fi(q, 0)− ∂xfi(q, 0)∆x− ∂wfi(q, 0)w| ≤ li(q,Q)

for all w with |w(t)| ≤ 1 and all ∆x ∈ E(Q).

• Here:

f1(x,w) =
α

v
(1− x1)e

γx2
1+x2

f2(x,w) =
αδ

v
(1− x1)e

γx2
1+x2 +

βnominal(1 + Γw)

v
(u− x2)
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How to Construct a
Nonlinearity Estimate?

Aim:

• Find a nonlinearity estimate of the form

|fi(q +∆x,w)− fi(q, 0)− ∂xfi(q, 0)∆x− ∂wfi(q, 0)w| ≤ li(q,Q)

for all w with |w(t)| ≤ 1 and all ∆x ∈ E(Q).

• Here:

f1(x,w) =
α

v
(1− x1)e

γx2
1+x2

f2(x,w) =
αδ

v
(1− x1)e

γx2
1+x2 +

βnominal(1 + Γw)

v
(u− x2)

Main Idea: Use that ∀y ∈ R : ey ≤ 1 + y + y2

2 e|y|.
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How to Construct a
Nonlinearity Estimate?

... and work out the details:

j(q,Q) :=
γ

(1 + q2)(1 + q2 −
√
Q22)

r1(q,Q) := j(q,Q) +

√
Q22

2
j(q,Q)

2
exp(

√

Q22 |j(q,Q)| )

r2(q,Q) :=
j(q,Q)

1 + q2
+

j(q,Q)2

2
exp(

√

Q22 |j(q,Q)| )

l1(q,Q) :=
α

v
exp

(

γq2

1 + q2

)

[

r1(q,Q)
√

Q11Q22 + r2(q,Q)Q22

]

l2(q,Q) := δ l1(q, u,Q) +
Γβnominal

√
Q22

v
ΩN(λ, q,Q) := diag(li(q,Q)/λi)
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How to Construct a
Nonlinearity Estimate?

... and work out the details:

j(q,Q) :=
γ

(1 + q2)(1 + q2 −
√
Q22)

r1(q,Q) := j(q,Q) +

√
Q22

2
j(q,Q)

2
exp(

√

Q22 |j(q,Q)| )

r2(q,Q) :=
j(q,Q)

1 + q2
+

j(q,Q)2

2
exp(

√

Q22 |j(q,Q)| )

l1(q,Q) :=
α

v
exp

(

γq2

1 + q2

)

[

r1(q,Q)
√

Q11Q22 + r2(q,Q)Q22

]

l2(q,Q) := δ l1(q, u,Q) +
Γβnominal

√
Q22

v
ΩN(λ, q,Q) := diag(li(q,Q)/λi)

• This Nonlinearity Estimate enables us to robustly optimize th e
conversion such that the temperature constraint is satisfied
for all possible uncertainties.
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Robust Control of the Jacketed Tubu-
lar Reactor

Optimized Robust Solution:

• Constraints are guaranteed to be robustly satisfied.

• Simulation with 6% uncertainty remains in ellipsoidal tube.
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Robust Control of the Jacketed Tubu-
lar Reactor

Optimized Robust Solution:

• Constraints are guaranteed to be robustly satisfied.

• Simulation with 6% uncertainty remains in ellipsoidal tube.
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The Inverted Spring Pendulum

Parameter Value

L 1m

m 0.1 kg

D 700 N
m

g 9.81 m
s2

b 5 1
s

w 0.03 N
kg

u 200 N
kg

vz 3.2 m
s
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The Inverted Spring Pendulum

Model:

• Right-hand side function is given by

f(ξ, u, w) =































vx

vy

−Dx
m

(

1− L√
x2+y2

)

− bvx + w

−g + u− Dy
m

(

1− L√
x2+y2

)

− bvy

vz

u































.
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Optimal Control Problem

Aim:

• Find an open-loop stable periodic orbit at the “inverted” position.

Objective:

• Minimize the time-average over the maximum displacement of the
mass point in x-direction:

L(τ, u(τ), Te, X(τ),W (τ)) := max
ξ∈X(τ)

(

eTx ξ
)2

Te

with eTx := ( 1, 0, . . . , 0 )
T ∈ R

6 .

Optimization Variables:

• Set valued function X, control input u, end time Te.
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Optimal Control Problem

Constraints:

• Periodic propagation of the uncertainty tube

X(τ+) = F (τ, u(τ), p,X(τ),W (τ)) with X(0) = X(Te) .

• Here: W (τ) = {w ∈ R | w ≤ w ≤ w }
• Control and State Constraint Function:

H(τ, u(τ), X(τ)) :=



















u(τ)− u

−u(τ) + u

max
ξ∈X(τ)

eTvzξ − vz

min
ξ∈X(τ)

− eTvzξ + vz



















.
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Optimization Results Based on Ellip-
soidal Technique:

Optimal period time: Te ≈ 0.79ms (≈ 80Hz).
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Summary

• “State” of uncertain systems is a set-valued function.

• Lifted set approximation techniques

• Ellipsoidal robust positive invariant tubes have desirable
complexity.

• Formulation and Solution Techniques for Robust Optimal Control
Problems

• Nonlinear application: robust control of a tubular reactor

• Existence of periodic tubes based in Schauder’s fixed point
theorem

• Open-loop stable orbits of an inverted pendulum
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