FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

Predictive control for capacity controlled heat pumps in smart grid

Speaker: Nilay Saraf

Supervisors:

Ing. David Fischer (ISE) Dr. Tamas Keviczky (DCSC)

MSc. Student - Control Engineering Delft Center for Systems and Control

& Dept. of Intelligent Energy Systems, Fraunhofer ISE

System Description

Motivation

- Residential heating system in smart grid scenario
 - Demand side management, load shifting
- Implementation Python, ColSim (<u>www.colsim.de</u>), CVXOPT
- Main research questions:
 - Best optimal control problem formulation?
 - Modeling technique approximating non-linearities

System Description

System Components:

- Thermal Storage (TES)
 - DHW, Space heating
- Air-to-water Heat pump
 - Variable speed
 - 2 operating modes (T_{sup})
- Building
- Auxiliary heater
- Solar devices
 - Thermal collector
 - PV panels

Optimization Goals

- Money spent for heating
 - In scenario: dynamic tariffs, weather and loads
- Control objectives:
 - Optimal operating points for HP, storage
 - Operating mode DHW/Htg
 - Optimal use of solar power
 - Feed-in, self consumption
 - Constraint handling
- Supervisory control strategy
- Controller: MPC

MPC Problem Formulation Models

- Deterministic case study perfect model, predictions
 - Theoretical benchmark / Performance bound
- Model: LTI state-space $\dot{x} = Ax + Bu + Ez$
- Lumped thermal energy balance equations
- States(x): T_{s1} , T_{s2} and T_B Inputs(u): \dot{Q}_{HP_i} , $\dot{Q}_{heating}$, \dot{Q}_{BH_i} and \dot{Q}_{STC}
- Predicted disturbances (z): Heat losses storage, building

$$\begin{bmatrix} T_{s1} \\ T_{s2} \\ T_B \end{bmatrix} = \begin{bmatrix} \frac{-ks \cdot As_1}{C_{s1}} & 0 & 0 \\ 0 & \frac{-ks \cdot As_2}{C_{s2}} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T_{s1} \\ T_{s2} \\ T_B \end{bmatrix} + \begin{bmatrix} \frac{1}{C_{s1}} & 0 & \frac{1}{C_{s1}} & 0 & \frac{1}{C_{s1}} & 0 & \frac{1}{C_{s1}} & 0 \\ 0 & \frac{1}{C_{s2}} & 0 & -\frac{1}{C_{s2}} & 0 & -\frac{1}{C_{s2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{C_{B}} \end{bmatrix} \begin{bmatrix} \dot{Q}_{HP_1} \\ \dot{Q}_{PV_2} \\ \dot{Q}_{STC} \\ \dot{Q}_{BH_1} \\ \dot{Q}_{BH_2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{C_{s1}} & \frac{k_s \cdot As_1}{C_{s1}} & 0 & 0 \\ 0 & \frac{k_s \cdot As_2}{C_{s2}} & 0 & \frac{1}{C_{B}} \end{bmatrix} \begin{bmatrix} \dot{Q}_{DHW_1} \\ T_{env} \\ \dot{Q}_{DHW_2} \\ \dot{Q}_{B_{loss}} \end{bmatrix}$$

© Fraunhofer ISE

MPC Problem Formulation

Heat pump

- Variable speed
- HP model (COP):
 - Manufacturer data
 - Equation-fit model
 - Simplified non-linear model
 - Dead zone not modeled

Compressor frequency Load, source side Temp	Heat pump model	Heat Supplied (\dot{Q}_{HP}) Power consumed (P_{el}), COP = $\frac{\dot{Q}_{HP}}{P_{el}}$ Outputs
--	--------------------	--

COP = Coefficient of Performance

MPC Problem Formulation

Characteristics

- HP characteristics:
 - Dead zone
 - Non-linear model: $P_{el_{HP}} = \frac{\dot{Q}_{HP}}{COP_{i}}$

$$\bullet COP_i = f(x, u, Tamb)$$

- HP model to calculate:
 - Electricity consumed \rightarrow Bill

Inverse of COP

COP inverse

Nonlinear relation with rpm; almost linear with T_{amb} & T_{sup}

8

COP inverse

Nonlinear relation with rpm; almost linear with T_{amb} & T_{sup}

MPC Problem Formulation

Nonlinear non-smooth objective function:

$$\min_{u} J(x_0, u) = \sum_{k=0}^{N-1} eCost * Pel$$

s.t.: $x_{k+1} = A_d x_k + B_d u_k + E_d z_k$

- Constraints: Input, state bounds
- Global optimization problem, MINLP
- Convex approximations:
 - Linearized COP about expected operating point
 - Modification: zone causing nonconvexity (shape in plot)
- Formulations tried: LP, QP
- Tuning

 $\frac{14}{2}\mathbf{x}^{T}\mathbf{y}\mathbf{x}^{T}\mathbf{x} + \mathbf{c}^{T}\mathbf{x}.$

Performance

- Results with QP formulation (solver: CVXOPT)
 - Considering objectives
 - COP (inverse) predefined from predicted T_{amb} and linearized model
 - Partially neglecting dependency on supply temperature T_{sup} and part load

$$\frac{1}{COP} = \frac{1}{(c_1 + c_2 T_{amb} + c_3 T_{slb})(1 + c_4 \frac{Q_{opt}}{Q_{max}})} = C_0$$

COP inverse coefficients (C₀) squared

$$\begin{split} \min_{U} \sum_{i=0}^{N-1} U_{i}^{T} P_{i} U_{i} + q_{i}^{T} U_{i} \\ s.t. \ G * U \leq h, G_{e} * U = h_{e} \\ \bullet P_{i} = r_{1} * \begin{bmatrix} eCost_{ui} * C_{0}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & eCost * C_{0}^{2} un \end{bmatrix} \ q_{i} = r_{2} * \begin{bmatrix} eCost_{ui} * C_{0}^{2} & \cdots & eCost_{ui} * C_{0}^{2} un \end{bmatrix}^{T} \end{split}$$

- Lower penalty on solar variables and higher on auxiliary heater inputs
- Other formulations tried: Only linear/ only quadratic weights

Plots

© Fraunhofer ISE

Plots

© Fraunhofer ISE

- Ideas implemented:
 - Goal oriented tuning (of P, q)
 - Modeling objective function (electricity bill)
 - HP model, COP
 - Split inputs in zones
 - Post processing step (without influencing MPC)
 - When $\dot{Q}_{HP} < \dot{Q}_{opt}$ (switch optimal rpm)
 - 10 to 17% higher savings
 - Limitation: Frequent switching
 - Soft constraints approach:

$$J_{soft} = J + \sum_{i=0}^{N-1} \epsilon^{T} W \epsilon + w \epsilon$$
$$x_{lb_{i}} - \epsilon_{lb} \leq x \leq x_{ub_{i}} + \epsilon_{ub}$$
$$\epsilon = [\epsilon_{lb} \quad \epsilon_{ub}]^{T}$$

Adaptive model

Expected benefits:

- Wider application of same strategy
- Better performance of MPC (model accuracy)

Conclusions

- Lessons learned:
 - Performance dependence on COP model
 - Solver (cvxopt) issues faced:
 - Scaling sensitivity
 - Limited warnings
- Challenges:
 - Post-processing: Frequent switching
 - Simple models for Heat pump
 - Model mismatch
- **Discussion**:
 - Limitation on-off switching frequency of heat pump
 - Is nonlinear optimization a better option? Fast, reliable open-source NLP solver?

ISE

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Speaker: Nilay Saraf

www.ise.fraunhofer.de

nilay.saraf@ise.fraunhofer.de

17

Performance Plots – constraints

© Fraunhofer ISE

Plots

© Fraunhofer ISE

© Fraunhofer ISE

© Fraunhofer ISE

© Fraunhofer ISE

© Fraunhofer ISE

© Fraunhofer ISE

2012 data

- Target system: German multi-family houses
- Data: 12 representative test days (year 2012, location: Potsdam)
- eCost: EEX price (European Energy eXchange)

© Fraunhofer ISE