

SWISS PRIME MEASURING SINCE 1957

X-ray systems and on-line optimization

Silvano Balemi

Zumbach Electronic AG, CH-2552 Orpund-Biel/BE

Universität Freiburg i.B., 22.6.2016

・ロン ・四 と ・ ヨン ・ ヨン ・ ヨ

Introduction

- Zumbach Electronic AG
- The RAYEX[®] S measurement system
- The RAYEX[®] S model
- The Kalman filter
- The IEFK for RAYEX[®] S
- Implementation issues

Mathematics and industrial applications

Applied mathematics becomes increasingly important

- digital control (flexibility during operation, flexibility for modifications, more complex controllers realizable, lower price)
- image processing (new applications, on-line processing)
- estimation of quantities, measurement (on-line processing, faster processing, more complex modelling)
- optimization in logistics (big data processing)

Drivers for mathematics in industry

- Increasing computing power
- Sophisticated hardware programming capabilities (FPGA, HW/SW-codesign)
- Simulation techniques, methods and tools
- Rapid control prototyping techniques and tools (code generation)

Mathematics is becoming important for SMEs

- Evolution from Mechanics, through Electronics and Software to Mathematics
- Basic disciplines are still needed, but focus shifts
- Computing platforms, sensors, actuators, become commodities, mathematics gives the individual "touch" (competitive advantage).
- Impact is relevant not only for big companies, but even (or maybe in particular) for SMESs

Introduction

Zumbach Electronic AG

The RAYEX[®] S measurement system

The RAYEX[®] S model

The Kalman filter

The IEFK for RAYEX[®] S

Implementation issues

For nearly 60 years in the world market

Worldwide 11 own companies

Worldwide more than 40 sales and service stations

More than 200 employees

8 different measurement technologies for best results

Worldwide, more than 100'000 running systems

Worldwide Customer Service

- Leading manufacturer of in-line measuring, monitoring and control systems
- Pioneer in in-line measurement systems, based on various technologies
- Large number of international patents and trademarks
- Manufacturing and R&D centers in Switzerland and the US
- Expert sales and customer support from international subsidiaries with fully equipped service and spare part facilities
- Platform blog.zumbach.com with monthly publications to topics of the online measurement

Partnership With Customers Systems Tailored To Different Industries

All extruded Products:

- Telecommunication and data cables
- Fibre optic cables
- Energy and control cables

- Magnet wire
- Fine wire
- Low, Medium, High voltage cables

Plastics and Rubber Industry

Typical Products

All extruded Products:

- Tubing
- Medical tubing / catheters
- Hoses
- Profiles

Steel And Metal Industry

Hot rolling:

- Bar, rod
- Profiles and seamless pipe
- Welded pipe
- QC (NDT)

Cold processes such as:

- Peeling
- Grinding
- Bending
- Polishing etc.

Technologies – For Each Application The Best Solution

Trend Setter Of Different Measurement Technologies

Laser / Optics Dimension measurement with shadow principle

X-rays Cross section measurement (3 layers)

CUltrasonic Eccentricity / Wall thickness

Linear Sensor (Multi-colour LED sources) Diameter / Ovality

Inductive + Laser Eccentricity / Diameter / Ovality

Laser light section technique / Image processing Profile and shape measurement

Spark test Isolation test with high voltage

Light section technique / Image processing Quality surface monitoring

Technologies – For Each Application The Best Solution Completing the Product Line of Industrial Equipment

SWISS PRIME MEASURING SINCE 1957

-1F

m/min

Capacitance Measuring Systems Including Fast Fourier Transform / Structural Return Loss Software

LSV Speed and Length Measurement

WST TEMPMASTER Conductor Preheaters

DVW / DVO

Oscillating Measuring Devices for Width/Height and Sector Cables

4

Surface Quality

Vision / CCD Cameras

CALIBRATOR SP Checking Device for periodic Verification and Calibration of Spark Testers

Inspection Systems with Machine

AUTAC Temperature Control Sensors

USYS

Universal Data Acquisition, Processing and Display Units

Laser Scanning Principle World-wide most used measuring principle

Measurement

- Very high accuracy (parallel/linear)
- Immune on dirt
- Immune on light variations
- Immune on vertical and horizontal movements

Resolution = 0.0001 mm (.000004 in.)Rule of thumb for accuracy = 10 x resolution = 0.001 mm (.00004 in.)

Example of cable Extrusion Line

Equipped with Measurement and Control Instruments

PROFILEMASTER® SPS 400-S4

SWISS PRIME MEASURING SINCE 1957

8-axes laser line triangulation system for hot steel application

Focus on mechanical design, 60's

Eccentricity measurement systems

Focus on electronics design, 80's

Electronics for diameter processing

Focus on software design, 90'

USYS computing system for fast data processing and higher-level functions

Focus on applied mathematics, today

SPS for the measurement of profile in hot steel applications

Introduction

Zumbach Electronic AG

The RAYEX $\ensuremath{\mathbb{R}}$ S measurement system

The RAYEX[®] S model

The Kalman filter

The IEFK for RAYEX[®] S

Implementation issues

The RAYEX $\ensuremath{\mathbb{R}}$ S system

X-ray measurement system with two measurement axes

The applications

Layer thickness and eccentricity in

- hoses
- tubes
- cables (jacketing)

Processing and display of measured values

Measurement principle

Projection of two fan beams on line sensors: example of a two layer tube

Specifications

- Accuracy 10 µm (pixel width 50µm!)
- Sample rate > 10Hz
 - faster=more robust against object motions,
 - slower=lower emissions
- Measurement of thickness of multilayer tubes (up to 3 layers)
- Measurement of cable jackets
- Robustness of measurement

Introduction

Zumbach Electronic AG

The RAYEX[®] S measurement system

The RAYEX[®] S model

The Kalman filter

The IEFK for RAYEX[®] S

Implementation issues

Axes

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ◇ Q (~ 18 / 38

Detector geometry

Device under test (DUT)

Chord length is

$$c_{i}(d) = \frac{2 \cdot A_{i} \cdot B_{i}}{a_{x}^{2}(d) \cdot A_{i}^{2} + a_{y}^{2}(d) \cdot B_{i}^{2}} \cdot \sqrt{a_{x}^{2}(d) \cdot A_{i}^{2} + a_{y}^{2}(d) \cdot B_{i}^{2} - (b(d) + a_{x}(d) \cdot x_{i} + a_{y}(d) \cdot y_{i})^{2}}$$

DUT with multiple layers

X-ray beam

Beer-Lambert absorption law: beam intensity decays exponentially with chord length in material:

$$I(d) = I_0(d) \cdot e^{-K_i \cdot c_i(d)}$$

or also

$$(Abs_i(d)) = \ln\left(\frac{I(d)}{I_0(d)}\right) = -K_i \cdot c_i(d)$$

and

$$Abs(d) = \sum_{i} -K_i \cdot c_i(d)$$

(日) (四) (三) (三) (三)

Detector sensivity

- Thermal noise causes signal to be roughly proportional to exposure time (Dark)
- Full exposure may present different levels for each sensor/pixel (Ref)

Given measurement signal $Raw, \, {\rm the \ normalized \ relationship}$ for the intensity is

$$e^{Abs(d)} = \frac{I(d)}{I_0(d)} = \frac{Raw(d) - Dark(d)}{Ref(d) - Dark(d)}$$

Introduction

Zumbach Electronic AG

The RAYEX[®] S measurement system

The RAYEX[®] S model

The Kalman filter

The IEFK for $RAYEX^{\mathbb{R}}$ S

Implementation issues

・ロ ・ < 部 ・ < 注 ・ < 注 ・ 注 ・ う へ で 24 / 38

Kalman filter (KF)

Given is a linear system are state-equation and output equation

$$egin{array}{rcl} oldsymbol{x}_k &=& oldsymbol{F} \cdot oldsymbol{x}_{k-1} + oldsymbol{G} \cdot oldsymbol{u}_{k-1} + oldsymbol{w}_{k-1} \ oldsymbol{y}_k &=& oldsymbol{H} \cdot oldsymbol{x}_k + oldsymbol{v}_k \end{array}$$

with state vector $oldsymbol{x}_k$ m, input $oldsymbol{u}_k$ and output $oldsymbol{y}_k$ State covariance matrix is

$$\mathbf{P}_{k} = \operatorname{Cov}\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k}\right) = \operatorname{E}\left(\left(\boldsymbol{x}_{k} - \hat{\boldsymbol{x}}_{k}\right) \cdot \left(\boldsymbol{x}_{k} - \hat{\boldsymbol{x}}_{k}\right)^{\mathsf{T}}\right)$$

Noise model

Process noise w_k and measurement noise v_k assumed to have zero mean normal distributions:

$$oldsymbol{w}_k \sim \mathcal{N}\left(0, \mathbf{Q}_k
ight)$$

 $oldsymbol{v}_k \sim \mathcal{N}\left(0, \mathbf{R}_k
ight)$

where \mathbf{Q}_k is process noise covariance matrix, \mathbf{R}_k measurement noise covariance matrix:

$$\mathbf{Q}_{k} = \operatorname{Cov}\left(\boldsymbol{w}_{k}, \boldsymbol{w}_{k}\right) = \operatorname{E}\left(\boldsymbol{w}_{k} \cdot \boldsymbol{w}_{k}^{\mathsf{T}}\right)$$
$$\mathbf{R}_{k} = \operatorname{Cov}\left(\boldsymbol{v}_{k}, \boldsymbol{v}_{k}\right) = \operatorname{E}\left(\boldsymbol{v}_{k} \cdot \boldsymbol{v}_{k}^{\mathsf{T}}\right)$$

(日) (四) (注) (注) (三)

KF filter steps

Two step estimation

- first estimation with prediction of new output based on model and on current input (pre-estimate)
- second estimation with correction of pre-estimate with current measurement value (post-estimate)

KF equations

 $\begin{array}{l} \underline{Prediction} \\ \hline \mathbf{Predict State Estimate} \\ \hat{\boldsymbol{x}}_{k}^{-} = \boldsymbol{F_{k-1}} \cdot \hat{\boldsymbol{x}}_{k-1} + \boldsymbol{G} \cdot \boldsymbol{u}_{k-1} \\ \hline \mathbf{Predict Error Covariance} \\ \mathbf{P}_{k}^{-} = \mathbf{F}_{k-1} \cdot \mathbf{P}_{k-1} \cdot \mathbf{F}_{k-1}^{\mathsf{T}} + \mathbf{G}_{k-1} \cdot \mathbf{Q}_{k-1} \cdot \mathbf{G}_{k-1}^{\mathsf{T}} \end{array}$

Correction

Compute Kalman Gain

 $\mathbf{K}_{k} = \mathbf{P}_{k}^{-} \cdot \mathbf{H}_{k}^{\mathsf{T}} \cdot \left(\mathbf{H}_{k} \cdot \mathbf{P}_{k}^{-} \cdot \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{V}_{k} \cdot \mathbf{R}_{k} \cdot \mathbf{V}_{k}^{\mathsf{T}}\right)^{-1}$ Correct State Estimate

$$oldsymbol{\hat{x}}_k = oldsymbol{\hat{x}}_k^- + \mathbf{K}_k \cdot oldsymbol{\left(y_k - \cdot \mathbf{H}_k \cdot oldsymbol{\hat{x}}_k^-
ight)}$$
Correct Error Covariance

 $\mathbf{P}_k = (\mathbf{I} - \mathbf{K}_k \cdot \mathbf{H}_k) \cdot \mathbf{P}_k^-$

Introduction

Zumbach Electronic AG

The RAYEX[®] S measurement system

The RAYEX[®] S model

The Kalman filter

The IEFK for RAYEX® S

Implementation issues

Kalman filter states

Linear state transformation: Layer thicknesses as state variables

$$S1_{i} = A_{i} - A_{i+1} + x_{i} - x_{i+1}$$

$$S2_{i} = B_{i} - B_{i+1} + y_{i} - y_{i+1}$$

$$S3_{i} = A_{i} - A_{i+1} - x_{i} + x_{i+1}$$

$$S4_{i} = B_{i} - B_{i+1} - y_{i} + y_{i+1}$$

gives state

$$\boldsymbol{x} = [A_1, B_1, x_1, y_1, \boldsymbol{K}_{1,A,N}, S1_1, S2_1, S3_1, S4_1, \boldsymbol{K}_{2,A,N}, \dots, S1_{I-1}, S2_{I-1}, S3_{I-1}, S4_{I-1}, \boldsymbol{K}_{I,N}, \Delta x, \Delta y]$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 30 / 38

Sample measurement selection

Each CCD detector has two sets of 1536 pixels. Processing of 6144 pixels per sample is not practical.

 \Rightarrow Selection of representative pixels.

Introduction

- Zumbach Electronic AG
- The RAYEX[®] S measurement system
- The RAYEX[®] S model
- The Kalman filter
- The IEFK for RAYEX[®] S
- Implementation issues

Software implementation

- Development under Scilab (Matlab-like tool) and Embarcadero with C++
- Run-time environment Windows PC
- ► Encapsulation of Scilab code in wrapper within C++-code
- Functionally equivalent implementation of Scilab algorithm in C++

Other mathematical issues dealt with

- Calibration of device and detector geometry
- Detector offset drift to be compensated on-line
- Object motion considered in Kalman filter
- Limited stability of x-ray source intensitiy (still open issue)
- and more . . .

Challenges

- Computational requirement to be minimized (wish of highest possible measurement rate)
- Simple operation (e.g. user should not define starting values for state)
- Limited complexity allowed on site (e.g. for calibration)
- Relevant environment uncertaintes
- Strong object variability
- Non-ideal measurement process behavior (noise level drift, noise dynamics, material-dependent behavior)

Profile for diagnostics

36 / 38

э

Processing and display of measured values

Thank you for the attention!

Questions?