Modelica interoperability with CasADi

Thermal Systems Workshop, Freiburg 2015

Joel Andersson
joel@casadi.org

23 March 2015

joel@casadi.org

© CasADI
e Overview of features
e Modelica interoperability

e Tutorial

© Summary & outlook

Joel Andersson joel@casadi.org

Modelica interoperability with CasADi

23 March 2015

2 /26

/

joel@casadi.org

Outline

© CasAD

Joel Andersson joel@casadi Modelica interoperability with CasADi 23 March 2!

joel@casadi.org

Motivation — Large-scale optimal control problems (OCP)

Q‘linimizg /Tl(t,x,z, u, p)dt + E(x(T), z(T), p)
R @ x(-) € RMx States
f(t, x, z, u, p)
&(t, x,z,u,p) 2(-) € RNz Algebraic variables
h(t, x, z, u, p) t e, T]
[Xmin » Xmax]
Ymin» Ymax

subject to N
y(-) € R™Y Outputs

E< X< O X
mmm

Umin Umax u(-) € RNu
r(x(0), x(T),p) =0
P € [Pmin; Pmax]

Free control signals

pE RVP Free parameters

@ Optimization problem constrained by an initial-value problem in ordinary or
differential-algebraic equations (ODE/DAE)

@ Dynamic system can be given as Modelica code

e Original motivation for writing CasADi

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 4 /26

joel@casadi.org

Practical methods for solving optimal control problems

@ Characterization of the (global) solution of OCP

e Hamilton-Jacobi-Bellman equations [Bellman, 1957]
o "Curse of dimensionality” — only works for small problems

@ Indirect methods: Characterization of local solutions of OCP

e Pontryagin's maximum principle [Pontryagin, 1962]
o Efficient for many problems, but inequalities difficult

@ Direct methods: Approximate OCP with a nonlinear program:

minimize f(x)
subject to g(x)=0, h(x)<0 (NLP)

e Popular approach since the 1980ies thanks to advancement in NLP
methods and software

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 5/ 26

joel@casadi.org

Software for dynamic optimization

Most real-world problems require numerical solution ...

o Problem-specific (many approaches possible)
o General-purpose (direct methods)

. which is typically difficult to implement efficiently ...

o Thousands of lines of code
o "Researcher-in-the-loop”

... because of

e No simple standard form OCP
o Many different solution strategies
o Indirect methods require formulation of optimality conditions
o Direct methods result in nonlinear programs (NLPs) that
o are typically very large and either sparse or structured
e require 1st and (preferably) 2nd order derivative information
@ may contain calls to integrators of differential equations

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015

joel@casadi.org

CasADi

A general-purpose software framework for quick, yet efficient, implementation of
algorithms for numeric optimization

Outcome of the PhD work of myself and Joris Gillis at KU Leuven, Belgium

Facilitates the solution of optimal control problems (OCPs)

e Facilitates, not actually solve the OCPs
o Efficient direct multiple shooting or direct collocation with order of
magnitude fewer lines of code compared to pure C/C++

@ Use from C++, Python and (in development) MATLAB

@ Free & open-source (LGPL), also for commercial use

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 7/ 26

joel@casadi.org

casadi.org — github.com

@ L] Searchortypeacommand @ @ Explore Gist Blog Help jaiis B X B
casadi / casadi I1 Pull Request G5 Unwatch ~ & Unstar <4 [Fork <4

Code Network Pull Requests 0 Issues 120 Wiki Graphs settings

Home Pages WikiHistory Git Access

Home NewPage EditPage Page History

CasADi

Welcome to the CasADi wiki!

CasADi is a symbolic framework for automatic differentiation and numeric optimization. Using the syntax of computer algebra systems, it
implements automatic differentiation in forward and adjoint modes by means of a hybrid symbolic/numeric approach. The main purpose of the tool
is to be a low-level tool for quick, yet highly efficient implementation of aigorithms for numerical optimization. Of particular interest is dynamic
optimization, using either a collocation approach, or a shooting-based approach using embedded ODE/DAE integrators. In either case, CasADI
relieves the user from the work of efficiently calc ulating the relevant derivative or ODE/DAE sensitivity information to an arbitrary degree, as
needed by the NLP solver. This together with full-featured Python and Octave front ends, as well as back ends 1o state-of-the-art codes such as
Sundials (CVODES, IDAS and KINSOL), IPOPT and KNITRO, drastically reduces the effort of implementing the methods compared to a pure
CiC++/Fortran approach.

Every feature of GasADI (with very few exceptions) is available in G++, Python and Octave, with little to no difference in performance, so the user
has the possibility of working completely in C++, Python or Octave or mixing the languages. We recommend new users to try out the Python
version first, since it allows inferactivity and is more stable and better documented than the Octave front-end

CasADi is an open-source 10ol, written in self-contained C++ code. depending only on the Standard Template Library. It is developed by Joel
Andersson and Joris Gilis at the Opiimization in Engineering Genter, OPTEG of the K.U. Leuven under supervision of Woritz Diehl. GasADi is
distributed under the LGPL license, meaning the code can be used royalty-free even in commercial applications.

Joel Andersson joel@casad 23 March 20

casadi.org
github.com
joel@casadi.org

Outline

e Overview of features

Joel Andersson joel@casadi Modelica interoperability with CasADi 23 March 2!

joel@casadi.org

CasADi provides the building blocks for optimal control

Facilitate the OCP-to-NLP reformulation in direct methods

Efficiently solve sparse or structured NLPs

Simplify ODE/DAE integration and sensitivity analysis (shooting methods)
(Model and automatically reformulate OCPs)

Key components

e Symbolic core written in self-contained C++

o In-house solvers and interfaces to third party-solvers for (non)linear
eqs, NLP, QP, ODE/DAE integration, ...

o Front-ends to C++ (native), Python and (in development) MATLAB

o (SymbolicOCP OCP modeling framework)

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 10 / 26

joel@casadi.org

Symbolic core

@ CasADi allows you to symbolic expressions using syntax similar to e.g.
Symbolic Math Toolbox for MATLAB: “everything-is-a-sparse-matrix”

from casadi import *

x = SX.sym("x" Variable x with display name "x"
f = sqrt(x**2 + 10) f=vx2+10
g = sin(x) g = sin(x)

@ These functions are then used to define functions . ..
R — X
F = SXFunction([x],[f,g]) Defines F:
g (x) = (f.g
F.init ()

@ ...that can e.g. be automatically differentiated using algorithmic
differentiation (AD)

R - RxRxR
J = F.jacobian() Defines J: <3f)
= f.g

) = (5

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 11 /26

joel@casadi.org

Two symbolic types with (almost) the same syntax

© SX: Expression graph with @ MX: Expression graph with
scalar-valued operations

matrix-valued operations
o . . _
Low overhead, for simple functions o Larger overhead, but more generic

x = SX.sym("x",2,2)

x = MX.sym("x",2,3)
f = sin(x**2 + 10) £ = sin(x**2 + 10)
print f.shape (2.2) print f.shape (2,2)
print x, f print f

x, sinx?+10

|:X0 X2:| {sin Xg + 10 sin X22 + 10
(NB: sin and power elementwise)

X1 X3 sinx12+10 sinx32—|—10

By mixing, construct expressions (functions) that are both fast and generic

Joel Andersson joel@casadi.org

Modelica interoperability with CasADi

23 March 2015 12 /26

joel@casadi.org

Algorithmic differentiation (AD) [Andersson, 2013]

@ CasADi automatically generates derivative information via state-of-the-art
algorithmic differentiation (AD):

o Jacobian-times-vector products (“forward mode")
o vector-times-Jacobian products (“reverse mode")
o Complete Jacobians and Hessians (using graph coloring algorithms)

@ “Source-to-source”: Derivatives to arbitrary order

@ AD implementation uses chain rule for high-level operations (matrix
operations, ODE integrators, implicitly defined functions).

llustration: Gradient of the determinant, V, det(x), x € R3*3

@ Scalar operations (via minor expansion):
X22X33 —X32X23 X23X31 — X33X21 X32X21 — X2,2X31
X32X13 —X12X33 X33X11 — X13X31 X12X31 — X32X11
X12X2,3 —X22X13 X13X2,1 — X23X1,1 X22X11 — X1,2X21

@ Matrix operations (via chain rule for determinant): det(x) x~T

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015

joel@casadi.org

“Smart interfaces” to numerical codes

@ NLP solvers: IPOPT, KNITRO, SNOPT, WORHP, in-house solvers
* Automatic generation of derivative information

ODE/DAE integrators: CVODES, IDAS, in-house solvers

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information for implicit schemes

QP Solvers: qpOASES, CPLEX, OOQP

Other tools: Linear solvers, SDP solvers, ...

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 14 /

joel@casadi.org

C-codegen

@ Generate C code from CasADi expressions

e Supported for large subset of CasADi
o Efficient, self-contained, no static memory
e For embedded system or for speed-up calculations

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015

joel@casadi.org

C-codegen: Example

from casadi import =x*

x = MX.sym("x",10,10)

F MXFunction ([x], [2*mul (x,x)-x])
F.init O

F.generateCode (’F.c’)

4

int eval(const double* const* arg, double* const* res, int* iw, double* w) {
int i, j, k, *ii, *jj, *kk;
double r, s, t, *rr, *ss, *tt;
const double *cr, *cs, *ct;
for (i=0, rr=w+10; i<100; ++i) *rr++=0;
for (i=0, rr=w+110, cs=argl[0]; i<100; ++i) *rr++=*cs++;
for (i=0, rr=w+10; i<10; ++i) for (j=0; j<10; ++j, ++rr)
for (k=0, ss=w+110+j, tt=w+110+i*10; k<10; ++k) *rr += ss[k*10]**xtt++;
for (i=0, rr=w+10, cs=w+10; i<100; ++i) *rr++=(2.% *cs++);
for (i=0, rr=w+10, cr=w+10, cs=w+110; i<100; ++i) *rr++=(*cr++ - *xcs++);
if (res[0]!=0) for (i=0, rr=res[0], cs=w+10; i<100; ++i) *rr++=xcs++;
return O;

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 3 March 2015 16 / 26

joel@casadi.org

Outline

e Modelica interoperability

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 17 / 26

joel@casadi.org

Using Modelica models in CasADi

@ CasADi can import models written in Modelica
@ Two separate toolchains (both require JModelica.org = Toivo's talk)

e SymbolicOCP class in CasADi = Rest of the talk
e CasADi Interface in JModelica.org = Toivo's talk

Usage example: Start-up of combined cycle power plants

Joint work with P-O Larsson, F Casella, F Magnusson and J Akesson

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 18 / 26

joel@casadi.org

SymbolicOCP in CasADi

@ Original motivation: Import and reformulation of OCP from
Modelica/Optimica

@ Why reformulation? For shooting methods:

e Smaller dimension more important than sparsity
o Integrator schemes easier to handle for semi-explicit systems
e Scaling more important

@ How it works: Tutorial

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015

joel@casadi.org

Outline

@ Tutorial

Joel Andersson joel@casadi Modelica interoperability with CasADi March 2015 20 / 26

joel@casadi.org

Joel Andersson joel@casadi.o Modelica interoperability with CasADi 3 March 2015

joel@casadi.org

Outline

© Summary & outlook

Joel Andersson joel@casadi Modelica interoperability with CasADi March 2015 22 /26

joel@casadi.org

@ CasADi is an open-source tool that drastically simplifies writing efficient
optimization algorithms: http://casadi.org

@ In development since 2009, now relatively mature tool
e ~ b0 active users in industry and academia

@ Can be used with models from Modelica = more in Toivo's talk

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 23 /26

http://casadi.org
joel@casadi.org

MATLAB front-end [In development]

@ Late 2014, started work to add a MATLAB front-end to CasADi
@ Aproach: Extend SWIG (www.swig.org) to MATLAB

e Open-source tool for generating interfaces to C++ code
o Collaborative effort together with SWIG community

Status (March 2015)

Essentially feature-complete, in testing. Stable version later this year.

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 24 /

www.swig.org
joel@casadi.org

Load CasADi
from casadi import *

Create NLP

= SX.sym(’x’)

= SX.sym(’y’)

= SX.sym(’z’)

= vertcat ([x,y,z])

= x*%2 + 100%z*%2

g =2z + (1-x)*x2 - y

nlp_in = nlpIn(x=v)

nlp_out = nlpOut(f=f,g=g)

nlp = SXFunction(nlp_in,nlp_out)

o N K 3

Create IPOPT solwver object
solver = NlpSolver (’ipopt’, nlp)
solver.init ()

Solve the NLP

solver.setInput([2.5, 3.0, 0.75], ’x0°’)
solver.setInput (0, ’1lbg’)
solver.setInput (0, ’ubg’)
solver.evaluate ()

Get the solution

f_opt = solver.getOutput(’f’)

x_opt = solver.getOutput(’x’)
lam_x_opt = solver.getOutput(’lam_x’)
lam_g_opt = solver.getOutput(’lam_g’)

Joel Andersson joel@casadi.o:

% Load CasADi
import casadi.*

% Create NLP

x = SX.sym(’x’);
y = SX.sym(’y’);

z = SX.sym(’z’);
v = [x;y;2];

f = x72 + 100%z72;

g=2z+ (1-x)"2 - y;

nlp_in = nlpIn(’x’,v);

nlp_out = nlpOut(’f’,f,’g’,g);
nlp = SXFunction(nlp_in,nlp_out);

% Create IPOPT solver object
solver = NlpSolver (’ipopt’, nlp);
solver.init ();

% Solve the NLP

solver.setInput ([2.5 3.0 0.75], ’x0’);
solver.setInput (0, ’lbg’);
solver.setInput (0, ’ubg’);
solver.evaluate ()

% Get the solution

f_opt = solver.getOutput(’£’)

x_opt = solver.getOutput(’x’)
lam_x_opt = solver.getOutput(’lam_x’)
lam_g_opt = solver.getOutput(’lam_g’)

Modelica interoperability with CasADi

joel@casadi.org

@ Development of CasADi continues

MATLAB interface
Continued work on integrators, structure-exploiting NLP
e Even more code-generation, just-in-time compilation
(libclang/OpenCL)
o Goal: Codegen everything (linear solvers, ODE integrators, Newton
solvers, NLP solvers)
Modelica/FMI interoperability
Nonlinear model-predictive control
Robust (periodic) optimal control

@ Work on applications

Joel Andersson joel@casadi.org Modelica interoperability with CasADi 23 March 2015 26 / 26

joel@casadi.org

	CasADi
	Overview of features
	Modelica interoperability
	Tutorial
	Summary & outlook

