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Overview

Robust optimization problem statement

Two conservative approximation approaches

Linearization
Lagrangian relaxation

Dynamic problem statement, and solution by

forward sensitivities
adjoint sensitivities
Lyapunov matrix propagation



Problem Statement

minimize
u∈Rnu

max
‖w‖2≤1

F0(u,w)

subject to max
‖w‖2≤1

Fi(u,w) ≤ 0, i = 1, . . . , nF .

relevant dimensions: nu, nw, nF

interested in case nw � 1 (making sampling expensive)

game interpretation: we choose u ∈ Rnu , then adverse player
(nature) chooses w ∈ Rnw

unit ball can represent all ellipsoidal uncertainties (can
generalize to other sets described by inequalities)



Problem Statement: Compact Formulation

minimize
u∈Rnu

F exac
0 (u)

subject to F exac
i (u) ≤ 0, i = 1, . . . , nF .

with F exac
i (u) := max‖w‖2≤1 Fi(u,w).

Aim 1: find computationally tractable conservative
approximations for F exac

i (u) (i.e. tight upper bounds)

Aim 2: solve overall problem to local optimality w.r.t. u with
structure exploiting nonlinear programming (NLP) method



Assumption throughout the talk: bounded 2nd derivatives

minimize
u∈Rnu

max
‖w‖2≤1

F0(u,w)

subject to max
‖w‖2≤1

Fi(u,w) ≤ 0,

i = 1, . . . , nF

ASSUMPTION

There exist positive smooth functions Li(u) such that for all
w ∈ B := {w ∈ Rnw |w>w ≤ 1} holds:

∇2
wFi(u,w) � Li(u) I

Bounds the non-concavity of Fi w.r.t. w.



First Approach: Approximation by Linearization

Using Taylor’s theorem, for each w ∈ B there exists a t ∈ [0, 1]
such that

Fi(u,w) = Fi(u, 0) +∇wFi(u, 0)>w +
1

2
w>∇2

wFi(u, tw)w︸ ︷︷ ︸
≤Li(u)

.

Yields upper bound (using self duality of the Euclidean norm)

max
w∈B

Fi(u,w)︸ ︷︷ ︸
=:F exac

i (u)

≤ Fi(u, 0) + ‖∇wFi(u, 0)‖2 +
1

2
Li(u)︸ ︷︷ ︸

=:F lin
i (u)

[Nagy & Braatz, JPC, 2004]



Approximation by Linearization (Conservative)

minimize
u∈Rnu

F0(u, 0) + ‖∇wF0(u, 0)‖2 +
1

2
L0(u)

subject to Fi(u, 0) + ‖∇wFi(u, 0)‖2 +
1

2
Li(u) ≤ 0, i = 1, . . . , nF .

This is a nonlinear Second Order Cone Program (SOCP)

Could be solved with Sequential Convex Programming (SCP)
or plain NLP

Exact Hessian method needs third order derivatives

For dynamic systems, different ways to obtain ∇wFi(x, 0):
forward sensitivities [Nagy & Braatz, JPC, 2004]
adjoint sensitivities [D., Bock, Kostina, Math. Prog., 2006]
Lyapunov matrix propagation [Houska & D., CDC, 2009]



Second Approach: Lagrangian Relaxation

Lower level maximization problem:

F exac
i (u) = max

w∈Rnw
Fi(u,w) s.t.

1

2
(w>w − 1) ≤ 0

Lagrangian: L(u,w, λ) = Fi(u,w)− λ
2 (w

>w − 1)
Lagrange dual function:

di(u, λ) = max
w∈B

(
Fi(u,w)−

λ

2
(w>w − 1)

)
Weak duality and relaxation gives upper bound:

F exac
i (u) ≤ min

λ≥0
di(u, λ)

≤ min
λ≥Li(u)

di(u, λ) =: F lagr
i (u)

[Houska & D., Math. Prog. Ser. A, 2013]
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How much conservatism is introduced?
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Figure 3.2: Left: a visualization of the optimal solution of the semi-infinite optimization
problem (3.1.6) from Example 3.3, which has been found by solving a semi-infinite
programming problem of the form (3.1.7). Right: a visualization of a sub-optimal,
conservative solution of the semi-infinite optimization problem (3.1.6), which has been
found by the linear approximation strategy as discussed within Example 3.5.

the short-hands
Q :=

A
1 0
0 0

B
and q(x1) :=

A
2x1
≠1

B

we can compute the unique optimal solution of the min-max problem (3.1.6) numerically
by solving an equivalent semi-definite programming problem of the form

min
x,⁄

x2 s.t.

Q
ca

x2 ≠ ⁄ q(x1)T x1
q(x1) ⁄� ≠ Q 0
x1 0 1

R
db ≤ 0 . (3.1.7)

The associated result xú ¥ ( ≠0.35 , 1.08 )T corresponds to the center of the ellipsoidal
uncertainty region which is shown in the left part of Figure 3.2.

Example 3.4: Let us consider an example which is in contrast to the previous cases
non-convex in both the lower-level maximization as well as the upper level minimization
problem:

min
x

≠ x s.t. max
w2 Æ 1

sin (xw ) Æ 1
2

THEOREM

Lagrangian relaxation is always tighter than linearization:

F exac
i (u) ≤ F lagr

i (u) ≤ F lin
i (u)

If Fi(u,w) is concave or quadratic in w, it is even exact.

[Yakubovich, Vestnik Leningrad Univ., 1971/1977]
[Houska & D., Math. Prog. Ser. A, 2013]



Lagrangian relaxation: convex lower level problems

Note that
(
Fi(u,w)− λ

2 (w
>w − 1)

)
is concave in w for

λ ≥ Li(u): first order optimality conditions are sufficient

F lagr
i (u) = min

λ≥Li(u)
max
w∈B

(
Fi(u,w)−

λ

2
(w>w − 1)

)
= min

λ,w

(
Fi(u,w)−

λ

2
(w>w − 1)

)
s.t. ∇wFi(u,w)− λw = 0,

λ ≥ Li(u), ‖w‖ ≤ 1.

no complementarity condition needed

constraint ‖w‖ ≤ 1 deals with non-convexities outside B

[D., Houska, Stein, Steuermann, Comp. Opt. Appl., 2013]



Lagrangian relaxation based optimization problem

minimize
u,λ0,w0,...,λnF

,wnF

(
F0(u,w0)−

λ0
2
(w>0 w0 − 1)

)
subject to

(
Fi(u,wi)−

λi
2
(w>i wi − 1)

)
≤ 0,

i = 1, . . . , nF .

∇wFj(u,wj)− λjwj = 0,

λj ≥ Lj(u), ‖wj‖ ≤ 1, j = 0, 1, . . . , nF .

equivalent to previous MPCC formulation, e.g. [Stein 2003]

can solve with standard NLP, or Sequential Convex Bilevel
Programming (SCBP) [Houska & D., Math. Prog. Ser. A, 2013]

can show: no 3rd order derivatives needed for exact Hessian

need (nF + 1)(nw + 1) additional optimization variables



Tutorial Example (2 uncertainties, 3 constraints)
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Tutorial Example (2 uncertainties, 3 constraints)
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Can achieve high accuracy
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Underlying Dynamic System

Now, the Fi are functions of states xk that
are generated by dynamic system:

xk = fk(xk−1, uk, wk), k = 1, . . . N

with initial value

x0 = f0(u0, w0)

and inputs u = (u0, . . . , uN ) and
w = (w0, . . . , wN ). Each Fi = hi(xmi) is
evaluated at one selected time point mi.

dimensions nu, nw or nF often grow with horizon length N

state dimension nx can be smaller than nw and nF



Nominal Problem with Dynamic System

minimize
u,x

h0(xm0)

subject to hi(xmi) ≤ 0, i = 1, . . . , nF ,

x0 = f0(u0, w0),

xk = fk(xk−1, uk, wk), k = 1, . . . N.

for nominal problem, w = (w0, . . . , wN ) is fixed to zero

robust problem easier to formulate using implicit
representation of dynamic system (next slide)



Implicit Function Representation

Collecting all states in one vector x = (x0, . . . , xN ), one can
summarize the dynamics by an implicit function

G(x, u, w) = 0, Hi(x) := hi(xmi)

with

G(x, u, w) :=


f0(u0, w0)− x0

f1(x0, u1, w1)− x1
f2(x1, u2, w2)− x2

...
fN (xN−1, uN , wN )− xN

 .
Then, worst case functions are represented by

F exac
i (u) = max

w,x
Hi(x) s.t. G(x, u, w) = 0, w>w ≤ 1.



Three ways to treat linearization based approximation

forward sensitivities [Nagy & Braatz, JPC, 2004]

adjoint sensitivities [D., Bock, Kostina, Math. Prog., 2006]

Lyapunov matrix propagation [Houska & D. 2009, Gillis 2015]



Forward sensitivies

Represent Fi(u,w) by Hi(x) where x is implicitly defined by
G(x, u, w) = 0. Get gradient by implicit function theorem,

∇wFi(u, 0)> = ∇xHi(x)
>

(
−
(
∂G

∂x
(x, u, 0)

)−1 ∂G
∂w

(x, u, 0)

)
︸ ︷︷ ︸

= dx
dw

=:S

Forward sensitivities use matrix variable S defined by

S = −
(
∂G

∂x
(x, u, 0)

)−1 ∂G
∂w

(x, u, 0)

or equivalently by

∂G

∂w
(x, u, 0) +

(
∂G

∂x
(x, u, 0)

)
· S = 0.



Forward sensitivity problem statement

minimize
u,x,S

H0(x) + ‖S>∇xH0(x)‖2 +
1

2
L0(u)

subject toHi(x) + ‖S>∇xHi(x)‖2 +
1

2
Li(u) ≤ 0, i = 1, . . . , nF ,

G(x, u, 0) = 0,

∂G

∂w
(x, u, 0) +

(
∂G

∂x
(x, u, 0)

)
· S = 0.

Need nw extra variables of same dimension as x.
Very expensive for nw � 1.



Adjoint sensitivities

Adjoint sensitivities divide the gradient expression differently

∇wFi(u, 0)> = −∇xHi(x)
>
(
∂G

∂x
(x, u, 0)

)−1
︸ ︷︷ ︸

=:λ>i

∂G

∂w
(x, u, 0)

and introduce adjoint vector variables λi, i = 0, . . . , nF that are
implicitly defined by

∇xHi(x) +

(
∂G

∂x
(x, u, 0)

)T
λi = 0



Adjoint sensitivity problem statement

minimize
u,x,λ

H0(x) +

∥∥∥∥∥
(
∂G

∂w
(x, u, 0)

)>
λ0

∥∥∥∥∥
2

+
1

2
L0(u)

subject to Hi(x) +

∥∥∥∥∥
(
∂G

∂w
(x, u, 0)

)>
λi

∥∥∥∥∥
2

+
1

2
Li(u) ≤ 0,

i=1, . . . , nF ,

G(x, u, 0) = 0,

∇xHj(x) +

(
∂G

∂x
(x, u, 0)

)T
λj = 0, j = 0, 1, . . . , nF .

Note: compared to nominal problem, need nF extra variables of
the same dimension as x. Independent of noise dimension nw.



Lyapunov Matrix Propagation

For linearization based approach

forward sensitivities good for large nF , small nw

adjoint sensitivities good for small nF , large nw

Dream:
a formulation that works well for large nw and large nF



A Close Look at the Forward Sensitivity Approach

minimize
u,x,S

h0(xm0) + ‖S>m0
∇h0‖2 +

1

2
L0(u)

subject to hi(xmi) + ‖S>mi
∇hi‖2 +

1

2
Li(u) ≤ 0, i = 1, . . . , nF ,

x0 = f0(u0, 0),

xk = fk(xk−1, uk, 0), k = 1, . . . N,

S0 = ∇wf>0 ,
Sk = ∇xk−1

f>k Sk−1 +∇wf>k , k = 1, . . . N.

Have (N + 1) matrices Sk of dimension nx × nw, where nx is the
single stage state dimension. Expect nw = O(N), nw � nx.

Note that ‖S>mi
∇hi‖2 =

√
∇h>i SmiS

>
mi
∇hi.



Replacing Sensitivities by Lyapunov Matrices

Regard Sk = ∇xk−1
f>k Sk−1 +∇wf>k . Define

Ak := ∇xk−1
f>k ∈ Rnx×nx and

∇wf>k = (0 · · · 0|Bk|0 · · · 0) ∈ Rnx×nw

with Bk := ∇wk
f>k . Also

Sk−1 = (∗ · · · ∗ |0|0 · · · 0) and AkSk−1 = (∗ · · · ∗ |0|0 · · · 0).

This implies (AkSk−1)∇wfk = 0, and thus

Pk =: SkS
>
k = (AkSk−1 +∇wf>k )(AkSk−1 +∇wf>k )>

= AkSk−1S
>
k−1A

>
k +∇wf>k ∇wfk

= AkSk−1S
>
k−1A

>
k +BkB

>
k

= Ak Pk−1 A>k +BkB
>
k

This is a Lyapunov matrix equation with dimension Pk ∈ Rnx×nx



Lyapunov Matrix Reformulation of Forward Sensitivities

minimize
u,x,P

h0(xm0) +
√
∇h>0 Pm0∇h0 +

1

2
L0(u)

subject to hi(xmi) +
√
∇h>i Pmi∇hi +

1

2
Li(u) ≤ 0,

i = 1, . . . , nF ,

x0 = f0(u0, 0),

xk = fk(xk−1, uk, 0), k = 1, . . . N,

P0 = B0B
>
0 ,

Pk = AkPk−1A
>
k +BkB

>
k , k = 1, . . . N.

Only need (N + 1)nx(nx+1)
2 extra variables.

Independent of both nw and nF .



Infinite Time Horizons with Periodic Controls

Assuming stable periodic dynamics and zero bounds Li(u), can
compute Pk resulting from infinite noise sequence w in `2 unit ball
by Periodic Lyapunov Equation (PLE):

minimize
u,x,P

h0(xm0) +
√
∇h>0 Pm0∇h0

subject to hi(xmi) +
√
∇h>i Pmi∇hi ≤ 0, i = 1, . . . , nF ,

x0 = xN ,

xk = fk(xk−1, uk, 0), k = 1, . . . N,

P0 = PN ,

Pk = AkPk−1A
>
k +BkB

>
k , k = 1, . . . N.

Can treat PLE with periodic Schur decomposition [Varga 1997].
CPU time savings up to factor 100 possible [Gillis 2015].



Robust Race Cars (Greg Horn and Joris Gillis)

6 states, i.e. nx = 6

100 time steps, i.e. N = 100

6 disturbances, i.e. nw = 600

2 controls and 4 feedback
gains, i.e. nu = 204

solved in 40 seconds using
CasADi and IPOPT



Race cars with online optimal control (Robin Verschueren)



Quadcopter Flight Around Obstacle (Joris Gillis)

Nominal Solution

tkj = ⁄(k)·j +
qk≠1

p=0 ⁄(p) h

h(›) =


x2 + y2 ≠ 1 Ø 0.

C(›) C Õ(q)

Robustified Solution
K K

K K

10

LDL€



Conclusions

Approximations by Linearization or Lagrangian relaxation lead
to computationally tractable nonlinear programming problems

Lagrangian relaxation is tighter but more expensive (avoids
MPCC and needs only 2nd order derivatives)

Linearization is cheaper and comes in three variants:

forward sensitivities: good for few uncertain parameters
adjoint sensitivities: good for few constraints
Lyapunov matrix propagation: good for small state dimensions

In control applications, robust nonlinear dynamic optimization
allows one to design trajectories and tune feedback controllers
simultaneously


