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Swing-up of an inverted pendulum (PART 1)

NOTE: In case you did not do this yet, go through the ACADO
installation instructions here: www.acadotoolkit.org. For this
course, we decided to use the master instead of the stable branch
so make sure to use the following command to download the code:

git clone https://github.com/acado/acado.git -b master ACADOmaster.

The website and our discussion forum are also good starting points
for additional information and support in the future.

The guiding example that will be used throughout this course is the classical system
of a pendulum, mounted on top of a cart as illustrated in Figure 1. It forms an ideal
tutorial example for NMPC since it is simple and intuitive but it can also exhibit rather
fast dynamics and nonlinear behavior. The position of the cart will be denoted by p and
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Figure 1: Schematic illustrating the inverted pendulum on top of a cart.

the pendulum configuration described by the angle θ, using the convention that θ = π rad
corresponds to the pendulum hanging down. The system dynamics are described by the
following implicit ODE system

(M +m)p̈−ml(θ̈ cos(θ)− sin(θ)θ̇2)− F = 0,

lθ̈ − p̈ cos(θ)− g sin(θ) = 0.
(1)

By solving for the differential state derivatives p̈ and θ̈, one can obtain the following
explicit ODE formulation which is mathematically equivalent

p̈ =
−ml sin(θ)θ̇2 +mg cos(θ) sin(θ) + F

M +m−m(cos(θ))2
,

θ̈ =
−ml cos(θ) sin(θ)θ̇2 + F cos(θ) + (M +m)g sin(θ)

l(M +m−m(cos(θ))2)
.

(2)
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1. The task is to make the pendulum perform a full swing-up starting from the stable
position described by p = 0 m and θ = π rad while the reference point is unstable
and corresponds to 0 m, 0 rad. Let us assume that the control input as well as
the position of the cart are both bounded, respectively by −20 ≤ F ≤ 20 and
−2 ≤ p ≤ 2. The OCP formulation in continuous time is the following

minimize
x(·),u(·)

∫ T

0

∥∥∥∥[x(t)
u(t)

]
− y(t)

∥∥∥∥2
W

dt + ‖x(T )− yN‖2WN
(3a)

subject to x(0) = x̄0, (3b)

ẋ(t) = f(x(t), u(t)), ∀t ∈ [0, T ], (3c)

− 2 ≤ p(t) ≤ 2, ∀t ∈ [0, T ], (3d)

− 20 ≤ F (t) ≤ 20, ∀t ∈ [0, T ], (3e)

where y(t) denotes the reference trajectory, the states are defined as x = [p, θ, ṗ, θ̇]>

and the horizon length T = 2s. The used NMPC sampling time is equal to Ts =
0.05s, to be able to deal with the fast nonlinear dynamics in the system. A multiple
shooting discretization will be used with N = 40 intervals over the control horizon.

You can download the template code for exercise 1 from our event website and go
through it carefully to make sure you understand each part of it. You will realise
that the following sections in the code are missing to obtain a working simulation:

(a) Define the explicit system of ODE equations (2), describing our system’s dy-
namics. For this, we need to define a function ode like this:

ode = [ dot(x) == f(x,u) ];

where dot is an ACADO defined operator which returns the time derivative
and f denotes the expressions in the right-hand side of our model.

(b) Define the stage cost and terminal cost as follows

ocp.minimizeLSQ( W, h );

ocp.minimizeLSQEndTerm( WN, hN );

where the residual functions h and hN and the weighting matrices W and WN

are needed to define the discrete objective
∑N−1

k=0 ‖hk − yk‖Wk
+ ‖hN − yN‖WN

.
Note that the reference trajectory y will be defined after code generation.

(c) Define the constraints in the OCP, using for example the syntax:

ocp.subjectTo( xmin <= x <= xmax );

which defines a simple box constraint for a state called x on each stage.

(d) Define the remaining parameters to perform a closed-loop NMPC simulation:

• the initial downward position of the pendulum X0 and the unstable upward
position Xref, which forms the reference point to be tracked.

• choose a suitable initial state (input.x, [(N+1)×nx]) and control (input.u,
[N × nu]) trajectory to be passed to the RTI solver. A good choice here
can be important for the convergence of our scheme as we are solving a
nonlinear OCP problem.
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• we also need to define the reference trajectory, which remains constant in
our case. You can use the matlab function repmat to define:
input.y = [repmat(Xref,N,1) repmat(Uref,N,1)];

NOTE: the dimension of input.yN must correspond to the residual func-
tion hN in the terminal cost, which is typically different from the stage
cost since the last node defines no corresponding control variables.
input.yN = Xref.’;

Do you manage to get a closed-loop NMPC simulation running? If yes, does the
pendulum reach the reference point and how would you describe the performance?

NOTE: the flag EXPORT at the beginning of the script should be set to zero if one
does not want to rerun the code generation and compilation process.

2. Tuning: the performance of the NMPC scheme will strongly depend on the various
parameters in the OCP formulation such as the number of shooting intervals and the
length of the horizon, the number of integration steps and the weighting matrices
defining the stage cost. Try to look for values, especially of the weighting matrices,
resulting in a satisfactory behavior of the NMPC controller. To avoid the need to
go through the code generation and compilation process each single time we change
our formulation, one can define e.g. the weighting matrices as

W = acado.BMatrix(eye(length(h))); WN = acado.BMatrix(eye(length(hN)));

ocp.minimizeLSQ( W, h ); ocp.minimizeLSQEndTerm( WN, hN );

after which they can be defined and passed to the generated solver as

input.W = diag([ ... ]); input.WN = diag([ ... ]);

The BMatrix keyword stands for Boolean Matrix and defines the sparsity of the
weighting matrix here.

3. RTI: remember that ACADO generates a custom RTI algorithm to solve each OCP
instance, without iterating the SQP scheme each time until convergence (see liter-
ature for more information on the Real-Time Iteration scheme itself). As a result,
the sampling time of the NMPC scheme needs to be small enough to let the solver
converge over time and result in a stabilizing controller. Also the choice for the
initialization and shifting procedure is typically very important. Let ACADO shift
the optimization trajectories after each call to the solver by setting

input.shifting.strategy = 1;

which means that the last state will be reused at the end of the horizon. You can
also use different ways of initializing the state trajectory

input.x = repmat(X0,N+1,1); (initialize in the initial state)

input.x = repmat(Xref,N+1,1); (initialize in the reference)

Try to get an idea of how these choices affect the convergence of the scheme and
therefore the control performance.
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4. Modeling: let us try to use the implicit ODE formulation from (1) instead:

f = [ dot(p) - v == 0; ...

...

Note that we also need to choose one of the implicit integrators for both the simu-
lation and for the OCP solver:

mpc.set( ’INTEGRATOR_TYPE’, ’INT_IRK_GL2’ ); (GL2, GL4, GL6, GL8)

or

mpc.set( ’INTEGRATOR_TYPE’, ’INT_IRK_RIIA1’ ); (RIIA1, RIIA3, RIIA5)

5. Stability: one often defines a terminal cost and/or a terminal constraint for stability
reasons of the NMPC scheme. A simple example would be to impose the last state in
the horizon to be equal to our reference point. Remember that you can specifically
define constraints on the last stage as follows:

ocp.subjectTo(’AT_END’, ...);

Note that you need a sufficiently long control horizon for the resulting OCP formu-
lation to be feasible.

6. Modeling (linear subsystems): instead of a fully nonlinear system of differential
equations, one might have some partially linear dynamics as well. The supported
model formulation in ACADO has therefore the following three stage structure:

ẋ[1] = A1x
[1] +B1u, (4a)

0 = f2(x
[1], x[2], ẋ[1], ẋ[2], z, u), (4b)

ẋ[3] = A3x
[3] + f3(x

[1], x[2], ẋ[1], ẋ[2], z, u), (4c)

which can similarly be defined in the code generation tool as follows:

sim.setLinearInput( A1, B1 ); or ocp.setLinearInput( A1, B1 );

sim.setModel( f2 ); or ocp.setModel( f2 );

sim.setLinearOutput( A3, f3 ); or ocp.setLinearOutput( A3, f3 );

To illustrate this, let us for example control the rate of change dF of the force
instead. You can do this first by extending the nonlinear dynamics with the extra
equation dot(F) - dF == 0. Afterwards, try to use a linear input system from
Equation (4a) and you might notice a difference in computation time already.

Note that only our new state F qualifies as a linear input state and needs to be
declared first, since ACADO will use this order to figure out the model structure.
Make sure you also update the least squares objective and the corresponding weights,
given the new state and control input. The figure also needs to be updated with
the new order of states, and you can call the visualize function as

visualize(time, state_sim(:,2:end), Xref, xmin, xmax);
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7. Model mismatch: to make the closed-loop simulation more interesting, we could
consider a mismatch between the predictive model and the actual system. Let us
for example introduce a disturbance in the simulation model:

dot(p) - v - d == 0; ...

Here, we used an OnlineData variable d which can be defined after code generation:

OnlineData d;

So in the eventual simulation call, we add the disturbance as follows:

sim_input.od = 0.2;

states = simulate_system(sim_input);

where od stands for Online Data. This model mismatch results in a steady-state
tracking error for the position of the cart in the NMPC simulation. A simple way to
prevent this is by adding a state which integrates this tracking error and including
it with a certain weighting in the stage cost:

dot(err) - (p - pref) == 0; ...

Note that this state can again be implemented efficiently using a linear output
system as defined earlier in Equation (4c). Make sure that you add the disturbance
only to the simulator, while using the nominal model in the OCP formulation.
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Swing-up of an inverted pendulum (PART 2)

This is mostly a do-it-yourself part which encourages you to use ACADO on a control
problem you would find particularly interesting to solve, based on the tools seen so far.

Define your own Optimal Control Problem

It is maybe time to use ACADO code generation for your own (NMPC) problem to see
how it performs in controlling for example

• a race car

• a tethered kite

• baby Betty plane

• ball attached to a carousel

• . . .

which are only a few examples!

Below are some extra features you might be interested in, e.g. for your own optimal
control project:

1. EXTRA: The quadratic subproblem

For sufficiently large horizon lengths, it would become more efficient to directly solve
the fully structured QP instead of using condensing combined with qpOASES.

You can e.g. download the qpDUNES code from https://github.com/jfrasch/

qpDUNES/wiki and copy it completely into the folder part1/export MPC/qpdunes.
Then, we can specify ACADO to use qpDUNES by setting the following options:

mpc.set( ’SPARSE_QP_SOLUTION’, ’SPARSE_SOLVER’ );

mpc.set( ’QP_SOLVER’, ’QP_QPDUNES’ );

If you want to hide all the extra printed information from qpDUNES, you can
additionally set the option:

mpc.set( ’PRINTLEVEL’, 0 );

In case you have a license for the FORCES solver (information can be found on
https://www.embotech.com/FORCES-Pro), you can also use that one:

mpc.set( ’QP_SOLVER’, ’QP_FORCES’ );

Another promising solver is HPMPC on which more information can be found
on https://github.com/giaf/hpmpc and which can be used from ACADO, even
though this interface is still under active development.
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2. EXTRA: ACADO Simulink interface

ACADO supports the automatic code generation of a Simulink interface and a
corresponding make script by simply setting the option

mpc.set( ’GENERATE_SIMULINK_INTERFACE’, ’YES’ );

3. EXTRA: NMPC-MHE closed-loop

If you are interested in closing your simulation loop with an observer instead of
assuming full state information, you can export an OCP solver implementing a
Moving Horizon Estimation (MHE) scheme. We can surely provide example code
or help you with setting up this closed-loop simulation.

4. EXTRA: Exact Hessian based, time-optimal swing-up

If you are interested in a time-optimal formulation of the inverted pendulum swing-
up or in Exact Hessian based RTI in general, you can ask for help setting up this
problem formulation or we can provide you with example code.
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