

# **Uncertainty in Finance**



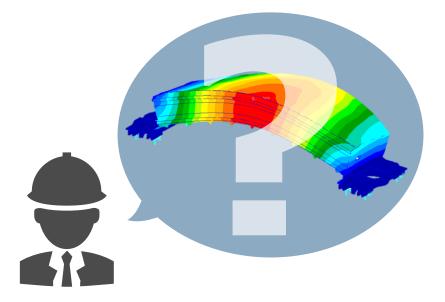
# **Uncertainty in Finance**



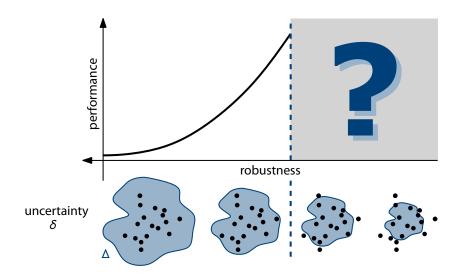
# **Uncertainty in Engineering**



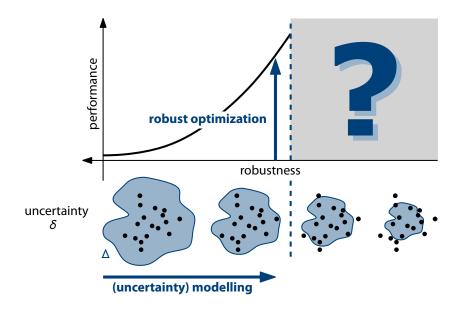
# **Uncertainty in Engineering**



#### **The General Picture**



### **The General Picture**



Find the solution (portfolio, control, design ...),

that is adequate for all possible  $\delta$  in  $\Delta$ ,

and guarantees the highest performance.

```
Find the solution (portfolio, control, design ...),
```

```
\hookrightarrow optimization variable x
```

```
that is adequate for all possible \delta in \Delta,
```

and guarantees the highest performance.

```
Find the solution (portfolio, control, design ...),

\hookrightarrow optimization variable x

that is adequate for all possible \delta in \Delta,

\hookrightarrow constraints f_i(x, \delta) \ge 0, for all \delta \in \Delta, i = 1, ..., m

and guarantees the highest performance.
```

```
Find the solution (portfolio, control, design ...),

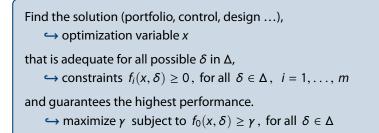
\hookrightarrow optimization variable x

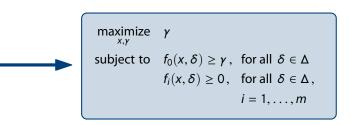
that is adequate for all possible \delta in \Delta,

\hookrightarrow constraints f_i(x, \delta) \ge 0, for all \delta \in \Delta, i = 1, ..., m

and guarantees the highest performance.

\hookrightarrow maximize \gamma subject to f_0(x, \delta) \ge \gamma, for all \delta \in \Delta
```









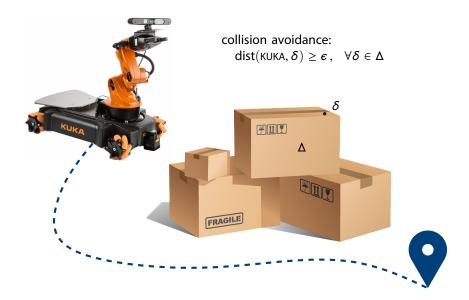


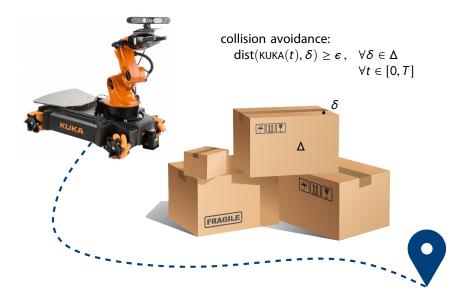














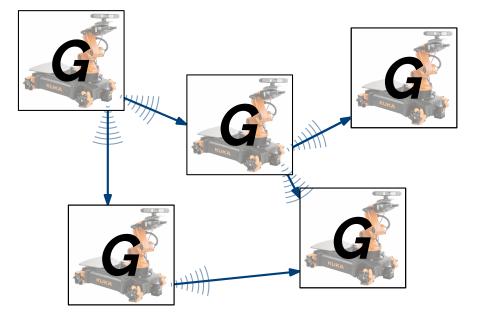


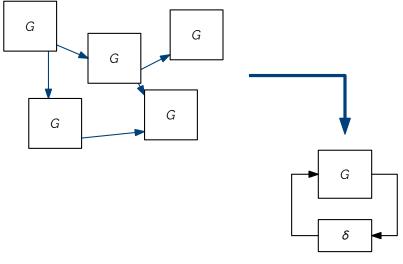












 $\Delta \sim interconnection$ 



 $\begin{array}{ll} \underset{x}{\text{maximize}} & f_0(x,\delta)\\ \text{subject to} & f_i(x,\delta) \geq 0, \quad i=1,\ldots,m \end{array}$ 

Trade-off analysis

 $\hookrightarrow \delta$ : weight on objectives

$$f_0(x,\delta) = \sum_k \delta_k f_{0,k}(x)$$



 $\begin{array}{ll} \underset{x}{\text{maximize}} & f_0(x, \delta) \\ \text{subject to} & f_i(x, \delta) \geq 0, \quad i = 1, \dots, m \end{array}$ 

Linear parameter varying control

 $\hookrightarrow \delta$ : measurable parameters affecting the system dynamics



 $\begin{array}{ll} \displaystyle \mathop{\text{maximize}}_{x} & f_0(x,\delta) \\ \\ \text{subject to} & f_i(x,\delta) \geq 0, \quad i=1,\ldots,m \end{array}$ 

Computing approximation  $\hat{x}(\delta)$  of  $x^{\text{opt}}(\delta)$ 

$$\hat{x}(\delta) = x_0 + x_1 \,\delta + x_2 \,\delta^2 \dots$$

← solve robust optimization problem to compute coefficients

$$\begin{array}{ll} \underset{x_{0},x_{1},\ldots}{\text{maximize}} & \int_{\Delta} f_{0}(\hat{x}(\delta),\delta) \, d\delta \\ \text{subject to} & f_{i}(\hat{x}(\delta),\delta) \geq 0, \ \text{ for all } \delta \in \Delta, \\ & i=1,\ldots,m \end{array}$$







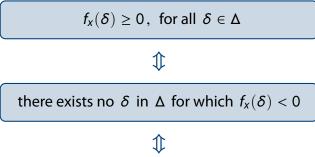
 $f(x, \delta) \ge 0$ , for all  $\delta \in \Delta$ 

 $f_{X}(\delta) \geq 0$ , for all  $\delta \in \Delta$ 

#### $f_{X}(\delta) \geq 0$ , for all $\delta \in \Delta$

#### ⊅

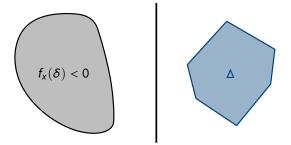
there exists no  $\delta$  in  $\Delta$  for which  $f_x(\delta) < 0$ 



$$\{\delta \,|\, f_x(\delta) < 0\} \cap \Delta = \emptyset$$

#### **Few Cases: Tractable Reformulation**

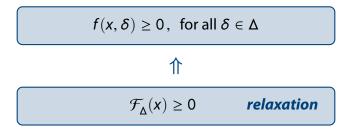
**Linear separation** 



#### **Quadratic separation**

• S-procedure, Kalman-Yakubovich-Popov lemma ...

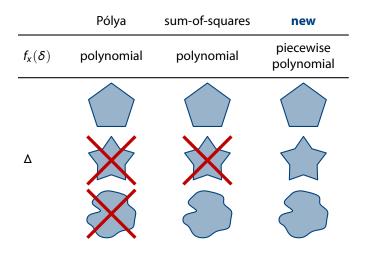
#### **Otherwise: Relaxations**



### **Otherwise: Relaxations**

#### A novel scheme for constructing relaxations

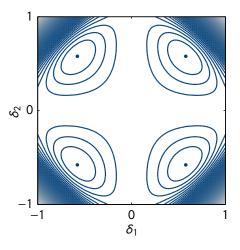
• more general than existing schemes



## **Otherwise: Relaxations**

#### A novel scheme for constructing relaxations

- more general than existing schemes
- computationally more efficient than existing schemes

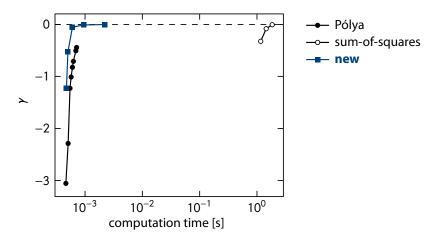


 $\begin{array}{ll} \underset{\gamma}{\operatorname{maximize}} & \gamma \\ \text{subject to} & f(\delta) \geq \gamma \,, \, \text{for all} \, \, \delta \in \Delta \end{array}$ 

## **Otherwise: Relaxations**

#### A novel scheme for constructing relaxations

- more general than existing schemes
- computationally more efficient than existing schemes



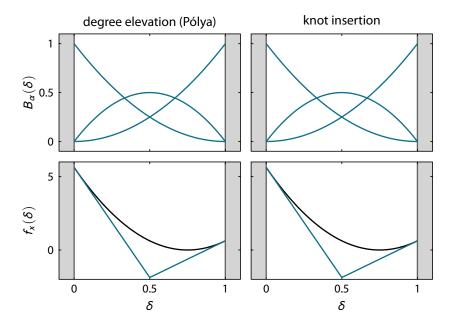
#### **Overall idea**

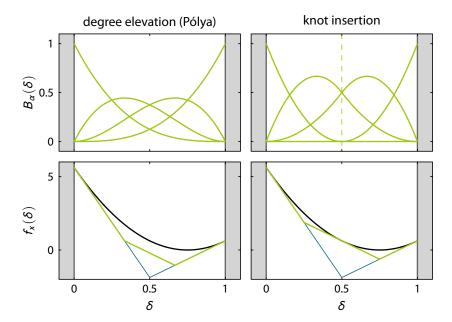
- B-splines: piecewise polynomial basis functions  $B_{\alpha}$ 
  - partition of unity on  $\Delta$ :  $\sum_{\alpha \in \alpha} B_{\alpha}(\delta) = 1, \forall \delta \in \Delta$
  - positive on  $\Delta$ :  $B_{\alpha}(\delta) \ge 0, \forall \delta \in \Delta$

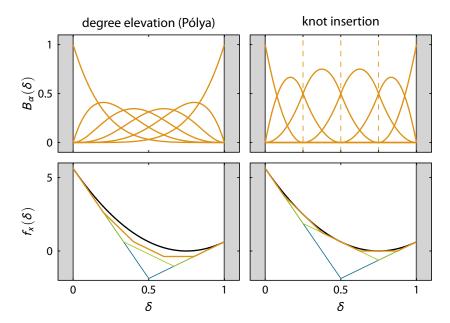
• relaxation: 
$$f(x, \delta) = \sum_{\alpha \in a} c_{\alpha}(x) B_{\alpha}(\delta) \ge 0, \forall \delta \in \Delta$$
  

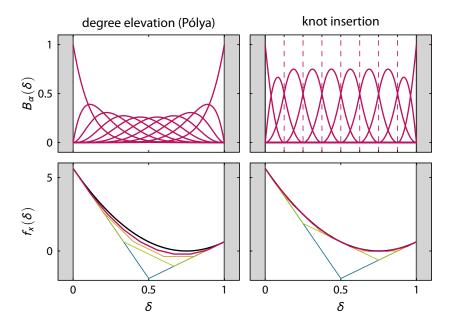
$$\uparrow c_{\alpha}(x) \ge 0, \forall \alpha \in \alpha$$

- refinement: higher-dimensional B-spline bases
  - piecewise polynomial of higher degree
  - piecewise polynomial on finer grid





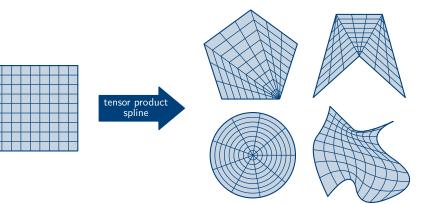




**Tensor product B-splines** 

 $B_{\alpha}(\delta) = B_{\alpha_1}(\delta_1)B_{\alpha_2}(\delta_2)$  $B_{lpha_2}(\delta_2)$  $B_{\alpha_1}(\delta_1)$  $\delta_2$  $\delta_1$ 

#### **Towards non-hyperrectangular domains**



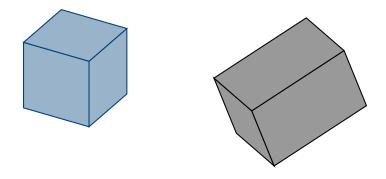






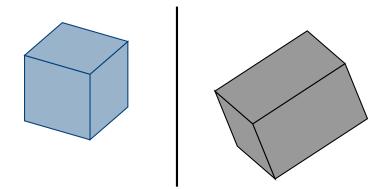
### **Avoiding collision**

• exact reformulation using linear separation



### **Avoiding collision**

• exact reformulation using linear separation



### **Avoiding collision**

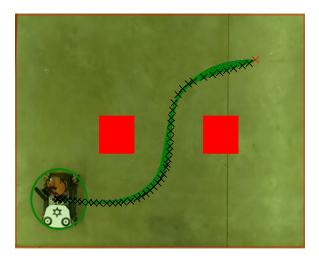
• exact reformulation using linear separation

### Enforcing constraints at all times

- B-spline parametrization of motion trajectory
- novel relaxation scheme for efficient constraint satisfaction

20 ms for simple kinematic models

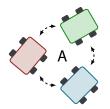
#### 20 ms for simple kinematic models



В

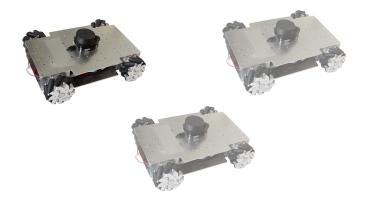
#### **Extension to multi-agent motion planning**

- optimization distributed over agents using ADMM
- 1 ADMM iteration per update



40 ms for simple kinematic models

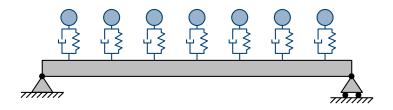
40 ms for simple kinematic models

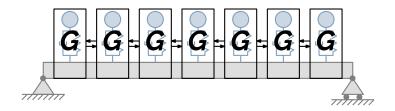


#### **Application in vibro-acoustics**

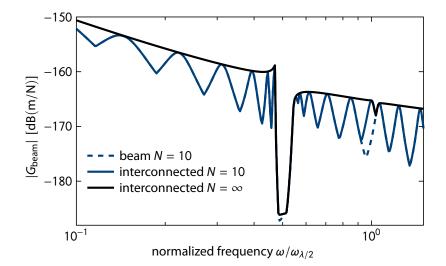








#### Efficient analysis using quadratic separation



### A novel B-spline based framework

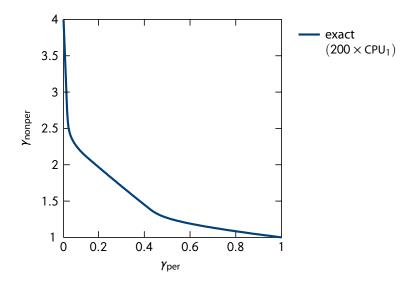
- B-spline parameterized  $\hat{x}(\delta)$  for high flexibility
- novel relaxation scheme for low conservatism

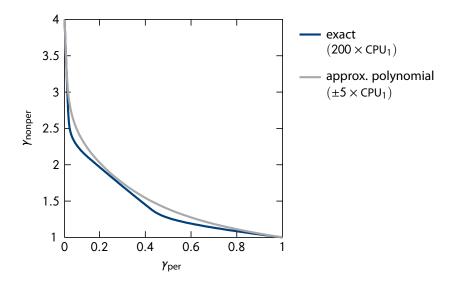
### A novel B-spline based framework

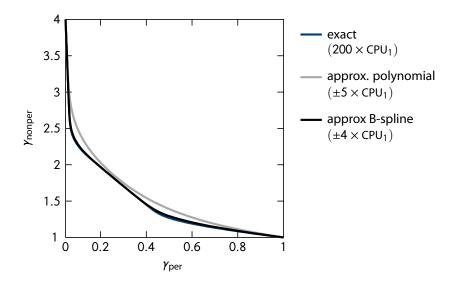
- B-spline parameterized  $\hat{x}(\delta)$  for high flexibility
- novel relaxation scheme for low conservatism

### Trade-off analysis in active bearing control









## Conclusion



Robust optimization has many applications in engineering



General and effective strategy for solving robust optimization problems



## **Thank You!**

### The MECO research group Wannes Van Loock, Ruben Van Parys, Tim Mercy

### Claus Claeys, Elke Deckers

