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Chapter 1

An introduction to

identification

In this chapter a brief, intuitive introduction to the identification theory is given.

By means of a simple example the reader is made aware of a number of pitfalls

associated with a model built from noisy measurements. Next an overview of

the identification process is given. Eventually, a statistical characterization of

the parameters is introduced.

1.1 What is identification?

From the beginning of our lives, when we grew up as babies we interacted with

our environment. Intuitively, we learned to control our actions by predicting

their effect. These predictions are based on an inborn model fitted to reality,

using our past experiences. Starting from very simple actions (if I push a ball, it

rolls), we soon became very able to deal with much more complicated challenges

(walking, running, biking, playing ping-pong). Finally, this process culminates

in the design of very complicated systems like radios, air-planes, mobile phones,

. . . etc. to satisfy our needs. We even build models just to get a better under-

standing of our observations of the universe: what does the life cycle of the sun
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CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

look like? Can we predict the weather of this afternoon, tomorrow, next week,

next month? From all these examples it is seen that we never deal with the

whole of nature at once: we always focus on those aspects we are interested in

and don’t try to describe all of reality using one coherent model. The job is split

up, and efforts are concentrated on just one part of reality at a time. This part

is called the system, the rest of nature being referred to as the environment of

the system. Interactions between the system and its environment are described

by input and output ports. For a very long time in the history of mankind the

models were qualitative, and even nowadays we describe most real life situations

using this “simple” approach: e.g. a ball will roll downhill; temperature will rise

if the heating has been switched on; it seems it will rain since the sky looks very

dark. In the last centuries this qualitative approach was complemented with

quantitative models based on advanced mathematics, and until the last decade

this seemed to be the most successful approach in many fields of science. Most

physical laws are quantitative models describing some part of our impression of

reality. However, it also became clear, very soon, that it can be very difficult

to match a mathematical model to the available observations and experiences.

Consequently, qualitative logical methods typified by fuzzy modeling became

more popular, once more. In this book we deal with the mathematical, quan-

titative modeling approach. Fitting these models to our observations creates

new problems. We look at the world through “dirty” glasses: when we measure

a length, the weight of a mass, the current or voltage, . . . etc. we always make

errors since the instruments we use are not perfect. Also the models are imper-

fect, reality is far more complex than the rules we apply. Many systems are not

deterministic. They also show a stochastic behavior which makes it impossible

to predict exactly their output. Noise in a radio receiver, Brownian motion of

small particles, variation of the wind speed in a thunder storm are all illustra-

tions of this nature. Usually we split the model into a deterministic part and

a stochastic part. The deterministic aspects are captured by the mathematical

system model, while the stochastic behavior is modeled as a noise distortion.
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CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

The aim of identification theory is to provide a systematic approach to fit the

mathematical model, as well as possible, to the deterministic part, eliminating

the noise distortions as much as possible.

Later in this book the meaning of terms like “system” and “goodness of

fit” will be precisely described. Before formalizing the discussion we want to

motivate the reader by analyzing a very simple example, illustrating many of

the aspects and problems that appear in identification theory.

1.2 Identification: a simple resistance example

1.2.1 Estimation of the value of a resistor

Two groups of students had to measure a resistance. Their measurement setup

is shown in 1.1. They passed a constant but unknown current through the

resistor. The voltage u0 across the resistor and the current i0 through it were

measured using a voltmeter and an ampere meter. The input impedance of

the voltmeter is very large compared with the unknown resistor so that all the

measured current is assumed to pass through the resistor. A set of voltage and

current measurements, respectively, u(k), i(k) with k = 1, 2, ... , N is made. The

measurement results of each group are shown in 1.2. Since the measurements

were very noisy the groups decided to average their results. Following a lengthy

discussion, 3 estimators for the resistance were proposed:

R̂SA (N) =
1

N

N∑
k=1

u (k)

i (k)
(1.1)

R̂LS (N) =
1
N

∑N
k=1 u(k)i(k)

1
N

∑N
k=1 i

2 (k)
(1.2)

R̂EV (N) =
1
N

∑N
k=1 u (k)

1
N

∑N
k=1 i (k)

(1.3)
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CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

Figure 1.1: Measurement of a resistor.
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Figure 1.2: Measurement results u(k), i(k) for groups A and B.
The plotted value R(k) is obtained by direct division of the voltage by the
current: R(k) = u(k)/i(k).

The index N indicates that the estimate is based on N observations. Note

that the three estimators result in the same estimate on noiseless data. Both

groups processed their measurements and their results are given in Figure 1.3.

From this figure a number of interesting observations can be made:

10



CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

0

1

2

1 10 100 1000 10000

R
(N

)
(O

hm
)

N

0

1

2

1 10 100 1000 10000

R
(N

)(
O

hm
)

N

Figure 1.3: Estimated resistance values R̂(N) for both groups as a function of
the number of processed data N .

Full dotted line: R̂SA, dotted line: R̂LS, full line: R̂EV.

• All estimators have large variations for small values of N , and seem to

converge to an asymptotic value for large values of N , except R̂SA(N) of

group A. This corresponds to the intuitively expected behavior: if a large

number of data points are processed we should be able to eliminate the

noise influence due to the averaging effect.

• The asymptotic values of the estimators depend on the kind of averaging

technique that is used. This shows that there is a serious problem: at least

2 out of the 3 methods converge to a wrong value. It is not even certain

that any one of the estimators is doing well. This is quite catastrophic:

even an infinite amount of measurements does not guarantee that the

exact value is found.

• The R̂SA(N) of group A behaves very strangely. Instead of converging

to a fixed value, it jumps irregularly up and down before convergence is

reached.

These observations prove very clearly that a good theory is needed to explain

and understand the behavior of candidate estimators. This will allows us to

make a sound selection out of many possibilities and to indicate in advance,
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before running expensive experiments, if the selected method is prone to serious

shortcomings.

In order to get a better understanding of their results the students repeated

their experiments many times and looked to the histogram of R̂(N) for N =

10, 100 and 1000. Normalizing these histograms gives an estimate of the pdf

(probability density function) of R̂(N) as shown in 1.4. Again the students

could learn a lot from these figures:
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Figure 1.4: Observed pdf of R̂(N).
From the left to the right 10, 100 and 1000: full dotted line: R̂SA(N), dotted
line: R̂LS(N), full line: R̂EV(N).

• For small values of N the estimates are widely scattered. As the number

of processed measurements increases, the pdf becomes more concentrated.

• The estimates R̂LS(N) are less scattered than R̂EV(N), while for R̂SA(N)

the odd behavior in the results of group A appears again. The distribution

of this estimate does not contract for growing values of N for group A,

while it does for group B.
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• Again it is clearly visible that the distributions are concentrated around

different values.

At this point in the exercise, the students could still not decide which estimator is

the best. Moreover, there seems to be a serious problem with the measurements

of group A because R̂SA(N) behaves very oddly. Firstly they decided to focus

on the scattering of the different estimators, trying to get more insight into the

dependency on N . In order to quantify the scattering of the estimates, their

standard deviation is calculated and plotted as a function of N in 1.5.
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Figure 1.5: Standard deviation of R̂(N) for the different estimators, and com-
parison with 1/

√
N .

Full dotted line: R̂SA(N), dotted line: R̂LS(N), full line: R̂EV(N), dashed line
1/
√
N .

• The standard deviation of R̂(N) decreases monotonically with N , except

for the pathological case, R̂SA(N), of group A. Moreover, it can be con-

cluded by comparing with the broken line that the standard deviation

is proportional to 1/
√
N . This is in agreement with the rule of thumb

which states that the uncertainty on an averaged quantity obtained from

independent measurements decreases as 1/
√
N .

• The uncertainty in this experiment depends on the estimator. Moreover,

the proportionality to 1/
√
N is only obtained for sufficiently large values

of N for R̂LS(N) and R̂EV(N).

Since both groups of students used the same programs to process their measure-

ments, they concluded that the strange behavior of R̂SA(N) in group A should

13



CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

be due to a difference in the raw data. For that reason they took a closer look at

the time records given in Figure 1.2. Here it can be seen that the measurements

of group A are a bit more scattered than those of group B. Moreover, group A

measured some negative values for the current while group B did not. In order

to get a better understanding, they made a histogram of the raw current data

as shown in Figure 1.6.
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Figure 1.6: Histogram of the current measurements.

These histograms clarify the strange behavior of R̂SA of group A. The noise

on the measurements of group A looks completely different from that of group

B. Due to the noise on the current measurements, there is a significant risk of

getting current values that are very close to zero for group A, while this is not so

for group B. These small current measurements blow up the estimate R̂SA(k) =

u(k)
i(k) for some k, so that the running average R̂SA cannot converge, or more

precisely: the expected value E
{
u(k)
i(k)

}
does not exist. This will be discussed

in more detail later in this chapter. This example shows very clearly that there

is a strong need for methods which can generate and select between different

estimators. Before setting up a general framework, the resistance problem is

further elaborated.

It is also remarkable to note that although the noise on the measurements is

completely differently distributed, the distribution of the estimated resistance

values R̂LS and R̂EV seems to be the same in Figure 1.4 for both groups.
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1.2.2 Simplified analysis of the estimators

With the knowledge they got from the previous series of experiments, the stu-

dents eliminated R̂SA, but they were still not able to decide whether R̂LS or

R̂EV was the best. More advanced analysis techniques are needed to solve this

problem. As the estimates are based on a combination of a finite number of

noisy measurements, there are bound to be stochastic variables. Therefore, an

analysis of the stochastic behavior is needed to select between both estimators.

This is done by calculating the limiting values and making series expansions of

the estimators. In order to keep the example simple, we will use some of the

limit concepts quite loosely. Precise definitions are postponed till Section 1.3.

Three observed problems are analyzed below:

• Why do the asymptotic values depend on the estimator?

• Can we explain the behavior of the variance?

• Why does the R̂SA estimator behave strangely for group A?

To do this it is necessary to specify the stochastic framework: how are the mea-

surements disturbed with the noise (multiplicative, additive), and how is the

noise distributed? For simplicity we assume that the current and voltage mea-

surements are disturbed by additive zero mean, independently and identically

distributed noise, formally formulated as:

i(k) = i0 + ni(k) and u(k) = u0 + nu(k). (1.4)

where i0 and u0 are the exact but unknown values of the current and the voltage,

ni(k) and nu(k) are the noise on the measurements.

Assumption 1: Disturbing noise

ni(k) and nu(k) are mutually independent, zero mean, independent and identi-

cally distributed (iid) random variables with a symmetric distribution and with

variance σ2
u and σ2

i .
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1.2.2.1 Asymptotic value of the estimators

In this section the limiting value of the estimates for N →∞ is calculated. The

calculations are based on the observation that the sample mean of iid random

variables x(k), k = 1, . . . , N converges to its expected value, E {x}

lim
N→∞

1

N

N∑
k=1

x(k) = E {x} . (1.5)

Moreover, if x(k) and y(k) obey Assumption 1, then

lim
N→∞

1

N

N∑
k=1

x (k) y (k) = 0 (1.6)

Since we are dealing here with stochastic variables, the meaning of this state-

ment should be defined more precisely, but in this section we will just use this

formal notation and make the calculations straightforwardly (see Section1.3) for

a formal definition).

The first estimator we analyze is R̂LS(N). Taking the limit of (1.2), gives

limN→∞ R̂LS(N) = lim
N→∞

∑N
k=1 u(k)i(k)∑N
k=1 i

2(k)
(1.7)

=
limN→∞

∑N
k=1 (u0 + nu(k)) (i0 + ni(k))

limN→∞
∑N
k=1 (i0 + ni(k))

2
(1.8)

Or, after dividing the numerator and denominator by N

lim
N→∞

R̂LS(N) =
limN→∞

[
u0i0 + u0

N

∑N
k=1 ni(k) + i0

N

∑N
k=1 nu(k) + 1

N

∑N
k=1 nu(k)ni(k)

]
limN→∞

[
i20 + 1

N

∑N
k=1 n

2
i (k) + 2i0

N

∑N
k=1 ni(k)

]
(1.9)

Since ni and nu are zero mean iid, it follows from (1.5) and (1.6) that

16
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lim
N→∞

1

N

N∑
k=1

nu(k) = 0,

lim
N→∞

1

N

N∑
k=1

ni(k) = 0 and

lim
N→∞

1

N

N∑
k=1

nu(k)ni(k) = 0.

However, the sum of the squared current noise distributions does not con-

verge to zero, but to a constant value different from zero

lim
N→∞

1

N

N∑
k=1

n2i (k) = σ2
i

so that the asymptotic value becomes:

lim
N→∞

R̂LS(N) =
u0i0
i20 + σ2

i

=
R0

1 + σ2
i /i

2
0

. (1.10)

This simple analysis gives a lot of insight into the behavior of the R̂LS(N) esti-

mator. Asymptotically, this estimator underestimates the value of the resistance

due to quadratic noise contributions in the denominator. Although the noise

disappears in the averaging process of the numerator, it contributes systemat-

ically in the denominator. This results in a systematic error (called bias) that

depends on the signal-to-noise ratio (SNR) of the current measurements: i0/σi.

The analysis of the second estimator R̂EV(N) is completely similar. Using

17
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(1.3), we get

lim
N→∞

R̂EV(N) = lim
N→∞

∑N
k=1 u(k)∑N
k=1 i(k)

(1.11)

=
limN→∞

1
N

∑N
k=1 (u0 + nu(k))

limN→∞
1
N

∑N
k=1 (i0 + ni(k))

(1.12)

or

lim
N→∞

R̂EV(N) =
u0 + limN→∞

1
N

∑N
k=1 nu(k)

i0 + limN→∞
1
N

∑N
k=1 ni(k)

(1.13)

=
u0
i0

= R0 (1.14)

so that we can conclude now that R̂EV(N) converges to the true value and

should be preferred over R̂LS(N). These conclusions are also confirmed by the

students’ results in 1.3, where it is seen that the asymptotic value of R̂LS(N) is

much smaller than that of R̂EV(N).

1.2.2.2 Strange behavior of the “simple approach”

Finally, we have to analyze R̂SA(N) in order to understand its strange behavior.

Can’t we repeat the previous analysis here? Consider

R̂SA(N) =
1

N

N∑
k=0

u(k)

i(k)
=

1

N

N∑
k=0

u0 + nu(k)

i0 + ni(k)
. (1.15)

A major difference with the previous estimators is the order of summing and

dividing: here the measurements are first divided and then summed together,

while for the other estimators we first summed the measurements together before

making the division. In other words, for R̂LS(N) and R̂EV(N) we first applied an

averaging process (summing over the measurements) before making the division.

This makes an important difference.

R̂SA(N) =
1

N

u0
i0

N∑
k=0

1 + nu(k)/u0
1 + ni(k)/i0

(1.16)
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In order to process R̂SA(N) along the same lines as the other estimators, we

should get rid of the division, for example by making a Taylor series expansion:

1

1 + x
=

∞∑
l=0

(−1)lxl for |x| < 1. (1.17)

with x = ni(k)
i0

. Since the terms n2l+1
i (k) and nlu(k)nli(k) disappear in the

averaging process (the pdf is symmetric), the limiting value becomes

lim
N→∞

R̂SA(N) = R0

(
1 +

1

N

N∑
k=1

(
ni(k)

i0

)2

+
1

N

N∑
k=1

(
ni(k)

i0

)4

+ ...

)
(1.18)

with
∣∣∣ni(k)i0

∣∣∣ < 1. If we neglect all terms of order 4 or more, the final result

becomes

lim
N→∞

R̂SA(N) = R0

(
1 +

σ2
i

i20

)
(1.19)

if
∣∣∣ni(k)i0

∣∣∣ < 1, ∀ k .

From this analysis we can make two important conclusions

• The asymptotic value only exists if the following condition on the mea-

surements is met: the series expansion must exist otherwise (1.19) is not

valid. The measurements of group A violate the condition that is given

in (1.18) while those of group B obey it (see Figure 1.6). A more detailed

analysis shows that this condition is too rigorous. In practice it is enough

that the expected value E
{
R̂SA(N)

}
exists. Since this value depends on

the pdf of the noise, a more detailed analysis of the measurement noise

would be required. For some noise distributions the expected value exists

even if the Taylor expansion does not!

• If the asymptotic value exists, 1.19 shows that it will be too large. This is

also seen in the results of Group B in Figure 1.3. We know already that

R̂EV(N) converges to the exact value, and R̂SA(N) is clearly significantly

larger.
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1.2.2.3 Variance analysis

In order to get a better understanding of the sensitivity of the different estima-

tors to the measurement noise, the students made a variance analysis using first

order Taylor series approximations. Again they began with the R̂LS(N). Start-

ing from(1.8), and neglecting all second order contributions like nu(k)ni(k), or

n2i (k) it is found that

R̂LS(N) ≈ R0

(
1 +

1

N

N∑
k=1

(
nu(k)

u0
− ni(k)

i0
)

)
= R0 + ∆R. (1.20)

The approximated variance Var
{
R̂LS(N)

}
is (using Assumption 1)

Var
{
R̂LS(N)

}
= E

{
(∆R)

2
}

=
R2

0

N

(
σ2
u

u20
+
σ2
i

i20

)
(1.21)

with E {·} the expected value. Note that during the calculation of the variance,

the shift of the mean value of R̂LS(N) is not considered since it is a second order

contribution.

For the other two estimators, exactly the same results are found:

Var
{
R̂EV(N)

}
= Var

{
R̂SA(N)

}
=
R2

0

N

(
σ2
u

u20
+
σ2
i

i20

)
. (1.22)

The result Var
{
R̂SA(N)

}
is only valid if the expected values exist.

Again, a number of interesting conclusions can be made from this result

• The standard deviation is proportional to 1/
√
N as was found before in

Figure 1.5.

• Although it is possible to reduce the variance by averaging over repeated

measurements, this is no excuse for sloppy experiments since the uncer-

tainty is inversely proportional to the SNR of the measurements. Increas-

ing the SNR requires many more measurements in order to get the same

final uncertainty on the estimates.
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• The variance of the three estimators should be the same. This seems to

conflict with the results of Figure 1.5. However, the theoretical expressions

are based on first order approximations. If the SNR drops to values that

are too small, the second order moments are no longer negligible. In

order to check this, the students set up a simulation and tuned the noise

parameters so that they got the same behavior as they had observed in

their measurements. These values were: i0 = 1A, u0 = 1V, σi = 1A,

σu = 1V. The noise of group A is normally distributed and uniformly

distributed for group B. Next they varied the standard deviations and

plotted the results in 1.7 for R̂EV(N) and R̂LS(N). Here it is clear that

for higher SNR the uncertainties coincide while they differ significantly

for the lower SNR. To give closed form mathematical expressions for this

behavior, it is not enough any more to specify the first and second order

moments of the noise (mean, variance) but the higher order moments or

the pdf of the noise are also required.
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Figure 1.7: Evolution of the standard deviation and the RMS error on the
estimated resistance value as a function of the standard deviation of the noise
(σu = σi).

: R̂EV(N), · · · · · · : R̂LS(N), ∆∆∆ : theoretical value σR.

• Although R̂LS(N) has a smaller variance than R̂EV(N) for low SNR, its

total root mean square (RMS) error (difference with respect to the true

value) is significantly larger due to its systematic error. The following is
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quite a typical observation: many estimators reduce the stochastic error at

the cost of systematic errors. For the R̂EV the RMS error is completely due

to the variability of the estimator since the RMS error coincides completely

with the theoretical curve of the standard deviation.

1.2.3 Interpretation of the estimators: a cost function

based approach

The previous section showed that there is not just one single estimator for each

problem. Moreover, the properties of the estimators can vary quite a lot. This

raises two questions: how can we generate good estimators and how can we eval-

uate their properties? The answers are given in this and the following sections.

In order to recognize good estimators it is necessary to specify what a good

estimator is. This is done in the next section. First we will deal with the ques-

tion of how estimators are generated. Again there exist different approaches. A

first group of methods starts from a deterministic approach. A typical example

is the observation that the noiseless data should obey some model equations.

The system parameters are then extracted by intelligent manipulation of these

equations, usually inspired by numerical or algebraic techniques. Next, the same

procedure is used on noisy data. The major disadvantage of this approach is

that it does not guarantee, at all, that the resulting estimator has a good noise

behavior. The estimates can be extremely sensitive to disturbing noise. The

alternative is to embed the problem in a stochastic framework. A typical ques-

tion to be answered is: where does the disturbing noise sneak into my problem

and how does it behave? To answer this question, it is necessary to make a

careful analysis of the measurement setup. Next, the best parameters are se-

lected using statistical considerations. In most cases these methods lead to a

cost function interpretation and the estimates are found as the arguments that

minimize the cost function. The estimates of the previous section can be found

as the minimizers of the following cost functions:
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• R̂SA(N): Consider the successive resistance estimates R(k) = u(k)/i(k).

The overall estimate after N measurements is then the argument mini-

mizing the following cost function:

R̂SA(N) = arg min
R

VSA(R,N) with VSA(R,N) =

N∑
k=1

(R(k)−R)
2 .

(1.23)

This is the most simple approach (“SA” stands for simple approach) of

the estimation problem. As seen before it has very poor properties.

• R̂LS(N): A second possibility is to minimize the equation errors in the

model equation u(k) − Ri(k) = e(k, R) in least squares (LS) sense. For

noiseless measurements e(k,R0) = 0, with R0 the true resistance value.

R̂LS(N) = arg min
R

VLS(R,N) with VLS(R,N) =

N∑
k=1

e2(k,R). (1.24)

• R̂EV(N): The basic idea of the last approach is to express that the current

as well as the voltage measurements are disturbed by noise. This is called

the errors-in-variables (EV) approach. The idea is to estimate the exact

current and voltage (i0, u0), parametrised as (ip, up) keeping in mind the

model equation u0 = Ri0.

R̂EV(N) = arg min
R,ip,up

VEV (R, ip, up, N) subject to up = Rip (1.25)

with VEV (R, ip, up, N) =

N∑
k=1

(u(k)− up)
2

+

N∑
k=1

(i(k)− ip)
2 (1.26)

This wide variety of possible solutions and motivations illustrates very well the

need for a more systematic approach. In this book we put the emphasis on a

stochastic embedding approach, selecting a cost function on the basis of a noise

analysis of the general measurement setup that is used.

All the cost functions that we presented are of the ‘least squares’ type.

Again there exist many other possibilities, for example, the sum of the absolute
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values. There are two reasons for choosing for a quadratic cost: firstly it is

easier to minimize than other functions, and secondly we will show that normally

distributed disturbing noise leads to a quadratic criterion. This does not imply

that it is the best choice from all points of view. If it is known that some

outliers in the measurements can appear (due to exceptionally large errors, a

temporary sensor failure or a transmission error, etc.), it can be better to select

a least absolute values cost function (sum of the absolute values) because these

outliers are strongly emphasized in a least squares concept (Huber, 1981; Van

den Bos, 1985). Sometimes a mixed criterion is used, e.g. the small errors are

quadratically weighted while the large errors only appear linear in the cost to

reduce the impact of outliers (Ljung, 1995).

1.3 Description of the stochastic asymptotic be-

havior of estimators

Since the estimates are obtained as a function of a finite number of noisy mea-

surements, they are stochastic variables as well. Their pdf is needed in order to

characterize them completely. However, in practice it is usually very hard to de-

rive it, so that the behavior of the estimates is described by a few numbers only,

such as their mean value (as a description of the location) and the covariance

matrix (to describe the dispersion). Both aspects are discussed below.

1.3.1 Location properties: unbiased and consistent esti-

mates

The choice for the mean value is not obvious at all from a theoretical point

of view. Other location parameters like the median or the mode (Stuart and

Ord, 1987) could be used too, but the latter are much more difficult to analyze

in most cases. Since it can be shown that many estimates are asymptotically

normally distributed under weak conditions, this choice is not so important
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because in the normal case, these location parameters coincide. It seems very

natural to require that the mean value equals the true value, but it turns out to

be impractical. What are the true parameters of a system? We can only speak

about true parameters if an exact model exists. It is clear that this is a purely

imaginary situation since in practice we always stumble on model errors so that

only excitation dependent approximations can be made. For theoretical reasons

it still makes sense to consider the concept of “true parameters”, but it is clear at

this point that we have to generalize to more realistic situations. One possible

generalization is to consider the estimator evaluated in the noiseless situation

as the “best” approximation. These parameters are then used as reference value

to compare the results obtained from noisy measurements. The goal is then to

remove the influence of the disturbing noise so that the estimator converges to

this reference value.

Definition 1.3.1: unbiasedness

An estimator θ̂ of the parameters θ0 is unbiased if E
{
θ̂
}

= θ0, for all true

parameters θ0. Otherwise it is a biased estimator.

If the expected value only equals the true value for an infinite number of

measurements, then the estimator is called asymptotically unbiased. In practice

it turns out that (asymptotic) unbiasedness is a hard requirement to deal with.

Example 1.3.1: Unbiased and biased estimators

At the end of their experiments the students wanted to estimate the value of

the voltage over the resistor. Starting from the measurements (1.4), they first

carry out a noise analysis of their measurements by calculating the sample mean

value and the sample variance:

û(N) =
1

N

N∑
k=1

u(k) and σ̂2
u(N) =

1

N

N∑
k=1

(u(k)− û(N))
2 . (1.27)
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Applying the previous definition it is readily seen that

E {û(N)} =
1

N

N∑
k=1

E {u(k)} =
1

N

N∑
k=1

u0 = u0, (1.28)

since the noise is zero mean, so that their voltage estimate is unbiased. The

same can be done for the variance estimate:

E
{
σ̂2
u(N)

}
=
N − 1

N
σ2
u. (1.29)

This estimator shows a systematic error of σ2
u/N and is thus biased. How-

ever, as N →∞ the bias disappears and following the definitions it is asymptoti-

cally unbiased. It is clear that a better estimate would be 1
N−1

∑N
k=1 (u(k)− û(N))

2

which is the expression that is found in the handbooks on statistics.

For many estimators, it is very difficult or even impossible to find the ex-

pected value analytically. Sometimes it does not even exist as it was the case

for R̂SA(N) of group A. Moreover, unbiased estimators can still have a bad dis-

tribution, e.g. the pdf of the estimator is symmetrically distributed around its

mean value, with a minimum at the mean value. Consequently, a more handy

tool (e.g. consistency) is needed.

Definition 1.3.2: consistency

An estimator θ̂(N) of the parameters θ0 is weakly consistent, if it converges in

probability to θ0: plimN→∞ θ̂(N) = θ0, and strongly consistent if it converges

with probability one (almost surely) to θ0: a. s. limN→∞ θ̂(N) = θ0.

Loosely spoken it means that the pdf of θ̂(N) contracts around the true

value θ0, or limN→∞ P
(∣∣∣θ̂(N)− θ0

∣∣∣ > δ > 0
)

= 0. Other convergence concepts

exists, but these will not be discussed here. For the interested reader a short

summary is given in (1.A) till (1.C). The major advantage of the consistency

concept is purely mathematical: it is much easier to prove consistency than

unbiasedness using probabilistic theories starting from the cost function inter-

pretation. Another nice property of the plim is that it can be interchanged with
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a continuous function: plimf(a) = f(plim(a)) if both limits exist. In fact it was

this property that we applied during the calculations of the limit values of R̂LS

and R̂EV, for example

plim
N→∞

R̂EV(N) = plim
N→∞

1
N

∑N
k=1 u(k)

1
N

∑N
k=1 i(k)

(1.30)

=
plimN→∞

1
N

∑N
k=1 u(k)

plimN→∞
1
N

∑N
k=1 i(k)

(1.31)

=
u0
i0

= R0. (1.32)

Consequently R̂EV(N) is a weakly consistent estimator. Calculating the ex-

pected value is much more involved in this case due to the division. Therefore,

consistency is a better suited concept than (asymptotic) unbiasedness to study

it.

1.3.2 Dispersion properties: efficient estimators

In this book the covariance matrix is used to measure the dispersion of an esti-

mator, i.e. to ascertain how much the actual estimator is scattered around its

limiting value? Again this choice, among other possibilities (like, for example,

percentiles), is highly motivated from a mathematical point of view. Within

the stochastic framework used it will be quite easy to calculate the covariance

matrix while it is much more involved to obtain the other measures. For normal

distributions, all dispersion measures are obtainable from the covariance ma-

trix so that for most estimators this choice is not too restrictive because their

distribution converges to a normal one.

As users we are highly interested in estimators with minimal errors. How-

ever, since we can collect only a finite number of noisy measurements it is clear

that there are limits on the accuracy and precision we can reach. This is pre-

cisely quantified in the Cramér-Rao inequality. This inequality provides a lower

bound on the covariance matrix of a(n) (un)biased estimator starting from the

likelihood function. First we introduce the likelihood function, next we present

27



CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

the Cramér-Rao lower bound.

Consider the measurements z ∈ RN obtained from a system described by

a hypothetical, exact model that is parameterised in θ. These measurements

are disturbed by noise and are hence stochastic variables that are characterized

by a probability density function f(z| θ0) that depends on the exact model

parameters θ0 with
´
z∈RN f(z| θ0) d z = 1. Next we can interpret this relation

conversely, viz.: how likely is it that a specific set of measurements z = zm are

generated by a system with parameters θ? In other words, we consider now a

given set of measurements and view the model parameters as the free variables:

L (zm| θ) = f (z = zm| θ) (1.33)

with θ the free variables. L (zm| θ) is called the likelihood function. In many

calculations the log likelihood function l(z| θ) = lnL (z| θ) is used. In 1.33 we

used zm to indicate explicitly that we use the numerical values of the measure-

ments that were obtained from the experiments. From here on we just use z as

a symbol because it will be clear from the context what interpretation should be

given to z. The reader should be aware that L(z| θ) is not a probability density

function with respect to θ since
´
θ
L(z| θ) d θ 6= 1. Notice the subtle difference

in terminology, i.e. probability is replaced by likeliness.

The Cramér-Rao lower bound gives a lower limit on the covariance matrix

of parameters.

Under quite general conditions (see 1.D), this limit is universal and inde-

pendent of the selected estimator: no estimator that violates this bound can be

found. It is given by

CR (θ0) =

(
Inθ +

∂bθ
∂θ

)T

Fi−1 (θ0)

(
Inθ +

∂bθ
∂θ

)
(1.34)

Fi (θ0) = E

{(
∂l (z| θ)
∂θ

)T(
∂l (z| θ)
∂θ

)}
= −E

{
∂2l (z| θ)
∂θ2

}
(1.35)
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The derivatives are calculated in θ = θ0, and bθ = E
{
θ̂
}
− θ0 is the bias on

the estimator. For unbiased estimators (1.34) reduces to

CR(θ0) = Fi−1(θ0). (1.36)

Fi(θ) is called the Fisher information matrix: it is a measure for the infor-

mation in an experiment: the larger the matrix the more information there is.

In (1.35) it is assumed that the first and second derivatives of the log likelihood

function exist with respect to θ.

Example 1.3.2: Influence of the number of parameters on the Cramér-Rao

lower bound

A group of students wanted to determine the flow of tap water by measuring the

height h0(t) of the water in a measuring jug as a function of time t. However,

their work was not precise and in the end they were not sure about the exact

starting time of their experiment. They included it in the model as an addi-

tional parameter: h0(t) = a(t− tstart) = at+b, and θ = [a, b]
T. Assume that the

noise nh(k) on the height measurements is iid zero mean normally distributed

N(0, σ2), and the noise on the time instances is negligible h(k) = atk+b+nh(k),

then the following stochastic model can be used

P (h(k), tk) = P (h(k)− (atk + b)) = P (nh(k))

where P (h(k), tk) is the probability to make the measurements h(k) at tk. The

likelihood function for the set of measurements h = {(h(1), t1), ..., (h(N), tN )}

is

L(h| a, b) =
1

(2πσ2)N/2
e−

1
2σ2

∑N
k=1(h(k)−atk−b)

2

, (1.37)

and the loglikelihood function becomes

l(h| a, b) = −N
2

log(2πσ2)− 1

2σ2

N∑
k=1

(h(k)− atk − b)2 . (1.38)
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The Fisher information matrix and the Cramér-Rao lower bound are found using

(1.35):

Fi(a, b) =
N

σ2

 s2 µ

µ 1

 (1.39)

⇓

CR(a, b) = Fi−1(a, b) =
σ2

N(s2 − µ2)

 1 −µ

−µ s2

 (1.40)

with µ = 1
N

∑N
k=1 tk and s2 = 1

N

∑N
k=1 t

2
k. These expressions are very informa-

tive. First of all we can note that the attainable uncertainty is proportional to

the standard deviation of the noise. This means that inaccurate measurements

result in poor estimates, or identification is no excuse for sloppy measurements.

The uncertainty decreases as
√
N , which can be used as a rule of thumb when-

ever independent measurements are processed. Finally it can also be noted that

the uncertainty depends on the actual time instances used in the experiment.

In other words, by making a proper design of the experiment, it is possible to

influence the uncertainty on the estimates. Another question we can answer now

is what price is paid to include the additional model parameter b to account for

the unknown starting time. By comparing Fi−1(a, b) to Fi−1(a) (assuming that

b is known) it is found that

σ2
a(a, b) =

σ2

N(s2 − µ2)
≥ σ2

Ns2
= σ2

a(a) (1.41)

where σ2
a(a, b) is the lower bound on the variance of a if both parameters are

estimated, else σ2
a(a) is the lower bound if only a is estimated. This shows

that adding additional parameters to a model increases the minimum attain-

able uncertainty on it. Of course these parameters may be needed to remove

systematic errors so that a balance between stochastic errors and systematic er-

rors is achieved. This is further elaborated in the chapter on model validation.
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The Cramér-Rao lower bound is a conservative estimate of the smallest pos-

sible covariance matrix that is not always attainable (the values may be too

small). Tighter bounds exist (Abel, 1993) but these are more involved to calcu-

late. Consequently, the Cramér-Rao bound is the most used criterion to verify

the efficiency of an estimator.

Definition 1.3.3: efficiency

An unbiased estimator is called efficient if its covariance matrix is smaller than

that of any other unbiased estimator. An unbiased estimator that reaches the

Cramér-Rao lower bound is also an efficient estimator.

1.4 Basic steps in the identification process

Each identification session consists of a series of basic steps. Some of them may

be hidden or selected without the user being aware of his choice. Clearly, this

can result in poor or sub optimal results. In each session the following actions

should be taken:

• Collect information about the system;

• Select a model structure to represent the system;

• Choose the model parameters to fit the model as well as possible to the

measurements: selection of a “goodness of fit” criterion;

• Validate the selected model.

Each of these points is discussed in more detail below.

1.4.1 Collect information about the system

If we want to build a model for a system we should get information about it. This

can be done by just watching the natural fluctuations (e.g. vibration analysis

of a bridge that is excited by normal traffic), but most often it is more efficient

to set up dedicated experiments that actively excite the system (e.g. controlled
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excitation of a mechanical structure using a shaker). In the latter case the user

has to select an excitation that optimizes his own goal (for example, minimum

cost, minimum time or minimum power consumption for a given measurement

accuracy) within the operator constraints (e.g. the excitation should remain

below a maximum allowable level). The quality of the final result can heavily

depend on the choices that are made.

1.4.2 Select a model structure to represent the system

A choice should be made within all the possible mathematical models that can

be used to represent the system. Again a wide variety of possibilities exist such

as

Parametric versus nonparametric models: In a parametric model, the

system is described using a limited number of characteristic quantities called

the parameters of the model, while in a nonparametric model the system is

characterized by measurements of a system function at a large number of points.

Examples of parametric models are the transfer function of a filter described by

its poles and zeros, the motion equations of a piston, etc. An example of a

nonparametric model is the description of a filter by its impulse response at a

large number of points.

Usually it is simpler to create a non-parametric model than a parametric

one because the modeler needs less knowledge about the system itself in the

former case. However, physical insight and concentration of information is more

substantial for parametric models than for nonparametric ones. In this book we

will concentrate on transfer function models (parametric models), but also the

problem of frequency response function measurements (nonparametric model)

will be elaborated.

White box models versus black box models: In the construction of a

model, physical laws whose availability and applicability depend on the insight
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and skills of the experimenter can be used (Kirchhoff’s laws, Newton’s laws,

etc.). Specialized knowledge relating to different scientific fields may be brought

into this phase of the identification process. The modelling of a loudspeaker, for

example, requires extensive understanding of mechanical, electrical and acous-

tical phenomena. The result may be a physical model, based on comprehensive

knowledge of the internal functioning of the system. Such a model is called a

white box model.

Another approach is to extract a black box model from the data. Instead of

making a detailed study, and developing a model based upon physical insight and

knowledge, a mathematical model is proposed which allows sufficient description

of any observed input and output measurements. This reduces the modelling

effort significantly. For example, instead of modelling the loudspeaker using

physical laws, an input-output relation, taking the form of a high-order transfer

function, could be proposed.

The choice between the different methods depends on the aim of the study:

the white box approach is better for gaining insight into the working principles

of a system, but a black box model may be sufficient if the model will only be

used for prediction of the output.

Although, as a rule of thumb, it is advisable to include as much prior knowl-

edge as possible during the modelling process, it is not always easy to do so. If

we know, for example, that a system is stable, it is not simple to express this

information if the polynomial coefficients are used as parameters.

Linear models versus nonlinear models: In real life almost every system

is nonlinear. Because the theory of nonlinear systems is very involved, these are

mostly approximated by linear models, assuming that in the operation region

the behavior can be linearised. This kind of approximation makes it possible to

use simple models without jeopardizing properties which are of importance to

the modeler. This choice depends strongly on the intended use of the model. For

example, a nonlinear model is needed to describe the distortion of an amplifier,
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but a linear model will be sufficient to represent its transfer characteristics if

the linear behavior is dominant and is of the only interest.

Linear-in-the-parameters versus nonlinear-in-the-parameters: Amodel

is called linear-in-the-parameters if there exists a linear relation between these

parameters and the error that is minimized. This does not imply that the sys-

tem itself is linear. For example ε = y− (a1u+a2u
2) is linear in the parameters

a1 and a2 but describes a non-linear system. On the other hand

ε(jω) = Y (jω)− a0 + a1jω

b0 + b1jω
U(jω)

describes a linear system but the model is non-linear in the b0 and b1 parame-

ters. Linearity in the parameters is a very important aspect of models since it

has a strong impact on the complexity of the estimators if a (weighted) least

squares cost function is used. In that case the problem can be solved analytically

for models that are linear in the parameters so that an iterative optimization

problem is avoided.

1.4.3 Match the selected model structure to the measure-

ments

Once a model structure is chosen (e.g. a parametric transfer function model) it

should be matched as well as possible with the available information about the

system. Mostly, this is done by minimizing a criterion that measures a goodness

of the fit. The choice of this criterion is extremely important since it determines

the stochastic properties of the final estimator. As seen from the resistance

example, many choices are possible and each of them can lead to a different

estimator with its own properties. Usually, the cost function defines a distance

between the experimental data and the model. The cost function can be chosen

on an ad hoc basis using intuitive insight, but there exists also a more systematic

approach based on stochastic arguments as explained in Chapter 2. Simple tests
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on the cost function exist (necessary conditions) to check even before deriving

the estimator if it can be consistent, but this outside the scope of this book.

1.4.4 Validate the selected model

Finally, the validity of the selected model should be tested: does this model

describe the available data properly or are there still indications that some of

the data are not well modelled, indicating remaining model errors? In practice

the best model (= the smallest errors) is not always preferred. Often a simpler

model that describes the system within user-specified error bounds is preferred.

Tools will be provided that guide the user through this process by separating the

remaining errors into different classes, for example unmodelled linear dynamics

and non-linear distortions. From this information further improvements of the

model can be proposed, if necessary.

During the validation tests it is always important to keep the application in

mind. The model should be tested under the same conditions as it will be used

later. Extrapolation should be avoided as much as possible. The application

also determines what properties are critical.

1.4.5 Conclusion

This brief overview of the identification process shows that it is a complex task

with a number of interacting choices. It is important to pay attention to all

aspects of this procedure, from the experiment design till the model validation,

in order to get the best results. The reader should be aware that besides this

list of actions other aspects are also important. A short inspection of the mea-

surement setup can reveal important shortcomings that can jeopardize a lot of

information. Good understanding of the intended applications helps to setup

good experiments and is very important to make the proper simplifications dur-

ing the model building process. Many times, choices are made that are not

based on complicated theories but are dictated by the practical circumstances.

In these cases a good theoretical understanding of the applied methods will help

35



CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

the user to be aware of the sensitive aspects of his techniques. This will enable

him to put all his effort on the most critical decisions. Moreover, he will become

aware of the weak points of the final model.

Appendices

1.A Definitions of stochastic limits

Let x(N), N = 1, 2, . . . be a scalar random sequence. There are several ways in

which the sequence might converge to a (random) number x as N → ∞. We

will define four modes of stochastic convergence.

Convergence 1: in mean square

The sequence x(N), N = 1, 2, . . . converges to x in mean square if, E
{
|x|2
}
<

∞, E
{
|x(N)|2

}
<∞ for all N , and limN→∞ E

{
|x(N)− x|2

}
= 0. We write

l. i.m.
N→∞

x(N) = x ⇔ lim
N→∞

E
{
|x(N)− x|2

}
= 0 (1.42)

Convergence 2: with probability 1

The sequence x(N), N = 1, 2, . . . converges to x with probability 1 (w.p. 1) or

almost surely if, limN→∞ x[ω](N) = x[ω] for almost all realizations ω, except

those ω ∈ A such that P (()A) = 0. We write

a. s. lim
N→∞

x(N) = x ⇔ P
(

lim
N→∞

x(N) = x
)

= 1 (1.43)

This definition is equivalent to (Theorem 2.1.2 of Lukacs, 1975)

a. s. lim
N→∞

x(N) = x ⇔ ∀ε > 0: lim
N→∞

P

(
sup
k≥N
{|x(k)− x|} ≤ ε

)
= 1 (1.44)

Convergence 3: in probability

The sequence x(N), N = 1, 2, . . . converges to x in probability if, for every

ε, δ > 0 there exists aN0 such that for everyN > N0: P (|x(N)− x| ≤ ε) > 1−δ.
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We write

plim
N→∞

x(N) = x ⇔ ∀ε > 0: lim
N→∞

P (|x(N)− x| ≤ ε) = 1 (1.45)

Convergence 4: in distribution

Let FN (x) and F (x) be the distribution functions of, respectively, x(N) and

x. The sequence x(N), N = 1, 2, . . . converges to x in law or in distribution if

FN (x) converges weakly1 to F (x). We write

Lim
N→∞

x(N) = x ⇔ Lim
N→∞

FN (x) = F (x)

1.B Interrelations between stochastic limits

In the previous section we defined several modes of stochastic convergence. The

connections between these concepts are

Interrelation 1:

Almost sure convergence implies convergence in probability, the converse is not

true (Theorem 2.2.1 of Lukacs, 1975)

Interrelation 2:

Convergence in mean square implies convergence in probability, the converse is

not true (Theorem 2.2.2 of Lukacs, 1975)

Interrelation 3:

Convergence in probability implies convergence in law, the converse is not true

(Theorem 2.2.3 of Lukacs, 1975)

Interrelation 4:

There is no implication between almost sure and mean square convergence

Interrelation 5:

a sequence x(N) converges in probability to x if and only if every subsequence
1This means at all continuity points of the limiting function and is denoted by “Lim”
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x(Nk) contains a sub-subsequence x(Nki) which converges (i → ∞) almost

surely to x (Theorem 2.4.4 of Lukacs, 1975)

Interrelation 6:

A sequence converges in probability to a constant if and only if it converges in

law to a degenerate distribution2 (Corollary to Theorem 2.2.3 of Lukacs, 1975)

A graphical representation of the convergence area of the different stochastic

limits is given in Figure1.8. The interrelations between the concepts are sum-

marized in Figure1.9. Since these allow a better understanding of the stochastic

limits, some proofs are given in appendix. The importance of Interrelation 5 is

that any theorem proven for the almost sure limit is also valid for the limit in

probability. Before illustrating some of the interrelations by (counter) examples,

we cite the Borel-Cantelli and the Fréchet-Shohat lemmas which are useful to

establish, respectively, convergence w.p. 1 and convergence in distribution. The

Borel-Cantelli lemma roughly says that if the convergence in probability or in

mean square is sufficiently fast, then this implies convergence with probability

1.

Figure 1.8: Convergence area of the stochastic limits.

2F (x) is degenerate if there exists a x0 such that F (x) = 0 for x < x0 and F (x) = 1 for
x ≥ x0.
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Figure 1.9: Interrelations between the stochastic limits.

Lemma 1: Borel-Cantelli

if
∞∑
N=1

P (|x(N)− x| > ε) <∞ or
∞∑
N=1

E
{
|x(N)− x|2

}
<∞ (1.46)

then x(N) converges to x w.p. 1.

Lemma 2: Fréchet-Shohat

let x have a distribution function F (x) that is uniquely determined by its mo-

ments (cumulants). If the moments (cumulants) of the sequence x(N) converge

for N →∞ to the moments (cumulants) of x, then x(N) converges in distribu-

tion to x.

Example 1.B.1:

Convergence w.p. 1 and convergence in probability do not imply convergence

in mean square (Example 2.1.1 of Stout). Take ω to be uniform in [0, 1], and

build the sequence x(N) such that

x[ω] (N) =


N ∀ω ∈

[
0, 1

N

)
0 ∀ω ∈

[
1
N , 1

]
Two realizations of the sequence are, for example,

{
x[0.3](N)

}
= {1, 2, 3, 0, 0, 0, 0, 0, . . .}{

x[0.15](N)
}

= {1, 2, 3, 4, 5, 6, 0, 0, . . .}
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We see that x[ω](N) is zero for N sufficiently large, which suggests that it will

converge to zero. Formally, plimN→∞ x(N) = a. s. limN→∞ x(N) = 0 since

P

(
sup
k≥N
|x(k)| ≤ ε

)
= P (|x(N)| ≤ ε) = P (x(N) = 0) = 1− 1

N

is arbitrarily close to 1 for N sufficiently large. There is just one sequence,

x[0](N), which does not converge. This is not in contradiction with the pre-

vious results because the probability to get this particular realization is zero:

P (ω = 0) = 0. The mean square limit l. i.m.N→∞x(N) does not exist since

E
{
x2(N)

}
= N is unbounded. Note that the Borel-Cantelli lemma cannot be

used in this example to establish the almost sure convergence from the conver-

gence in probability. Indeed,

∞∑
N=1

P (|x(N)| > ε) =

∞∑
N=1

1

N
=∞.

Example 1.B.2: Convergence in probability and convergence in mean

square do not imply convergence w.p. 1 (Example 2.1.2 of Stout,

1974)

Take ω to be uniform in [0, 1), and build the sequence T (n, k) such that

T [ω] (n, k) =


1 ∀ω ∈

[
k−1
n , kn

)
0 elsewhere

for k = 1, 2, . . . , n and n ≥ 1. Let

{x(N)} = {{T (1, k)} , {T (2, k)} , {T (3, k)} , . . .}

with {T (n, k)} = {T (n, 1), T (n, 2), . . . , T (n, n)} and N = n(n−1)
2 + k. Two

realizations of the sequence are, for example,

{
x[0.27](N)

}
= {{1} , {1, 0} , {1, 0, 0} , {0, 1, 0, 0} , . . .}{

x[0.85](N)
}

= {{1} , {0, 1} , {0, 0, 1} , {0, 0, 0, 1} , . . .}
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We see that the length of each subsequence {T (n, k)} of {x(N)} increases with

n and that it contains exactly one non-zero term. This suggests that x(N) will

converge in probability (the probability to get a 1 goes to zero), but not w.p. 1

(the supremum is 1 for any value of N). Formally, plimN→∞ x(N) = 0 since

lim
N→∞

P (|x(N)| ≤ ε) = lim
N→∞

P (T (n, k) = 0) = lim
N→∞

(
1− 1

n

)
= 1

and l. i.m.N→∞ x(N) = 0 because

lim
N→∞

E
{
x2(N)

}
= lim
N→∞

E
{
T 2(n, k)

}
= lim
N→∞

1

n
= 0

The almost sure limit a. s. limN→∞x(N) does not exist since P
(
supr≥N {|x(r)|} > ε

)
=

1. Note that the subsequence T (n, k), with k fixed and n ≥ 1, converges w.p. 1

to zero. This is an illustration of interrelation 5

Example 1.B.3: Convergence in mean square and convergence w.p. 1

are compatible (Example 2.2.3 of Lukacs, 1975)

Let x(N) be a random variable which assumes only the values 1
N and − 1

N with

equal probability. We find l. i.m.N→∞ E
{
x2(N)

}
= 0 since

lim
N→∞

E
{
x2(N)

}
= lim
N→∞

1

N2
= 0

Also a. s. limN→∞ x(N) = 0 because |x(k)| < |x(N)| for any k > N so that

P
(
supk≥N {|x(k)| ≤ ε}

)
= P (|x(N)| ≤ ε)|N>1/ε = 1

Example 1.B.4: Convergence in distribution does not imply conver-

gence in probability (Example 2.2.4 of Lukacs, 1975)

Let x be a random variable that can only take the values 0 and 1 with equal prob-

ability. Next, construct the sequence x(N) = 1−x. We have LimN→∞ x(N) = x

since x(N) and x have the same distribution functions FN (x) = F (x). However,

the limit in probability plimN→∞ x(N) does not exist since |x(N)− x| = 1 so

that P (|x(N)− x| ≤ ε) = 0.
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1.C Properties of stochastic limits

The properties of the stochastic limits are similar to those of the classical (de-

terministic) limit, but there are some subtle differences. The general properties

are

Property 1:

A continuous function and the almost sure limit may be interchanged

a. s. limN→∞f (x(N)) = f(x) with x = a. s. limN→∞x(N) (1.47)

Property 2:

The almost sure limit and the expected value may be interchanged for uniformly

bounded sequences (Theorem 5.4 of Billingsley, 1995)

lim
N→∞

E {x(N)} = E
{

a. s. lim
N→∞

x(N)
}

(1.48)

A direct consequence of Property 2 is that

E
{
Oa.s.

(
N−k

)}
= O

(
N−k

)
(1.49)

Property 3:

A continuous function and the limit in probability may be interchanged (Theo-

rem 2.3.3 of Lukacs, 1975)

plim
N→∞

f (x(N)) = f(x) with x = plim
N→∞

x(N) (1.50)

Property 4:

The limit in probability and the expected value may be interchanged for uni-

formly bounded sequences (Theorem 5.4 of Billingsley, 1995)

lim
N→∞

E {x(N)} = E

{
plim
N→∞

x(N)

}
(1.51)
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A direct consequence of Property4 is that

E
{
Op(N−k)

}
= O(N−k) (1.52)

Property 5:

The mean square limit is linear (Theorem 3.1 of Jazwinski, 1970)

l. i.m.
N→∞

(ax(N) + by(N)) = a l. i.m.
N→∞

x(N) + b l. i.m.
N→∞

y(N) (1.53)

where a and b are deterministic (non-random) numbers.

Property 6:

The mean square limit and the expected value may be interchanged (Theorem

3.1 of Jazwinski, 1970),

lim
N→∞

E {x(N)} = El. i.m.
N→∞

x(N) (1.54)

A direct consequence of 6 is that

E
{
Om.s.

(
N−k

)}
= O

(
N−k

)
(1.55)

Property 7:

if l. i.m.N→∞ x(N) = x and E
{

(x(N)− x)2
}

= O(N−k), with k > 0, then

x(N) = x+Om.s.(N
−k/2) and x(N) = x+Op(N−k/2) (1.56)

This is a direct consequence of (1.55) and Interrelation 2.

Property 8:

If the sequence x(n) is deterministic (non-random), then the limit in mean

square, the limit w.p. 1 and the limit in probability reduce to the deterministic

limits.

Property 1 follows directly from the definition of convergence 2 with proba-
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bility one while property 3 follows from Interrelation 5 and property 1. Prop-

erties 1 and 3 require the continuity of the function at ALL values of the limit

random variable x. If x is a constant (non-random), then continuity in a closed

neighborhood of x is sufficient. Note that the limit in mean square and a contin-

uous function may, in general, NOT be interchanged. Note also that the almost

sure limit and the limit in probability, in general, do NOT commute with the

expected value.

1.D Cramér-Rao lower bound

Consider the identification of the parameter vector θ ∈ Rnθ using noisy mea-

surements z ∈ RN . The quality of the estimator θ̂(z) can be represented by its

mean square error matrix

MSE
(
θ̂(z)

)
= Cov

{
θ̂(z)

}
+ bθb

T
θ (1.57)

where θ0 and bθ denote, respectively, the true value and the bias on the

estimates. We may wonder whether there exists a lower limit on the value of

the mean square error (1.57) that can be obtained with various estimators. The

answer is given by the generalized Cramér-Rao lower bound.

Theorem 1: Generalized Cramér-Rao lower bound

Let fz(z, θ0) be the probability density function of the measurements z ∈ RN .

Assume that fz(z, θ0) and its first and second order derivatives w.r.t. θ ∈ Rnθ

exist for all θ0-values. Assume, furthermore, that the boundaries of the domain

of fz(z, θ0) w.r.t. z are θ0-independent. Then, the generalized Cramér-Rao

lower bound on the mean square error of any estimator Ĝ(z) of the function

G(θ) ∈ Cr of θ is

MSE
(
Ĝ
(
θ̂ (z)

))
≥
(
∂G (θ0)

∂θ0
+
∂bG
∂θ0

)
Fi+ (θ0)

(
∂G (θ0)

∂θ0
+
∂bG
∂θ0

)H

+ bGb
H
G

(1.58)
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with bG = E
{
Ĝ(z)

}
− G (θ0) the bias that might be present in the estimate,

and Fi (θ0) the Fisher information matrix of the parameters θ0

Fi (θ0) = E

{(
∂ ln fz (z, θ0)

∂θ0

)T(
∂ ln fz (z, θ0)

∂θ0

)}
= −E

{
∂2 ln fz (z, θ0)

∂θ20

}
(1.59)

Equality holds in (1.58) if and only if there exists a non-random matrix Γ such

that

Ĝ
(
θ̂(z)

)
− E

{
Ĝ
(
θ̂(z)

)}
= Γ

(
∂ ln fz (z, θ0)

∂θ0

)T

(1.60)

The expectations in (1.58) and (1.59) are taken w.r.t. the measurements z.

Note that the calculation of the Cramér-Rao lower bound requires knowledge

of the true parameters θ0 which is often not available (except in simulations).

An approximation can be calculated by replacing θ0 by its estimated value

θ̂ in (1.58). Two special cases of the Cramér-Rao inequality are worthwhile

mentioning.

If G(θ) = θ, bG = 0 and Fi (θ0) is regular, then we obtain the Cramér-Rao

lower bound for unbiased estimators (abbreviated as UCRB)

Cov
{
θ̂(z)

}
≥ Fi−1(θ0) (1.61)

If condition (1.60) is not satisfied, θ̂(z)− θ0 6= Γ
(
∂ ln fz(z,θ0)

∂θ0

)T
, then the lower

bound (1.61) is too conservative, and there may still be an unbiased estimator

which has smaller variance than any other unbiased estimator. Better (larger)

bounds exist when (1.61) is not attainable, but they are often (extremely) dif-

ficult to compute. An overview of tighter bounds can be found in Abel (1993).

If G(θ) = θ, bG 6= 0 and Fi(θ0) is regular, then we find the Cramér-Rao lower

bound on the mean square error of biased estimators (abbreviated as CRB)

MSE
(
θ̂ (z)

)
≥
(

Inθ +
∂bθ
∂θ0

)
Fi−1 (θ0)

(
Inθ +

∂bθ
∂θ0

)T

+ bθb
T
θ (1.62)

It follows that the Cramér-Rao lower bound for asymptotically unbiased estima-
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tors (bθ → 0 as N →∞) is asymptotically given by (1.61), only if the derivative

of the bias w.r.t. θ0 is asymptotically zero. Likewise the unbiased case, the

lower bound (1.62) may be too conservative and tighter bounds exist (Abel,

1993). Note that the first term in the right hand side of (1.62) can be zero for

biased estimators.

In general, it is impossible to show that the bias (and its derivative w.r.t. θ)

of a weakly or strongly consistent estimator converges to zero as N →∞. How-

ever, the moments of the limiting random variable often exist. The (asymptotic)

covariance matrix or mean square error of the limiting random variable is then

compared to the UCRB. In this context, the concept of asymptotic efficiency is

also used for weakly or strongly consistent estimators.
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Chapter 2

A statistical approach to the

estimation problem

In this chapter a systematic approach to the parameter estimation problem

is made: what criterion should be used to match the model to the data? A

statistical approach to select a criterion to measure the ‘goodness’ of the fit is

made. Basic concepts of statistics such as the expected value, the covariance

matrix, probability density functions are assumed to be known.

2.1 Introduction

In the previous sections it was shown that an intuitive approach to a parameter

estimation problem can cause serious errors without even being noticed. To

avoid severe mistakes, a theoretical framework is needed. Here a statistical de-

velopment of the parameter estimation theory is made. Four related estimators

are studied: the least squares (LS) estimator, weighted least squares (WLS)

estimator, maximum likelihood (ML) estimator and, finally, the Bayes estima-

tor. It should be clear that as mentioned before, it is still possible to use other

estimators, like the least absolute values. However, a comprehensive overview

of all possible techniques is beyond the scope of this book.
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To use the Bayes estimator, the a priori probability density function (pdf)

of the unknown parameters and the pdf of the noise on the measurements is

required. Although it seems, at first, quite strange that the parameters have a

pdf, we will illustrate in the next section that we use this concept regularly in

daily life. The ML estimator only requires knowledge of the pdf of the noise

on the measurements, and the WLS estimator can be applied optimally if the

covariance matrix of the noise is known. Even if this information is lacking, the

LS method is usable. Each of these estimators will be explained in more detail

and illustrated in the following sections.

2.2 Least Squares estimation

Consider a multiple input, single output system modelled by

y0(k) = g (u0(k), θ0) (2.1)

with k the measurement index, y(k) ∈ R, u0(k) ∈ R1×nu , and θ0 ∈ Rnθ the true

parameter vector. The aim is to estimate the parameters from noisy observations

at the output of the system:

y(k) = y0(k) + ny(k). (2.2)

This is done by minimizing the errors

e(k, θ) = y(k)− y(k, θ), (2.3)

with y(k, θ) the modelled output. To do this, a scalar criterion that expressed

the ‘goodness’ of the fit is needed. Many possibilities exist, for example:

minimizing the sum of the absolute values

θ̂NLA(N) = arg min
θ

VNLA(θ,N), with VNLA(θ,N) =

N∑
k=1

|e(k, θ)| , (2.4)
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where NLA stands for nonlinear least absolute values. An alternative is to

minimize the sum of the squared values, leading to the nonlinear least squares

(NLS):

θ̂NLS(N) = arg min
θ

VNLS(θ,N), with VNLS(θ,N) =
1

2

N∑
k=1

e2(k, θ). (2.5)

The least squares estimator is the most popular. Since this is an arbitrary

choice, initially, it is clear that the result is not necessarily optimal. Some of

the other loss functions with their related properties are studied explicitly in

the literature. In this book we concentrate on least squares, a choice strongly

motivated by numerical aspects: minimizing a least squares cost function is

usually less involved than the alternative cost functions. Later on, this choice

will also be shown to be motivated from stochastic point of view. Normally

distributed noise leads, naturally, to least squares estimation. On the other

hand θ̂NLA(N) will be less sensitive to outliers in the data. A full treatment of

the problem is beyond the scope of this book.

As seen in the resistance example, even within the class of least squares

estimators, there are different possibilities resulting in completely different es-

timators with different properties. As a rule of thumb, it is important to see

where the noise enters into the raw data. Next a cost function should be selected

that explicitly accounts for these errors. For the major part of this chapter, we

assume that the inputs u0(k) are exactly known. Only the output observations

of the system is disturbed by noise:

y(k) = y0(k) + ny(k). (2.6)

This leads in a natural way to the loss function (2.5). Later in this chapter, we

will come back to the situation where also the input observations are disturbed

by noise (u(k) = u0(k)+nu(k)) and one possibility to deal with this generalized

problem will be presented.
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2.2.1 Nonlinear least squares

In general the analytical solution of the non-linear least squares problem (2.5)

is not known because e(k, θ) is nonlinear in the parameters. Numerical methods

must be used to find the parameters minimize VNLS(θ,N). A whole bunch of

techniques are described in the literature (Fletcher, 1991), and many of them

are available in mathematical packages that are commercially available. They

vary from very simple techniques like simplex methods that require no deriva-

tives at all, through gradient or steepest descent methods (based on first order

derivatives), to Newton methods that make use of second order derivatives. The

optimal choice strongly depends on the specific problem. A short discussion of

some of these methods is given in the next chapter. Here we will reduce the

problem first to the linear least squares where it is much easier to make general

statements. Eventually, we come back to the general problem and make some

brief comments.

2.2.2 The linear-in-the-parameters least squares estima-

tor

If the model is linear-in-the-parameters,

y0 = K(u0)θ0, (K ∈ RN×nθ ) (2.7)

and

e(θ) = y −K(u0)θ, (2.8)

then 2.5 reduces to a linear least squares cost function.

VLS(θ,N) =
1

2

N∑
k=1

e2(k, θ) =
1

2

N∑
k=1

(y(k)−K(u0(k))θ)
2 (2.9)
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or using matrix notations

VLS(θ,N) =
1

2
eT(θ)e(θ) =

1

2
(y −K(u0)θ)

T
(y −K(u0)θ) (2.10)

Definition The linear least squares estimate θ̂LS(N) is

θ̂LS(N) = arg min
θ

VLS(θ,N) (2.11)

2.2.2.1 Calculation of the explicit solution

The minimizer of this loss function can be explicitly obtained by putting ∂VLS

∂θ =

0. In order to keep the expressions compact, we do not include the arguments

of K below.

∂VLS
∂θ

= eT
∂e

∂θ
= 0 or

(
∂e

∂θ

)T

e = 0, with
∂e

∂θ
= −K (2.12)

−KT (y −Kθ) = 0 (2.13)

And the explicit solution becomes

θ̂LS(N) =
(
KTK

)−1
KTy (2.14)

Although this offers an elegant expression that is very useful for theoretical

studies, it is better to calculate θ̂LS by solving
(
KTK

)
θ̂LS = KTy since this

requires less numerical operations. Later on, we even will provide a numerical

more stable solution that avoids to make the product KTK.

See Chapter 7, Exercise 5 for an illustration of the stable calculation of the

linear least squares solution in Matlab™.

Example 2.2.1: Weighing a loaf of bread

John is asked to estimate the weight of a loaf of bread from N noisy measure-

ments y(k) = θ0 + ny(k) with θ0 the true but unknown weight, y(k) the weight
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measurement and ny(k) the measurement noise. The model becomes

y = Kθ + ny, with K = (1, 1, . . . , 1)
T . (2.15)

Using (2.14) the estimate is

θ̂LS(N) =
(
KTK

)−1
KTy =

1

N

N∑
k=1

y(k) (2.16)

2.2.3 Properties of the linear least squares estimator

Note that we did not formulate any assumption on the behavior of the noise

ny to arrive at 2.14. It can be directly calculated from measurements without

bothering about the noise behavior. However, in order to make statements

about the properties of the estimator, it is necessary to give some specifications

on the noise behavior.

2.2.3.1 Expected value of θ̂LS(N)

The expected value is obtained by

E
{
θ̂LS(N)

}
= E

{(
KTK

)−1
KTy

}
(2.17)

=
(
KTK

)−1
KT E {y0 + ny} (2.18)

=
(
KTK

)−1
KTy0 +

(
KTK

)−1
KT E {ny} (2.19)

=
(
KTK

)−1
KTKθ0 +

(
KTK

)−1
KT E {ny} (2.20)

where we made use of 2.7, y0 = K(u0)θ0. Hence the expected value becomes

E
{
θ̂LS(N)

}
= θ0 +

(
KTK

)−1
KT E {ny} (2.21)

(
KTK

)−1
KT E {ny} equals zero if E {ny} = 0.

Conclusion: The linear least squares estimate is unbiased if E {ny} = 0
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2.2.3.2 Covariance matrix of θ̂LS(N)

Also the covariance matrix can be easily obtained.

Cov
{
θ̂LS(N)

}
= E

{(
θ̂LS − E

{
θ̂
})(

θ̂LS − E
{
θ̂
})T}

(2.22)

= E

{((
KTK

)−1
KTny

)((
KTK

)−1
KTny

)T}
(2.23)

=
((
KTK

)−1
KT
)

E
{
nyn

T
y

}((
KTK

)−1
KT
)T

(2.24)

=
((
KTK

)−1
KT
)

Cov {ny}
((
KTK

)−1
KT
)T

(2.25)

with Cov
{
θ̂LS

}
= E

{
nyn

T
y

}
.

If the disturbing noise ny is white and uncorrelated, Cov {ny} = σ2
y IN and

Cov
{
θ̂LS

}
becomes Cov

{
θ̂LS(N)

}
= σ2

y

(
KTK

)−1.
Conclusion: The covariance matrix of the linear least squares estimator is

given by

Cov
{
θ̂LS(N)

}
= σ2

y

(
KTK

)−1
for the white noise case, (2.26)

Cov
{
θ̂LS(N)

}
=
(
KTK

)−1
KT Cov {ny} K

(
KTK

)−1
(2.27)

2.2.3.3 Example B continued:

In example 2.2.1 the least squares estimator was obtained from the measure-

ments y(k) = θ0+ny(k). Assume that the noise ny(k) is white and uncorrelated:

Cov {ny} = σ2
yIN , then 2.15 becomes using K = (1, 1, . . . , 1)

T:

σ2
θ̂LS(N)

=
1

N
σ2
y. (2.28)

Observe that this again the 1/N rule as discussed in the resistance examples of

the previous chapter.
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2.2.3.4 Distribution of θ̂LS

The estimated parameters are given by

θ̂LS(N) =
(
KTK

)−1
KTy (2.29)

Consider the dimensions for the matrices:

K ∈ RN×nθ , KTK ∈ Rnθ×nθ (2.30)

These matrices do not depend on the noise.

KTny is an N×nθ times nθ×1 matrix, so KTny ∈ Rnθ×1. The central limit

theorem applies under quite general conditions to the sum that is hidden in this

matrix product, e.g.
∑N
j=1Kijnj , and hence these terms will be asymptotically

(N →∞) Gaussian distributed, EVEN if ny is not Gaussian distributed.

This brings us to the conclusion that

θ̂ ∼ N
(

E
{
θ̂
}

= θ0, Cθ

)
(2.31)

See Chapter 7, Exercise 3.c for an illustration.

2.3 Weighted least squares estimation (Markov

estimator)

In (2.9) all measurements are equally weighted. In many problems it is desirable

to put more emphasis on one measurement with respect to the other. This can be

done to make the difference between measurements and model smaller in some

regions, but it can also be motivated by stochastic arguments. If the covariance

matrix of the noise is known, then it seems logical to suppress measurements

with high uncertainty and to emphasize those with low uncertainty.

In practice it is not always clear what weighting should be used. If it is, for
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example, known that model errors are present, then the user may prefer to put

in a dedicated weighting in order to keep the model errors small in some specific

operation regions, instead of using the weighting dictated by the covariance

matrix.

Definition 2.3.1:

In general the weighted linear least squares estimate θ̂WLS(N) is

θ̂WLS(N) = arg min
θ

VWLS(θ,N) with VWNLS(θ,N) = eT(θ)We(θ) (2.32)

where W ∈ RN×N is a symmetric positive definite weighting matrix (the asym-

metric part does not contribute to a quadratic form).

The explicit solution is found analogously to that of the least squares esti-

mate and is given by

θ̂LS(N) =
(
KTWK

)−1
KTWy (2.33)

Remark: The evaluation of the cost function (2.32) requires O(N2) opera-

tions which might be very time consuming for large N . Consequently, (block)

diagonal weighting matrices are preferred in many problems, reducing the num-

ber of operations to O(N).

2.3.1 Bias of the weighted linear least squares

The bias condition is not affected by the choice ofW . The proof in Section 2.2.3

is directly applicable to the weighted linear least squares problem.

2.3.2 Covariance matrix

The calculation of the covariance matrix in Section 2.2.3 can be repeated here.
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For an arbitrary weighting, the covariance matrix is

Cov
{
θ̂WLS(N)

}
=
(
KTWK

)−1
KTW Cov {ny}WK

(
KTWK

)−1
(2.34)

It is possible to show that among all possible positive definite choices for W ,

the ‘best’ one is W = C−1ny (where Cny = Cov {ny}) since this minimizes the

covariance matrix. In that case the previous expression simplifies to

Cov
{
θ̂WLS(N)

}
=
(
KTC−1ny K

)−1
KTC−1ny CnyC

−1
ny K

(
KTC−1ny K

)−1
(2.35)

=
(
KTC−1ny K

)−1
(2.36)

2.3.3 Properties of the nonlinear least squares estimator

Consider again the full nonlinear model:

y0(k) = g(u0(k), θ0) (2.37)

y(k) = y0(k) + ny(k) (2.38)

Because there are no explicit expressions available for the estimator as a function

of the measurements, it is not straightforward to study its properties. For this

reason special theories are developed to analyze the properties of the estimator

by analyzing the cost function. These techniques are covered in detail in the

literature.

2.3.3.1 Consistency

Under quite general assumptions on the noise (for example iid noise with finite

second and fourth order moments), some regularity conditions on the model

g(u0(k), θ) and the excitation (choice of u0(k)), consistency of the least squares

estimator is proven.
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2.3.3.2 Covariance

An approximate expression for the covariance matrix Cov
{
θ̂NLS(N)

}
is avail-

able:

Cov
{
θ̂NLS(N)

}
≈(

JT(θ)J(θ)
)−1

JT(θ) Cov {ny} J(θ)
(
JT(θ)J(θ)

)−1∣∣∣
θ=θ̂LS(N)

(2.39)

with

Cov {ny} = E
{
nyn

T
y

}
(2.40)

and J(θ) the Jacobian matrix J(θ) ∈ RN×nθ : J(θ) =
∂e(θ)

∂θ
(2.41)

Note that this approximation is still a stochastic variable since it depends

on θ̂NLS(N), while the exact expression should be in θ0.

2.4 The Maximum Likelihood estimator

Using the covariance matrix of the noise as weighting matrix allows for prior

knowledge about the noise on the measurements. However, a full stochastic

characterization requires the pdf of the noise distortions. If this knowledge

is available, it may be possible to get better results than those attained with

a weighted least squares. Maximum likelihood estimation offers a theoretical

framework to incorporate the knowledge about the distribution in the estimator.

The pdf fny of the noise also determines the conditional pdf f(y| θ0) of the

measurements, given the hypothetical exact model,

y0 = G(u0, θ0), (2.42)
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that describes the system and the inputs that excite the system. Assuming,

again, an additive noise model

y = y0 + ny, with y, y0, ny ∈ RN , (2.43)

the likelihood function becomes:

f(y| θ0, u0) = fny (y −G(u0, θ0)). (2.44)

The maximum likelihood procedure consists of two steps.

First the numerical values ym of the actual measurements are plugged into

the expression (2.44) for the variables y.

Next the model parameters θ0 are considered as the free variables. This

results in the so called likelihood function.

The maximum likelihood estimate is then found as the maximizer of the

likelihood function

θ̂ML(N) = arg max
θ

f(ym| θ, u0). (2.45)

From now on we will no longer explicitly indicate the numerical values ym but

just use the symbol y for the measured values.

Example (weighing a loaf of bread - continued): Consider Example

2.2.1 again, but assume that more information about the noise is available. This

time John knows that the distribution fy of ny is normal with zero mean and

standard deviation σy. With this information he can build a ML estimator:

f(y| θ) = f(y(1)| θ) = fny (y(1)− θ) (2.46)

Plugging in the knowledge of the noise distribution results in:

f(y| θ) =
1√

2πσ2
y

e
− (y−θ)2

2σ2
y (2.47)
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and the estimated weight becomes θ̂ML = y. It is therefore not possible to give

a better estimate than the measured value itself.

If John makes repeated independent measurements y(1), . . . , y(N) the like-

lihood function is

f(y| θ) = f(y(1)| θ)f(y(2)| θ) . . . f(y(N)| θ) (2.48)

= fny (y(1)− θ)fny (y(2)− θ) . . . fny (y(N)− θ) (2.49)

The product of density functions is due to the indepency of the noise. Because

the noise is normally distributed, we get eventually:

f(y| θ) =
1(

2πσ2
y

)N
2

e
− 1

2σ2
y

∑N
k=1 (y(k)−θ)2

. (2.50)

The ML estimate is given by the minimizer of

1

2σ2
y

N∑
k=1

(y(k)− θ)2 (2.51)

(remark that
(
2πσ2

y

)−N/2 is parameter independent), and becomes

θ̂ML(N) =
1

N

N∑
k=1

y(k). (2.52)

This is nothing else other than the sample mean of the measurements. It is

again easy to check that this estimate is unbiased. Note that in this case the

ML estimator and the (weighted) least squares estimator are the same. This is

only the case for normally distributed errors.

The unbiased behavior may not be generalized since the MLE can also be

biased. This is shown in the next example.
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Example 2.4.1: Estimating the sample mean and sample variance of

a normal distribution

Consider N samples y(k), k = 1, . . . N drawn from a normally independent dis-

tribution. Can we estimate the mean and standard deviation of the distribution

from these measurements?

First the likelihood function is formed

f(y| θ) = f(y(1)| θ)f(y(2)| θ) . . . f(y(N)| θ)

= 1

(2πσ2
y)

N
2
e
− 1

2σ2
y

∑N
k=1 (y(k)−µ)2 (2.53)

The loglikelihood function is:

ln f(y| θ) = −N
2

ln
(
2πσ2

y

)
− 1

2σ2
y

N∑
k=1

(y(k)− µ)
2 (2.54)

The parameters to be estimated are the mean value µ and the standard deviation

σy.

Putting the derivatives with respect to µ, σ2
y results in

1
σ2
y

∑N
k=1 (y(k)− µ) = 0

−N2
1
σ2
y

+ 1
2σ4
y

∑N
k=1 (y(k)− µ)

2
= 0

(2.55)

The solution of this set of equations is:

µ̂ML =
1

N

N∑
k=1

y(k), (2.56)

σ̂2
ML =

1

N

N∑
k=1

(y(k)− µ̂ML)
2 . (2.57)

What are the properties of these estimates?
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Expected value of the estimated mean It is straight forward that the first

one is unbiased:

E {µ̂ML} =
1

N

N∑
k=1

E {y(k)} = µ (2.58)

Expected value of the estimated variance The mean value of the variance

is more difficult to obtain:

E
{
σ̂2
ML

}
=

1

N

N∑
k=1

E
{

(y(k)− µ̂ML)
2
}

(2.59)

To calculate the expected value, the squared term is broken in three parts:

E
{

(y(k)− µ̂ML)
2
}

= E
{

((y(k)− µ)− (µ̂ML − µ))
2
}

(2.60)

= E
{

(y(k)− µ)
2 − 2 (y(k)− µ) (µ̂ML − µ) + (µ̂ML − µ)

2
}

(2.61)

Each of these terms can be evaluated separately:

E
{

(y(k)− µ)
2
}

= σ2
y (2.62)

The last term becomes (using the fact that measurement i is independent of j)

E
{

(µ̂ML − µ)
2
}

= E


(

1

N

N∑
i=1

(y(i)− µ)

)2
 (2.63)

=
1

N2

N∑
i=1

N∑
j=1

E {(y(i)− µ) (y(j)− µ)} (2.64)

=
1

N2

N∑
i=1

E
{

(y(j)− µ)
2
}

(2.65)

=
σ2
y

N
(2.66)
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The middle term becomes

E {(y(k)− µ) (µ̂ML − µ)} = E

{
(y(k)− µ)

(
1

N

N∑
i=1

(y(i)− µ)

)}
(2.67)

=
1

N
E(y(k)− µ)

2
=
σ2
y

N
(2.68)

Putting all these results together gives

Eσ̂2
ML =

σ2
y

N

N∑
i=1

(
1− 2

N
+

1

N

)
= σ2

y

(
1− 1

N

)
(2.69)

Conclusion While the first estimate is unbiased, the second one can be shown

to be prone to a bias of σ2

N that asymptotically disappears in N : Eσ̂2
ML =

σ2(N−1)
N . This shows that there is a clear need to understand the properties of

ML estimator better.

In the literature, a series of important properties is tabled assuming well-

defined experimental conditions. Each time these conditions are met, the user

knows in advance, before passing through the complete development process,

what the properties of the estimator would be. On the other hand, if the

conditions are not met, nothing is guaranteed any more and a dedicated analysis

is, again, required. In this course we just make a summary statement of the

properties; a very precise description can be found in the literature (Goodwin

and Payne, 1977; Caines, 1988).
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2.4.1 Properties of the ML estimator

Property 9: Principle of invariance

If θ̂ML is a ML estimator of θ ∈ Rnθ , then θ̂g = g(θ̂ML) is a ML estimator of

g(θ) where g is a function, θ̂g ∈ Rng and ng ≤ nθ, with nθ a finite number.

Property 10: Consistency

If θ̂ML(N) is an ML estimator based onN iid random variables, with nθ indepen-

dent of N , then θ̂ML(N) converges to θ0 almost surely: a. s. limN→∞ θ̂ML(N) =

θ0. If nθ depends on N the property is no longer valid, and the consistency

should be checked again.

See, for example, the errors-in-variables estimator in the previous section

where not only is the resistance value estimated, but also the currents i(1), . . . , i(N)

and voltages u(1), . . . , u(N) (In this case nθ = N + 1, e.g. the N current values

and the unknown resistance value, the voltage is calculated from the estimated

current and resistance value).

Property 11: Asymptotic Normality

If θ̂ML(N) is a ML estimator based on N iid random variables, with nθ inde-

pendent of N , then θ̂ML(N) converges in law to a normal random variable.The

importance of this property is not only that it allows one to calculate uncertainty

bounds on the estimates, but that it also guarantees that most of the probability

mass gets more and more unimodally concentrated around its limiting value.

Property 12: Asymptotic Efficiency

If θ̂ML(N) is a ML estimator based on N iid random variables, with nθ inde-

pendent of N , then θ̂ML(N) is asymptotically efficient (Cov
{
θ̂ML(N)

}
asymp-

totically reaches the Cramér-Rao lower bound ).
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2.5 The Bayes estimator

As described before, the Bayes estimator requires the most a prior information

before it is applicable, namely: the pdf of the noise on the measurements and

the pdf of the unknown parameters. The kernel of the Bayes estimator is the

conditional pdf of the unknown parameters θ with respect to the measurements

y:

f(θ|u, y). (2.70)

This pdf contains complete information about the parameters θ, given a set

of measurements y. This makes it possible for the experimenter to determine

the best estimate of θ for the given situation. To select this best value, it is

necessary to lay down an objective criterion, for example the minimization of a

risk function C(θ| θ0) which describes the cost of selecting the parameters θ if

θ0 are the true but unknown parameters. The estimated parameters θ̂ are found

as the minimizers of the risk function weighted with the probability f(θ|u, y):

θ̂(N) = arg min
θ0

ˆ
θ∈D

C(θ| θ0)f(θ|u, y)dθ (2.71)

For some specific choices of C(θ| θ0), the solution of expression 2.71 is well

known, for example

1. C(θ| θ0) = |θ − θ0|2 leads to the mean value,

2. C(θ| θ0) = |θ − θ0| results in the median which is less sensitive to outliers

since these contribute less to the second criterion than to the first (Eykhoff,

1974).

Another objective criterion is to choose the estimate as

θ̂Bayes(N) = arg max
θ

f(θ|u, y) (2.72)

The first and second examples are “minimum risk” estimators, the last is the

Bayes estimator. In practice, it is very difficult to select the best out of these.
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In the next section, we study the Bayes estimator in more detail. To search for

the maximizer of 2.72 the Bayes rule is applied:

f(θ|u, y) =
f(y| θ, u)f(θ)

f(y)
(2.73)

In order to maximize the right hand side of this equation it is sufficient to max-

imize its numerator, because the denominator is independent of the parameters

θ, so that the solution is given by looking for the maximum of

f(y| θ, u)f(θ). (2.74)

This simple analysis shows that a lot of a priori information is required to use

the Bayes estimator: f(y| θ, u) (also appearing in the ML estimator) and f(θ).

In many problems the parameter distribution f(θ) is unavailable, and this is one

of the main reasons why the Bayes estimator is rarely used in practice (Norton,

1986).

Example 2.5.1: Use of the Bayes estimator in daily life

We commonly use some important principles of the Bayes estimator, without

being aware of it. This is illustrated in the following story: Joan was walking

at night in Belgium and suddenly saw a large animal in the far distance. She

decided that it was either a horse or an elephant

P (observation|elephant) = P (observation|horse) . (2.75)

However, the probability of seeing an elephant in Belgium is much lower than

that of seeing a horse:

P (elephant in Belgium)� P (horse in Belgium) (2.76)

so that from the Bayes principle Joan concludes she was seeing a horse. If

she would be on safari in Kenya instead of Belgium the conclusion would be
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opposite, because

P (elephant in Kenya)� P (horse in Kenya) . (2.77)

Joan continued her walk. When she came closer she saw that the animal had big

feet, a small tail, and also a long trunk so that she had to review her previous

conclusion on the basis of all this additional information: there was an elephant

walking on the street. When she passed the corner she saw that a circus had

arrived in town.

From the previous example it is clear that in a Bayes estimator the prior

knowledge of the pdf of the estimated parameters is very important. It also illus-

trates that it balances our prior knowledge with the measurement information.

This is more quantitatively illustrated in the next example.

Example 2.5.2: Weighing a loaf of bread - continued

Consider again Example 2.2.1 but assume this time that the baker told John

that the bread normally weighs about w = 800 g. However, the weight can vary

around this mean value due to humidity, the temperature of the oven and so

on, in a normal way with a standard deviation σw. With all this information

John knows enough to build a Bayes estimator. Using normal distributions and

noticing that

f(y| θ) = fy(ny) = fy (y − θ) , (2.78)

the Bayes estimator is found by maximizing with respect to θ

f(y| θ)f(θ) =
1√

2πσ2
y

e
− (y−θ)2

2σ2
y

1√
2πσ2

w

e
− (θ−w)2

2σ2
w (2.79)

and the estimated weight becomes

θ̂Bayes =
y/σ2

y + w/σ2
w

1/σ2
y + 1/σ2

w

. (2.80)

In this result, two parts can be distinguished: y the information derived from the
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measurement and w the a priori information from the baker. If the quality of the

prior information is high compared with that of the measurements (σw � σy),

the estimate is determined mainly by the prior information. If the quality of

the prior information is very low compared with the measurements (σw � σy),

the estimate is determined mainly by the information from the measurements.

After making several independent measurements y(1), . . . , y(N) the Bayes

estimator becomes

θ̂Bayes(N) =

∑N
k=1

y(k)
σ2
y

+ w
σ2
w

N
σ2
y

+ 1
σ2
w

. (2.81)

The previous conclusions remain valid. However, when the number of mea-

surements increases, the first term dominates the second one, such that the

impact of the prior information is reduced (Sörenson, 1980). Finally, when N

becomes infinite, the estimate is completely determined by the measurements.

Conclusion: From these examples it is seen that a Bayes estimator com-

bines prior knowledge of the parameters with information from measurements.

When the number of measurements is increased, the measurement information

becomes more important and the influence of the prior information decreases.

If there is no information about the distribution of the parameters, the Bayes

estimator reduces to the ML estimator. If the noise is normally distributed, the

ML estimator reduces to the weighted least squares. If the noise is white, the

weighted least squares boils down to the least squares estimator.

2.6 Identification in the presence of input and

output noise

Model

y0(k) = g (u0(k), θ0) (2.82)

Measurements
u(k) = u0(k) + nu(k)

y(k) = y0(k) + ny(k)
(2.83)
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Note that in this case both the input and the output measurement are dis-

turbed with noise. This is a major difference with the previous situation, where

only the output was disturbed by noise.

3 solutions

• MLE formulation / errors-in-variables EIV

• instrumental variables

• total least squares

2.7 Possibility 1: Errors-in-variables (MLE)

Model

y0(k) = g (u0(k), θ0) (2.84)

Measurements

u(k) = u0(k) + nu(k)

y(k) = y0(k) + ny(k)
, pdf of the noise

nu → fnu

ny → fny

(2.85)

for simplicity we assume that:

f(nu, ny) = fnufnu (2.86)

Parameters to be estimated:

• the model parameters θ0

• the unknown, true input and output: u0(k), y0(k)

Note that the number of parameters depends on N !!!!!

likelihood function

f((y, u) | (y0, u0, θ0)) = fny (y − y0|y0, θ0)fnu(u− u0|u0, θ0) (2.87)

with y0(k) = g (u0(k), θ0) (2.88)
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2.7.1 Example: Estimation of a Resistance

(see Chapter 1)

Model

u0(k) = Ri0(k) (2.89)

Measurements
u(k) = u0(k) + nu(k)

i(k) = i0(k) + ni(k)
(2.90)

Noise model

nu(k), ny(k) i.i.d. zero mean normally distributed (2.91)

nu(k)→ N(0, σ2
u) (2.92)

ny(k)→ N(0, σ2
y) (2.93)

Likelihood function

f((y, u) | (y0, u0, θ0)) = fny (y − y0|y0, θ0)fnu(u− u0|u0, θ0) (2.94)

with u0(k) = Ri0(k) (2.95)

or

1(√
2πσ2

y

)N exp

(
−

N∑
k=1

(y(k)− y0(k))
2

2σ2
y

)

× 1(√
2πσ2

u

)N exp

(
−

N∑
k=1

(u(k)− u0(k))
2

2σ2
u

)
(2.96)

The cost function becomes

VML(y, u, θ) =

N∑
k=1

(y(k)− y0(k))
2

2σ2
y

+
(u(k)− u0(k))

2

2σ2
u

(2.97)

with u0(k) = Ri0(k) (2.98)
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For the rest of the discussion, we refer to Chapter 1.

2.8 Possibility 2: Instrumental Variables

2.8.1 Introduction

In this section we will discuss a final parameter estimation method that is very

suitable when both the input and the output are disturbed by noise. Although

it does not belong directly to the previous family of estimators we include it in

this chapter for use later, to interpret one of the proposed identification schemes.

Example 2.8.1: Measuring a resistance

In the resistance estimation examples, it was shown that the least squares

method R̂LS(N) is biased due to the quadratic noise contributions appearing in

the denominator:

R̂LS(N) =
1
N

∑N
k=1 u(k)i(k)

1
N

∑N
k=1 i

2(k)
(2.99)

with lim
N→∞

R̂LS(N) = R0
1

1 + σ2
i /i

2
0

(2.100)

This systematic error can be removed by replacing i(k) in the numerator and

denominator by i(k − 1) so that the new estimate becomes:

R̂IV(N) =
1
N

∑N
k=1 u(k)i(k − 1)

1
N

∑N
k=1 i(k)i(k − 1)

. (2.101)

Making the same analysis as in the previous chapter, it is seen that all quadratic

noise contributions are eliminated by this choice, so that

lim
N→∞

R̂IV(N) = R0. (2.102)
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2.8.2 The instrumental variables method

The idea used to generate (2.101) can be generalized as follows. Consider the

linear-in-the-parameters model structure

y0 = K(u0)θ0 (2.103)

and its least squares estimate

θ̂LS(N) =
(
KTK

)−1
KTy (see Section 2.2), (2.104)

Replace KT in (2.14)by GT, to get

θ̂IV(N) =
(
GTK(u)

)−1
GTy. (2.105)

The choice of G, a matrix of the same size as K(u), will be set by the condi-

tions that appear in the consistency and the variance analysis. θ̂IV(N) is the

instrumental variables estimate.

2.8.3 Consistency

Consistency is proven by considering the plim for N →∞ (Norton, 1986). For

simplicity we assume all the plim exists, viz.:

plim
N→∞

θ̂IV = plim
N→∞

{(
GTK(u)

)−1
GTy

}
(2.106)

=

(
plim
N→∞

GTK(u0 + nu)

)−1(
plim
N→∞

{
GTy0 +GTny

})
(2.107)

=

(
plim
N→∞

GTK(u0 + nu)

N

)−1
(2.108)

·
(

plim
N→∞

{
GTK(u0)

N

}
θ0 + plim

N→∞

GTny
N

)
(2.109)
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If

plim
N→∞

{
GTK(u0 + nu)

N

}
= plim
N→∞

{
GTK(u0)

N

}
(2.110)

plim
N→∞

{
GTny
N

}
= 0 (2.111)

then

plim
N→∞

θ̂IV(N) = θ0. (2.112)

Equations 2.110 and 2.111 define the necessary conditions for G to get a con-

sistent estimate. Loosely stated, G should not be correlated with the noise on

K(u0 +nu) and the output noise ny. The variables used for building the entries

of G are called the instrumental variables.

2.8.4 Covariance matrix

If the covariance for Cny = σ2IN , then an approximate expression for the co-

variance matrix of the estimates is (Norton, 1986):

Cov
{
θ̂IV(N)

}
≈ σ2R−1GKRGGR

−T
GK (2.113)

with RGK =
GTK (u)

N

and RGG =
GTG

N

This reveals another condition on the choice of the instrumental variables G:

while they should be “uncorrelated” with the noise on the output observation

ny, they should be correlated maximally with K, otherwise RGK tends to zero

and Cov
{
θ̂IV(N)

}
would become very large.

Example: Measuring a resistance (cont’d) In the case of the resistance

estimate, the instrumental variables are the shifted input. Since we used a con-

stant current, no problem arises. In practice this technique can be generalized

to varying inputs under the condition that the power spectrum of the noise is
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much wider than the power spectrum of the input. In the Exercises below the

instrumental variables method is applied to the resistance example.

2.8.5 Conclusion

The Instrumental variables estimate is given by

θ̂IV(N) =
(
GTK(u)

)−1
GTy. (2.114)

The choice of G:

• a matrix of the same size as K(u)

• plim
{
GTK(u0 + nu)/N

}
= plim

{
GTK(u0)/N

}
• plim

{
GTny/N

}
= 0

• maximize RGK = GTK(u)/N to reduce the covariance matrix
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2.9 Illustration of the Instrumental Variables and

the Errors-In-Variables

It was shown that the presence of disturbing noise on the input measurements

creates a systematic error. In this set of exercises more advanced identification

methods are illustrated that can deal with this situation. Two methods are

studied, the first is called the instrumental variables method (IV), the second is

the errors-in-variables (EIV) method. The major advantage of the IV-methods

is its simplicity. No additional information is required from the user. The disad-

vantage is that this method does not always perform well. Both situations are

illustrated in the exercises. The EIV performs well in many cases, but in gen-

eral additional information of the user is required. The covariance matrix of the

input-output noise should be known. All methods are illustrated again on the

resistance example with measured current and voltage i(t), u(t), t = 1, 2, . . . , N .

Both measurements are disturbed by mutually uncorrelated Gaussian noise:

i(t) = i0(t) + ni(t)

u(t) = u0(t) + nu(t)
(2.115)

The least squares estimate is given by:

R̂LS =

∑N
t=1 u(t)i(t)∑N
t=1 i(t)

2
, (2.116)

the instrumental variables estimator (IV) is:

R̂IV =

∑N
t=1 u(t)i(t+ s)∑N
t=1 i(t)i(t+ s)

, (2.117)

with s a user selectable shift parameter. Note that the IV-estimator equals the

LS-estimator for s = 0.
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The EIV estimator is given by

R̂EIV =

∑
u(t)2

σ2
u
−

∑
i(t)2

σ2
i

+

√(∑
u(t)2

σ2
u
−

∑
i(t)2

σ2
i

)2
+ 4 (

∑
u(t)i(t))2

σ2
uσ

2
i

2
∑
u(t)i(t)
σ2
u

, (2.118)

with σ2
u, σ

2
i the variance of the voltage and current noise, the covariance is

assumed to be zero in this expression: σ2
ui = 0.

Exercise 2.9.1: Noise on input and output: the instrumental variables

method

Generate the current i0(k) from a Gaussian white noise source, filtered by a first

order Butterworth filter with cut-off frequency fGen:

i0 = filter(bGen, aGen, e1), (2.119)

with [bGen,aGen]=butter(1,2*fGen). Generate the measured current and

voltage (2.115), where nu(k) is white Gaussian noise: N(0, σ2
nu). The current

noise ni(k) is obtained from a Gaussian white noise source filtered by a second

order Butterworth filter with cut-off frequency fNoise:i0=filter(bNoise, aNoise, e2),

with [bNoise,aNoise]=butter(2,2*fNoise), and e2 white Gaussian noise. Its vari-

ance is scaled to σ2
nu .

• Experiment 1: Generate three sets of 1000 experiments with N = 5000

measurements each, and the following parameter settings:

– fGen = 0.1, fNoise = [0.999, 0.95, 0.6], σi0 = 0.1, σni = 0.1, σnu = 1.

– Process these measurements with the LS-estimator, and with the IV-

estimator with the shift parameter s = 1.

• Experiment 2: Generate 1000 experiments with N = 5000 measurements

each, and the following parameter settings:

– fGen = 0.1, fNoise = 0.6, σi0 = 0.1, σni = 0.1, σnu = 1.
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– Process these measurements with the LS-estimator, and with the IV-

estimator with the shift parameter s = 1, 2, 5.

Plot for both experiments:

• the pdf of R̂LS and R̂IV,

• the auto-correlation function of i0 and ni (hint: use the Matlab™instruction

xcorr)

• the FRF of the generator and the noise filter.

Observations The results are shown below 2.1 and 2.2. In the first Figure 2.1,

the results are shown for a fixed generator filter and a varying noise filter. The

shift parameter for the IV is kept constant to 1. From this figure it is clearly

seen that the LS are strongly biased. This is due to the noise on the input,

the relative bias is in the order of σ2
ni/σ

2
i0
. For the IV-results, the situation is

more complicated. For the white noise situation, no bias is visible. However,

once the output noise is filtered, a bias becomes visible. The relative bias is

proportional to the ratio of the auto correlation functions of the noise and the

current Rnini(s)/Ru0u0(s).

The same observations can also be made in 2.2. In this figure, the shift

parameter is changed while the filters are kept constant. It can be seen that the

bias becomes smaller with increasing shift s, because Rnini(s)/Ri0i0(s) is getting

smaller. At the same time the dispersion is growing, mainly because Ri0i0(s) is

getting smaller. Observe also that the sign of the bias depends on the sign of

Rnini(s). The IV-method works well if the bandwidth of the generator signal is

much smaller than that of the noise disturbances.

Exercise 2.9.2: Noise on input and output: the errors-in-variables

method

In this exercise the EIV-method is used as an alternative for IV-method to re-

duce/eliminate the bias of the least squares estimate. This time no constraint
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Figure 2.1: Study of the LS- and IV-estimate for a varying noise filter bandwidth
and fixed shift s = 1.
Top: the LS (black line) and IV estimate (black or gray line). IV(1), IV(2),
and IV(3) correspond to the first second, and third filter. Middle: the auto
correlation of i0 (black) and ni (gray) for the different noise filters. Bottom:
the filter characteristics of i0 (black) and the noise ni (gray).

Figure 2.2: Study of the LS- and IV-estimate for a fixed noise filter bandwidth
and a varying shift s=1, 2, 5.
Top: the LS (black) and IV (black and gray) estimate. IV(1), IV(2), and IV(3)
correspond to a shift of 1,2, and 5 tabs. Middle: the auto correlation of i0
(black) and ni (gray). Bottom: the filter characteristics of i0 (black) and the
noise ni (gray)
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is put on the power spectra (bandwidth) of the excitation and the disturbing

noise, but instead the variance of the input and output disturbing noise should

be priorly given. This is illustrated again on the resistance example with mea-

sured current and voltage i(t), u(t), t = 1, 2, . . . , N .The least squares estimate

is given by

R̂LS =

∑N
k=1 u(k)i(k)∑N
k=1 i(k)2

, (2.120)

the EIV-estimator is

R̂EIV =

∑
u(t)2

σ2
u
−

∑
i(t)2

σ2
i

+

√(∑
u(t)2

σ2
u
−

∑
i(t)2

σ2
i

)2
+ 4 (

∑
u(t)i(t))2

σ2
uσ

2
i∑

u(t)i(t)
σ2
u

, (2.121)

where the sum runs over t = 1, . . . , N . It is shown to be the minimizer of the

following cost function:

VEIV =
1

N

N∑
t=1

{
(u(t)− u0(t))

2

σ2
u

+
(i(t)− i0(t))

2

σ2
i

}
, (2.122)

with respect to u0, i0, R0 under the constraint u0(t) = R0i0(t).

• Setup: Generate the current i0(t) from a white zero mean Gaussian noise

source N(0, σ2
i0

).

– Generate the measured current and voltage as:

i(t) = i0(t) + ni(t)

u(t) = u0(t) + nu(t)
, (2.123)

– nu(t) and ni(t) are white Gaussian noise sources with zero mean and

vari-ance σ2
nu and σ2

ni respectively

• Generate a set of 1000 experiments with N = 5000 measurements each,

and the following parameter settings:

– R0 = 1000, σi0 = 0.01, σni = 0.001, σnu = 1.
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Figure 2.3: Comparison of the pdf of the LS- (black) and the EIV-estimate
(gray), calculated with prior known variances.

• Calculate the LS- and EIV-estimate. Plot the histogram with R̂LS and

R̂EIV.

Observations The results are shown in Figure 2.3. From this figure it is

clearly seen that the LS are strongly biased (mean value is 990.15). This is

due to the noise on the input, the relative bias is in the order of σ2
ni/σ

2
i0
. No

systematic error can be observed in the EIV-results (mean value is 999.96). The

IV-estimate would fail completely in this situation (why?).
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2.10 Possibility 3: Total least squares

Kθ ≈ Y (2.124)

with

K = K0 +NK , and Y = Y0 +NY (2.125)

Rearrange the equations

(
K Y

) θ

−1

 ≈ 0 or Lθ̃ ≈ 0 (2.126)

Assumption on the noise NL

ENT
LNL = σ2

LInθ×nθ (2.127)

The least squares solution

LTLθ̃LS = 0 (2.128)

Limit for a large number of samples

LTLθ̃LS ≈ 0→
(
LT
0 L0 + σ2

LI
)
θ̃LS ≈ 0 (2.129)

Basic idea: Compensate for the noise

LTLθ̃LS ≈ 0→
(
LT
0 L0 + σ2

LI
)
θ̃LS ≈ 0 (2.130)

Hence (
LTL− λI

)
θ̃LS = 0 (2.131)

leads to the correct solution if λ = σ2
L
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Total least squares idea: Solve the eigenvalue problem

(
LTL

)
θ̃TLS = λθ̃TLS (2.132)

equivalencies

θ̃TLS = arg min
θ̃

∥∥∥Aθ̃∥∥∥2
2∥∥∥θ̃∥∥∥2

2

(2.133)

or

θ̃TLS = arg min
θ̃

∥∥∥Aθ̃∥∥∥2
2
with

∥∥∥θ̃∥∥∥2
2

= 1 (2.134)

Remarks on TLS:

1. the noise assumption can be relaxed by using a noise weighting

2. TLS is easy to calculate

• set up the matrix: L =

[
K Y

]
• calculate the SVD: L = UΣV T

• the solution is given by the last vector in V : V =

[
. . . θ̃TLS

]
3. TLS is well suited as a trial to generate starting values
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Appendices

2.A Singular value decomposition

For any A ∈ Cn×m with n ≥ m there exist U ∈ Cn×m and Σ, V ∈ Cm×m such

that (Golub and Van Loan, 1996)

A = UΣV H (2.135)

where V HV = V V H = UHU = Im and Σ = diag(σ1, σ2, . . . , σm) with σ1 ≥ σ2 ≥

. . . ≥ σm ≥ 0. The nonnegative real numbers σk are the singular values of A,

and the columns V[:,k] and U[:,k] are the corresponding right and left singular

vectors. (2.135) is called the singular value decomposition (SVD) of the matrix

A. It can be expanded as

A =

m∑
k=1

σkU[:,k]V
H
[:,k] (2.136)

A numerically stable calculation of the singular value decomposition is available

in standard mathematical software packages.

The singular value decomposition (2.135) contains a lot of information about

the structure of the matrix. Indeed, if σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σm =

0 then

rank(A) = r

null(A) = span
{
V[:,r+1], V[:,r+2], . . . , V[:,m]

}
range(A) = span

{
U[:,1], U[:,2], . . . , U[:,r]

}
The condition number κ(A) of a matrix A ∈ Cn×m is defined as the ratio of

the largest singular value to the smallest singular value κ(A) = σ1

σm
.

For regular square matrices m = n it is a measure of the sensitivity of the

solution of the linear system Ax = b, with b ∈ Cn, to perturbations in A and b.
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It can be shown that (Golub and Van Loan, 1996)

‖∆x‖2
‖x‖2

≤ κ(A)

(
‖∆A‖2
‖A‖2

+
‖∆b‖2
‖b‖2

)
(2.137)

where ∆ denotes the perturbation. For rectangular matrices m > n of full

rank, it is a measure of the sensitivity of the least squares solution xLS =(
AHA

)−1
AHb of the overdetermined set of equations Ax ≈ b, with b ∈ Cm,

to perturbations in A and b. For singular matrices κ(A) = ∞. If κ(A) is

large (log10(κ(A)) is of the order of the number of significant digits used in the

calculations), then A is said to be ill-conditioned . Unitary (orthogonal) matrices

are perfectly conditioned (κ = 1), while matrices with small conditions number

(κ ≈ 1) are said to be well-conditioned .

2.B Moore-Penrose pseudo-inverse

For any matrix A ∈ Cn×m there exists a unique generalized inverse A+ ∈ Cm×n,

also called Moore-Penrose pseudo-inverse, that satisfies the four Moore-Penrose

conditions (Ben-Israel and Greville, 1974)

1. AA+A = A

2. A+AA+ = A+

3. (AA+)
H

= AA+

4. (A+A)
H

= A+A

For regular square matrices it is clear that A+ = A−1. The pseudo-inverse can

be constructed using, for example, the singular value decomposition (Golub and

Van Loan, 1996). If rank(A) = r then

A+ = V Σ+UH with Σ+ = diag
(
σ−11 , σ−12 , . . . , σ−1r , 0, . . . , 0

)
(2.138)

Using (2.138) it can easily be shown that for every matrix A, (A+)
+

= A,

(A+)
H

=
(
AH
)+ and A+ =

(
AHA

)+
AH = AH

(
AAH

)+.
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Although the properties of the pseudo-inverse very much resemble those

of the inverse, in general (AB)
+ 6= B+A+. If the matrices A ∈ Cn×r and

B ∈ Cr×m with r ≤ min(n,m) are of full rank then (AB)
+

= B+A+ (Ben-

Israel and Greville, 1974).

2.C Solution of the least squares problem using

SVD

Consider the least squares solution θ̂LS =
(
KTK

)−1
KTy as the solution of

KTKθ̂LS = KTy (2.139)

Decompose K = UΣV T, then (2.139) becomes

(
V ΣUT

) (
UΣV T

)
θ̂LS =

(
V ΣUT

)
y (2.140)

V Σ2V Tθ̂LS = V ΣUTy (2.141)

since UTU = INLeft multiplication with V T (notice that V TV = Inθ , followed

by left multiplication with Σ−2, and eventually again with V leads to

θ̂LS = V Σ−1UTy = K+y (2.142)

Using the SVD reduces the number of required digits to calculate a stable nu-

merical solution with a factor 2 since the product KTK is no longer made.
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Chapter 3

Model selection and

validation

A critical step in the identification process is the quality assessment of the

identified model. A model without error bounds has no value. For this reason,

we need tools to check if all ‘input-output’ relations in the raw data are captured,

and tools to quantify the remaining model errors. Also the validity of the

disturbing noise models should be tested.

This chapter provides dedicated tools to test for over- and undermodelling.

First the calculation of uncertainty bounds on a model will be recalled. Next

it will be shown how overmodelling can be detected, and a tool for selecting an

optimal model complexity that balances model errors against noise sensitivity

will be introduced and illustrated.

3.1 Introduction

At the end of an identification run, two important questions remain to be an-

swered. What is the quality of the model? Can this model be used to solve my

problem? While the first question is an absolute one, the second question shows

that in practice the applicability of an identified model strongly depends on the

87



CHAPTER 3. MODEL SELECTION AND VALIDATION

intended application. Each model is only an approximation of reality and often

the existence of a “true” model is only a fiction, in the mind of the experimenter.

The deviations between the model and the system that generated the measure-

ments are partitioned in two parts following their nature: systematic errors and

stochastic errors. If the experiment is repeated under the same conditions, the

systematic errors will be the same, while the stochastic errors vary from one

realization to the other. Model validation is directed towards the quantification

of the remaining model errors. Once the level of the systematic errors is known,

the user should decide whether they are acceptable or not. It is not evident at

all that one is looking for the lowest error level, often it is sufficient to push them

below a given upper bound. In order to decide if the errors are systematic, it

is necessary to know the uncertainty on the estimated model. In this course we

use probabilistic uncertainty bounds (e.g. 95% bounds) that describe how the

individual realizations are scattered around their mean values. Errors that are

outside this bound are considered to be unlikely, so that they are most probably

due to systematic deviations.

This short discussion shows, clearly, that model validation starts with the

generation of good uncertainty bounds. These bounds can be used in a second

step to check for the presence of significant (from statistical point of view)

systematic errors. This two step approach is developed in the course of this

chapter.

3.2 Assessing the model quality: Quantifying the

stochastic errors using uncertainty bounds

As mentioned in the introduction, the first step in the validation process is the

partitioning in stochastic and systematic errors. The stochastic error bounds

are not only a tool to detect systematic errors, they also are intensively used to

describe the overall quality of the model once it is known that systematic errors

are no longer dominating.
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3.2.1 Covariance matrix of the estimated parameters

The basic “uncertainty” information is delivered under the form of the covariance

matrix on the estimated parameters. The actual covariance matrix is mostly

too difficult to calculate. But in most cases the Cramér-Rao lower bound can

be used for asymptotically efficient estimators. Also for weighted least squares

estimators, approximative expressions to calculate the covariance matrix are

available. An approximation of both expressions can be calculated easily at the

end of the identification process.

3.2.2 Covariance matrix of other model characteristics

However, in many applications the user is not interested in the estimated pa-

rameters and their uncertainty, but wants to calculate from these parameters

other system characteristics such as the transfer function or the pole positions

of this system. The Cramér-Rao lower bound of these derived quantities is gen-

erated by simple transformation laws, obtained from the first order derivatives

of the actual transformation. The same laws also apply to the approximated

covariance matrices:

Cov {f(x)} ≈ ∂f(x)

∂x

∣∣∣∣
x=µx

Cov {f(x)}

(
∂f(x)

∂x

∣∣∣∣
x=µx

)H

(3.1)

In practice, this works very well as long as the transformations are not heavily

nonlinear (e.g. transfer function calculation), but sometimes it fails. A typical

example of such a failure is the generation of the uncertainty regions on the

estimated poles/zeros. Although the Cramér-Rao bounds (or the approximate

covariance matrix) are correct, the actual uncertainties can significantly differ

due to the fact that the asymptotic properties on these estimates are not yet

reached for practical signal to noise ratios.
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Example 3.2.1: Uncertainty bounds on the calculated transfer func-

tions

In this example, we calculate the uncertainty on the amplitude characterisitic

of a parametric transfer function model that is identified from a measured FRF

(frequency response function).

Consider the measurements:

Z = Z0 +NZ , (3.2)

with Z(k) = G(Ωk) = G0(Ωk) +NG(Ωk). (3.3)

The noise NG(Ωk) is assumed to be normally, zero mean and independendly

distributed over the frequencies. A parametric transfer function model G(Ωk, θ̂),

together with the covariance matrix Cθ is estimated from these data, and we

want to know the reliability of the estimated transfer function as a function of

the frequency. Applying eq. 3.1 gives the variance of the transfer function due

to the noise sensitivity of the parameter estimates

Var
{
G(Ω, θ̂)

}
≈ ∂G(Ω, θ)

∂θ

∣∣∣∣
θ=θ̂

Cθ

(
∂G(Ω, θ)

∂θ

∣∣∣∣
θ=θ̂

)H

(3.4)

3.2.3 Uncertainty bounds on the residuals

(only for information, no questions on the exam)

A very simple, but popular, validation test is to compare the differences

between the measurements and the model

e = Z − g(Z, θ̂(Z)) = f(Z, θ̂(Z)), (3.5)

These differences are called the residuals. For the transfer function example,

it are the differences between the measured FRF, G(Ωk), and the modelled

transfer function, G(Ωk, θ̂), e(k) = G(Ωk)−G(Ωk, θ̂).

In order to decide if these residuals e are significantly different from zero,
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their variance should be calculated. Eq. 3.4 of the previous section cannot be

applied here directly since G(Ωk)−G(Ωk, θ̂) depends now not only on θ̂(Z), but

also on the raw data G(Ωk), or in general f(Z, θ̂(Z)) depends directly(by Z)

and indirectly (by θ̂(Z)) on the raw data Z. Note that θ̂(Z) and Z are corre-

lated stochastic variables since they depend both on the same noise distortions

NZ . An extended expression for the variance should be used here, taking the

correlation into account. It is given here (without proof) for a complex valued

f(Z, θ) and Z:

Cov
{
f(Z, θ̂(Z))

}
≈

(
∂f(Z, θ̂(Z))

∂Z

)
CNZ

(
∂f(Z, θ̂(Z))

∂Z

)H

+

(
∂f(Z, θ)

∂θ̂(Z)

)
Cov

{
θ̂(Z)

}(∂f(Z, θ)

∂θ̂(Z)

)H

+ 2 herm

(∂f(Z, θ̂(Z))

∂Z

)
Cov

{
NZ , θ̂(Z)− θ̃(Z0)

}(∂f(Z, θ)

∂θ̂(Z)

)H


(3.6)

Cov
{
NZ , θ̂(Z)− θ̃(Z0)

}
≈ −CNZ

(
∂ε(θ̂(Z), Z)

∂Z

)H(
∂ε(θ, Z)

∂θ̂(Z)

)
(3.7)

× Cov
{
θ̂(Z)

}
(3.8)

Example 3.2.2: Variance on the transfer function residuals

Consider the setup of (3.2.1) and assume that the system is excited with a

deterministic input (to avoid additional complications to take care for input

variations in the case of model errors). It can be shown (without proof in this

course) that the variance on the residual G(Ωk)−G(Ωk, θ̂) becomes:

Var
{
G(Ωk)−G(Ωk, θ̂)

}
= σ2

G(k)− σ2
G(Ωk, θ̂)−∆G(k), (3.9)

with ∆G(k) a term that is proportional to the model errors. If there are no
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model errors, this expression can be further reduced to

Var
{
G(Ωk)−G(Ωk, θ̂)

}
= σ2

G(k)− σ2
G(Ωk, θ̂). (3.10)

It is important to remark here that the variance on the residuals is not given by

the sum of the measurement and the model variance, but instead the difference

should be taken.

Practical application: In general σ2
G(Ωk, θ̂) � σ2

G(k) so that the com-

pensation in (3.10) can be neglected. σ2
G(Ωk, θ̂) can only become of the same

order as σ2
G(k) at those frequencies where the model is very flexible and depends

only on a few data points (e.g. very sharp resonances). Since in this situation

both terms in (3.10) cancel each other, the result becomes extremely sensitive

to model errors. Expression (3.10) can even become negative! In that case

the general expression (3.9) should be used. However, since the model errors

are not accessible, this is impractical and leads us to the following conclusions:

use σ2
G(k) as the uncertainty on the residuals. If σ2

G(Ωk, θ̂) ≈ σ2
G(k) the user

should accept that in that region he cannot detect the presence of model errors

since he has no reliable estimate of the residual uncertainty to decide if they are

significantly different from zero or not.

Example 3.2.3: Uncertainty bounds on the simulation poles/zeros

(only for information, no questions on the exam)

In this example, we illustrate that the calculation of (co-)variances through

linearization of a heavely nonlinear function may fail. We want to know the

uncertainty on the poles and zeros of an identified transfer function, once the

transfer function parameters θ are estimated. The transfer function is modeled

as

G(Ω, θ) =
B(Ω, θ)

A(Ω, θ)
=

∑nb
r=0 brΩ

r∑na
r=0 arΩ

r
(3.11)

where Ω = s for continuous-time models, Ω = z−1 for discrete-time models.
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The dispersion of the estimated parameters θ̂ around their mean value is

given by the covariance matrix Cθ. Assuming that the estimates are normally

distributed, the most compact uncertainty regions are ellipses. Practice has

shown that this is a very usable description for realistic signal-to-noise ratios

if θ are the coefficients of the numerator and denominator polynomials of the

transfer function model. In the previous section it was shown how to calculate

the covariance matrix of related system characteristics using linear approxima-

tions. However, if the user is interested in the uncertainty of the poles/zeros of

the estimated system, it turns out that this linearization may fail. Even for high

signal-to-noise ratios, the uncertainty ellipses calculated for the poles and zeros

may not cover the true uncertainty regions. This is illustrated in the following

simulation example. Consider the systemG(s) with zeros−1.4355±j4.0401, and

poles 1.3010± j4.8553, −3.5543± j3.5543, −4.8553± j1.3010. The system has

one dominating pole/zero pair and two pole pairs that have a smaller impact on

the system. The transfer function is measured in 101 equidistant points between

0 and1.25 rad/s with a signal-to-noise ratio of 40 dB (σG(k) = |G(jωk)| /100).

10000 realizations were generated and for each of them the poles/zeros were

calculated and shown in Figure 3.1. Also the “classical” 95% confidence ellip-

soids calculated using eq. (3.1) are shown (see Guillaume et al., 1989). In this

figure it is clearly seen that not only the shape of the uncertainty regions differs

significantly from the ellipsoids (for the non dominating poles), but even for the

dominating pole/zeros the uncertainties are significantly underestimated.
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Figure 3.1: 95% confidence ellipsoids compared to the estimated poles and zeros
of 10000 simulations.

3.3 Avoiding overmodelling

3.3.1 Introduction: impact of an increasing number of pa-

rameters on the uncertainty

(only for information, no questions on the exam) In this section we

look into the dependency of the model variability on the model complexity.

During the modelling process it is often quite difficult to decide whether the

introduction of a new parameter is meaningful or not. A simple strategy would

be to fit all the parameters which could be of possible interest, but this is not

a good idea because the uncertainty on the estimates will then be increased.

Consider a model with a partitioned set of parameters θ = (θ1, θ2). What is

the impact on the model uncertainty if the simple model G(θ1) is extended to

the more complex one G(θ1, θ2)? In Section 1.3.2 it was already illustrated that

the uncertainty will increase. Below, it is shown that this is a general result.
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Consider the information matrix of the full model:

Fi(θ1, θ2) =

 Fi11 Fi12

Fi22 Fi22

 . (3.12)

The covariance matrix of the simple model is C(θ1) = Fi−111 , while the covariance

matrix of the complete model is C(θ1, θ2) = Fi−1. The covariance matrix Cθ1

of the subset θ1 is related to the covariance matrix C(θ1) of the complete set by

Cθ1 = Fi−111 + Fi−111 Fi12(Fi22−Fi12 Fi−122 Fi12)−1 Fi21 Fi−111 = C(θ1) + ∆. (3.13)

Since ∆ ≥ 0 it is clear that adding additional parameters to a model increases

its uncertainty. A similar result is available for transfer function estimation.

3.3.2 Balancing the model complexity versus the model

variability.

In the previous section it was illustrated that the systematic errors reduce with

increasing model complexity. However, at the same time the model variability

increases as shown in eq. (3.13). In practice the optimal complexity should

be selected from the available information. Usually this choice is based on

the evolution of the cost function. However, care should be taken. Adding

aditional parameters will decrease the minimum value of the cost function (if the

optimization routine does not get stuck in a local minimum). But, from a given

complexity, the additional parameters no longer reduce the systematic errors,

they are only used to follow the actual noise realization on the data. Since

these vary from measurement to measurement, they only increase the model

variability. Many techniques were proposed to avoid this unwanted behavior.

These are based on extending the cost function with a model complexity term

that estimates and compensates for the unwanted increasing model variability.
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Two popular methods are actually in use, the AIC (Akaike information cri-

terion) and the MDL (minimum description length):

AIC : VML

(
θ̂ML(Z), Z

)
+ nθ

MDL : VML

(
θ̂ML(Z), Z

)
+ nθ

2 ln (2αN)
(3.14)

with nθ the number of identifiable (free) model parameters (= total number

of parameters minus the number of constraints), and N is the number of real

measurements (one complex measurement counts for 2 real ones). α = 1 for

output error problems, while α = 2 for the errors-in-variables problem. VML is

the non normalized cost function(not devided by the number of data points),

e.g.

VML =
1

2

N∑
k=1

e2k(θ) (3.15)

In practice it is better to use the following rules:

AIC : VML(θ̂ML(Z), Z)
(
1 + 2nθ

N

)
MDL : VML(θ̂ML(Z), Z)

(
1 + nθ

N ln (2αN)
) (3.16)

The AIC rule is derived in more detail in 3.3.3. The MDL has a much better

reputation than AIC. This is also illustrated in the following examples.

3.3.3 Proof of the AIC criterium

In this section, the AIC-model selection rule is proven. The proof is explicitely

given (under simplified conditions) because it also gives some additional insight

in the cost function behaviour.

Important note: since we will consider limits for N going to infinity, we

use normalized cost functions in this section, for example:

VN =
1

2N

N∑
k=1

e2k(θ) instead of VML =

N∑
k=1

e2k(θ) (3.17)
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Consider a (Maximum Likelihood) estimator, with a cost function

VN (θ, z) if N data points are available. (3.18)

We assume that the standard conditions are met, such that this estimator is

consistent and its covariance matrix converges to the Cramér-Rao lower bound

(the last condition will only be used in the second part of the proof).

Consider also the limiting situation, for an infinite amount of data:

V∗(θ, z) = lim
N→∞

VN (θ, z) (3.19)

The estimates are the minimizers of these cost functions:

θ̂N (z) = arg min
θ

VN (θ, z), and θ̂∗(z) = arg min
θ

V∗(θ, z) (3.20)

For notational simplicity, we drop the argument in θ̂ from here on. Note, that

θ∗ equals the true value of the parameters because it is a consistent estimate by

assumption, and no model errors are considered here, we deal with the problem

of overmodelling.

In the next step we will first calculate the Taylor series of V∗(θ̂N , z) around

θ̂∗. Next we setup the Taylor series of VN (θ̂∗, z) around θ̂N . Notice that

V ′∗(θ̂∗, z) =
∂V∗(θ, z)

∂θ

∣∣∣∣
θ=θ̂∗

= 0, and V ′N (θ̂N , z) =
∂VN (θ, z)

∂θ

∣∣∣∣
θ=θ̂N

= 0 (3.21)

because θ̂N , θ̂∗ are the minimizers of there respective costfunctions that are

assumed to be derivable in their minimum. So we get that:

V∗(θ̂N , z) = V∗(θ̂∗, z) +
1

2

(
θ̂N − θ̂∗

)T
V ′′∗ (θ̂∗, z)

(
θ̂N − θ̂∗

)
(3.22)

= V∗(θ̂∗, z) +
1

2
trace

(
V ′′∗ (θ̂∗, z)

(
θ̂N − θ̂∗

)(
θ̂N − θ̂∗

)T)
(3.23)
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and

VN (θ̂∗, z) = VN (θ̂N , z) +
1

2

(
θ̂∗ − θ̂N

)T
V ′′N (θ̂N , z)

(
θ̂∗ − θ̂N

)
(3.24)

= VN (θ̂N , z) +
1

2
trace

(
V ′′N (θ̂N , z)

(
θ̂∗ − θ̂N

)(
θ̂∗ − θ̂N

)T)
(3.25)

= VN (θ̂N , z) +
1

2
trace

(
V ′′N (θ̂N , z)

(
θ̂N − θ̂∗

)(
θ̂N − θ̂∗

)T)
(3.26)

Taking the expectation of (3.22) results in

E
{
V∗(θ̂N , z)}

}
= V∗(θ̂∗, z) +

1

2
trace(V ′′∗ (θ̂∗, z)E

{(
θ̂N − θ̂∗

)(
θ̂N − θ̂∗

)T}
)

(3.27)

= V∗(θ̂∗, z) +
1

2
trace

(
V ′′∗ (θ̂∗, z)Cθ̂N

)
(3.28)

A similar operation can also be applied to (3.24). Moreover, if we assume

(APPROXIMATION!) that

E
{

VN(θ̂∗, z)
}
≈ E

{
V∗(θ̂∗, z)

}
= V∗(θ̂∗, z) (3.29)

and

V ′′N (θ̂N , z) ≈ V ′′∗ (θ̂∗, z), (3.30)

we get that

V∗(θ̂∗, z) ≈ E
{
VN (θ̂N , z)}

}
+ trace

(
V ′′∗ (θ̂∗, z)Cθ̂N

)
(3.31)

So that eventually the following set of relations is obtained:

E
{
V∗(θ̂N , z)

}
= V∗(θ̂∗, z) +

1

2
trace

(
V ′′∗ (θ̂∗, z)Cθ̂N

)
(3.32)

E
{
VN (θ̂N , z)

}
= V∗(θ̂∗, z)−

1

2
trace

(
V ′′∗ (θ̂∗, z)Cθ̂N

)
(3.33)

This is a remarkable result. From the first expression we learn that E
{
V∗(θ̂N , z)

}
>

V∗(θ̂∗, z), or in other words, θ̂∗ gives a better description of an infinite number of
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data than θ̂N . This is a quite intuitive result. More surprisingly, at first glance,

is that E
{
VN (θ̂N , z)

}
< V∗(θ̂∗, z). The N data points are better described by

their own minimizer θN than by the true parameters. This is because in the

latter case, a larger part of the noise can be followed by the model parameters.

With an infinite number of parameters this becomes impossable at all. Note

that this result is obtained without using the 2nd condition (covariance matrix

equals the Cramér-Rao lower bound). So this result is also valid for (weighted)

least squares estimates that are consitent.

From (3.32) it follows immediately that

E
{
V∗(θ̂N , z)

}
= E

{
VN (θ̂N , z)

}
+ trace

(
V ′′∗ (θ̂∗, z)Cθ̂N

)
(3.34)

If V is the maximum likelihood cost function (properly scaled with 1/N), we

get that

CCR = −
(
∂2

∂θ2
loglikelihood

)−1
= V ′′ML(θ∗)

−1 = (NV ′′(θ∗))
−1 (3.35)

and 3.34 becomes

E
{
V∗(θ̂N , z)

}
= E

{
VN (θ̂N , z)

}
+

1

N
trace

(
V ′′∗ (θ̂∗, z)V

′′
∗ (θ̂∗, z)

−1
)

(3.36)

= E
{
VN (θ̂N , z)

}
+
nθ
N

(3.37)

It is a logic choice to consider the value E
{
V∗(θ̂N , z)

}
as a measure of the

model quality: ‘How well would the model describe an infinite amount of data’?

The answer to that question is exactly given in 3.36. Of course we do not

know in practice E
{
VN (θ̂N , z)

}
, only the realized value VN (θ̂N , z). And this

becomes the AIC rule as it used in practice: To compare two models with

different complexity their respective cost functions are compared after adding a

complexity term nθ/N .

For normaly distributed noise, the weighted least squares cost function is
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often used without the normalizing factor.

VWLS = eTC−1e e. (3.38)

In that case the AIC rule becomes

VAIC =
1

2
eTC−1e e+ nθ (3.39)

3.4 Example of using the AIC-rule

• How to select a ‘good’ model complexity?

• Effect of the number of parameters on the value of the cost function?

• Optimal order can depend on the signal-to-noise ratio!

The goal of this section is to show how to select an optimal model for a given data

set. Too simple models will fail to capture all important aspects of the output,

and this will result in too large errors in most cases. Too complex models use too

many parameters. As was illustrated in the previous section such models also

result in a poor behavior of the modeled output because the model becomes

too sensitive to the noise. Hence we need a tool that helps us to select the

optimal complexity that balances the model errors against the sensitivity to the

noise disturbances. It is clear that this choice will depend on the quality of the

data. All these aspects are illustrated in the next exercise where we propose

the Akaike information criterion as a tool for model selection. Consider a single

input single output linear dynamic system, excited with an input u0(t) and

output y0(t) = g0(t)∗u(t). The system has an impulse response g0(t) that is

infinitely long (infinite impulse response or IIR-system). For a stable system

g0(t) decays exponentially to zero, so that the IIR system can be approximated

by a system with a finite length impulse response g(t), t = 0, 1, . . . , I (finite

impulse response or FIR-system). For t > I, the remaining contribution can

considered to be negligible. The choice of I will depend not only on g(t), but
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also on the SNR of the measurements.

ŷ(t) =

I∑
k=0

ĝ(k)u0(t− k), with u0(k) = 0 for k < 0. (3.40)

In (3.40) it is assumed that the system is initially in rest. If this is not the case,

transient errors will appear, but these disappear in this model for t > I (why?).

The model parameters θ are in this case the values of the impulse response.

θ is estimated from the measured data u0(t), y(t), t = 0, 1, . . . , N , with y(t)

the output measurement that is disturbed with i.i.d. noise with zero mean and

variance σ2
v :

y(t) = y0(t) + v(t). (3.41)

The estimates θ̂ are estimated by minimizing the least squares cost function:

VN (θ, ZN ) =
1

2N

N∑
t=0

|y(t)− ŷ(t)|2 , with ŷ(t) = ĝ(t)∗u0(t) (3.42)

Note that this model is linear-in-the-parameters, and solution (??) can be used.

In order to find the ‘best’ model, a balance is made between the model errors and

the noise errors using a modified cost function that accounts for the complexity

of the model. Here we propose to use amongst others the AIC criterion:

VAIC = VN (θ)

(
1 + 2

dim θ

N

)
. (3.43)

3.4.1 Exercise: Model selection using the AIC criterion

Consider the discrete time system g0(t) given by its transfer function:

G0(z) =

∑nb
k=0 bkz

−k∑na
k=0 akz

−k , (3.44)

Generate the filter coefficients ak, bk using the Matlab™-instruction

[b, a] = cheby1(3, 0.5, [2 * 0.152 * 0.3]);

This is a band pass system with a ripple of 0.5 dB in the pass band. Generate
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two data sets Dest and Dval, the former with length Ne being used to identify

the model, the latter with length Nv to validate the estimated model. Note that

the initial conditions for both sets are zero! Use the Matlab™-instructions

y0 = filter(b, a, u0);

y = y0 + ny;
with u0 zero mean normally distributed noise with σu0 = 1, and v zero mean

white Gaussian noise with σv equal to 0.5 for a first experiment, and 0.05 for a

second experiment. Put Ne = 1000, and Nval = 10000 in both experiments.

• Use the linear least squares procedure to estimate the model parameters,

and this for varying orders from 0 to 100.

• Calculate for each of the models the simulated output ŷ = filter(ĝ, 1, u0),

and calculate the cost function(3.42) on Dest and on Dval.

• Calculate VAIC .

• Calculate V0 = 1
2N

∑N
t=0 |y0(t)− ŷ(t)|2 on the undisturbed output of the

validation set.

• Plot Vest, VAIC , Vval as a function of the model order. Normalize the value

of the cost function by σ2
v to make an easier comparison of the behavior

for different noise levels.

• Plot
√
V0/σ2

v as a function of the model order.

Observations: The results are shown in 3.2, the following observations can be

made:

1. Increasing the model order results in a monotonic decreasing cost function

Vest. This result was to be expected because a simpler model is always

included by the more complex model, and the linear LS always retrieve

the absolute minimum of the cost function, no local minima exist. Hence

increasing the complexity of the model should reduce the value of the cost

function.
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2. On the validation data we observe first a decrease and next an increase of

Vval. In the beginning, the additional model complexity is mainly used to

reduce the model errors, a steep descent of the cost function is observed.

From a given order on, the reduction of the model errors is smaller than

the increased noise sensitivity due to the larger number of parameters,

resulting in a deterioration of the capability of the model to simulate the

validation output. As a result the validation cost function Vval starts to

increase.

3. VAIC gives a good indication, starting from the estimation data only, where

Vval will be minimum. This reduces the need for long validation records,

and it allows to use as much data as possible for the estimation step.

4. The optimal model order increases for a decreasing disturbing noise vari-

ance. Since the plant is an IIR system with an infinite long impulse

response, it is clear that in the absence of disturbing noise σn = 0, the op-

timal order would become infinite. In practice this value is never reached

due to the presence of calculation errors that act also as a disturbance.

5. A fair idea about the quality of the models is given by V0. The normalized

rms-value
√

V0

σ2
v
is plotted on the right side of 3.2. This figure shows that a

wrong selection of the model can result in much larger simulation errors.

The good news is that the selection of the best model order is not so

critical, the minimum is quite flat and all model orders in the neighborhood

of the minimum result in good estimates.
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Figure 3.2: Right side: Comparison of the normalized Cost function Vest, the
AIC-criterion VAIC, and the validation Vval for σn = 0.5 (top) and σn = 0.05
(bottom). Left side: evaluation of the model quality on undisturbed (noiseless)
data.
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Chapter 4

Numerical Optimization

Methods

Abstract: In this chapter, some numerical optimization methods are presented

to search the minimum of the cost functions. A vast amount of literature on

this topic is available. Here we stick to only a few methods, that are very well

suited to take full advantage of the special structure of the cost functions as

they appeared in Chapter 2.

4.1 Introduction

If the model is nonlinear-in-the-parameters, it is almost impossible to find an

analytical solution for the minimization of the cost function V (θ,N) (For nota-

tional simplicity, we will drop in this chapter the dependency on N , and write

V (θ) instead of V ′(θ,N)). As a result, numerical algorithms have to be used

in calculating the estimates. The main drawback of this is that insight into the

behavior of the solution is partially lost.
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The numerical search routines are usually iterative procedures. Starting

from an initial value, a better set of parameters is generated, and this process

is repeated until it is decided that the process has converged. So, there will be

three basic steps in each search routine:

• selection of a set of starting values

• generation of an improved set of parameters

• selection of a stop criterion

4.1.1 Selection of the starting values

Before beginning a non-linear optimization procedure it is necessary to generate

starting values. In practice the convergence region of most optimization meth-

ods is limited; if the starting values are selected outside this region, the method

will diverge. Even if there is convergence, the final result can depend upon the

starting values if the cost function has local minima. A priori information can

be used to improve the starting values, but usually insufficient information is

available. For example, it is very difficult to give reasonable starting values for

the coefficients of the transfer function of an unknown system. A more system-

atic approach is to linearize the original optimization problem, to calculate an

analytical solution to the linearized form, and to use this as an approximation

of the true values of the parameters.

4.1.2 Generation of an improved set of parameters

The generation of an improved set of parameters is the kernel of each opti-

mization method. For the purposes of this course we will give only a very brief

introduction to the different possible techniques. Here we will classify the meth-

ods by the highest order of the derivatives they use for the generation of a new

value.
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Zero order methods These do not require the explicit calculation of deriva-

tives, and are called direct search techniques. Typical examples are the

simplex method and Powell’s method. They are usable if the derivatives

cannot be easily calculated, and converge slowly but monotonically to a

local minimum.

First order derivatives These are called gradient methods. In their most

simple form they move in a direction opposite to the gradient towards

a local minimum. They are also quite robust, but are not always faster

than zero order methods as they require calculation of the gradient. Con-

vergence can be speeded up by using more complicated forms, like the

conjugated gradient and the Gauss-Newton method. This will be espe-

cially important if the minimum is hidden in a long narrow valley; in the

neighborhood of such a solution these methods have a quadratic conver-

gence for noiseless cases.

Second order derivatives A function can be approximated around a mini-

mum by a parabolic function which uses the second order derivatives (the

first order derivatives are equal to zero) if certain regularity conditions

are met. For an exactly parabolic function it is possible to locate the

minimum in one step, starting from any arbitrary point where the second

order derivatives are known. This principle can also be applied to non-

parabolic functions, but then more than one step will be required to reach

the minimum. The best known optimization method of this class is the

Newton-Raphson algorithm, which will be discussed in more detail later.
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4.1.3 Deduction of a stop criterion.

The iteration loop of the optimization method should be stopped at the moment

that the stop criterion is met. There are a number of ways of choosing this

criterion.

If the results of the identification will be used to predict the output of the

system for a given input, then the most important requirement of the model is its

prediction capability; the cost function is a measure of this. If there is no longer

a significant decrease of the cost function with iteration, then the prediction

quality will not be further improved by continuing. We can use this as a stop

criterion, even though some parameters may still be changing considerably. The

implication of this is that the loss function is insensitive to a change in this group

of parameters. This kind of criterion can be extended by tests on the derivatives

of the cost function.

If it is the physical interpretation of the parameters and not the prediction

ability which is most important, then such a criterion is not acceptable; a check

on the variations of the parameters will be better.

4.2 Gradient method.

The gradient method is one of the most simple optimizations. The principle is

illustrated in Figure 4.1 where lines of equal cost are shown. The gradient is

defined as:

gradV (θ) = V ′(θ) =
∂V (θ)

∂θ
=

(
∂V

∂θ1
,
∂V

∂θ2
, . . . ,

∂V

∂θnθ

)
(4.1)

The gradient is orthogonal to these iso-cost lines and points in the direction

of maximum positive slope; the algorithm takes a scaled step in the opposite

direction.
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Figure 4.1: Illustration of iso-costlines and the gradient of a cost functions.

In some algorithms, the gradient is numerically approximated by:

gradV (θ) ≈
(
V (θ + δ1)− V (θ)

|δ1|
, . . . ,

V (θ + δnθ )− V (θ)

|δnθ |

)
, (4.2)

where δi is a unit vector with a 1 on the ith element.

Once an estimate of the gradient is available, the basic algorithm is quite

simple:

1. Select a set of starting value θ(0), and choose also a maximum step length

δmax, put the iteration number i = 0.

2. Calculate the gradient V ′(θ(i))

3. Calculate an updated parameter vector

θ(i+1) = θ(i) − δmax
V ′(θ(i))∣∣V ′(θ(i))∣∣ (4.3)

4. Step 4: is this an improvement?

V (θ(i+1)) ≤ V (θ(i))? (4.4)

Yes: i = i+ 1, and jump to Step 2, unless the stop criterion is met

No: reduces δmax and go back to Step 3.
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Remarks:

1. The variation of the maximum step can be refined. Usually the step size

is drastically reduced (e.g. a factor 10), and next it is slowly increased in

each successive step (e.g. increase each time with 20%, but avoid that the

scale factor is becoming larger than 1).

2. The simple algorithm can get stuck into long, narrow and steep valleys.

It starts to jump from one side to the other side of the valley, and moves

only very slowly in the desired direction.

Figure 4.2: Example of a gradient search that gets stuck in a sharp valley.

3. This simple gradient method can be refined in many ways to avoid the

above mentioned problem and to speed up the convergence. For example

by making a one dimensional search in the direction of the gradient, or

by combining the results of successive steps, the convergence rate can be

significantly improved.
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4.3 Newton-Raphson algorithm

The most important drawback of the gradient method is its slow convergence.

This can be speeded up by using higher order derivatives. Consider the Taylor

expansion of the cost function:

V (θ + δ) = V (θ) + V ′(θ)δ +
1

2
δTV ′′δ + . . . (4.5)

From now on, we neglect the higher order terms. The derivatives have to be

taken in θ. A necessary condition for having an extreme for V in θ + δ is that

the derivative with respect to δ in θ + δ should be equal to zero.

∂V (θ + δ)

∂δ
= 0 + V ′(θ) + V ′′δ (4.6)

The solution of this linear set of equations gives the value of δ:

δ = −V ′′(θ)−1V ′(θ) (4.7)

The most simple Newton-Raphson algorithm consists of calculation of suc-

cessive values of δ:

1. Select a set of starting value θ(0), put i = 0

2. Calculate the gradient V ′(θ(i)), and the Hessian matrix V ′′(θ(i))

3. Calculate an updated parameter vector

δ(i) = −V ′′(θ(i))−1V ′(θ(i)), (4.8)

θ(i+1) = θ(i) + δ(i) (4.9)

4. If the stop condition is not met, go back to Step 2.

This method will have a quadratic convergence in the neighborhood of the so-
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lution. A method is said to converge with order m if

∣∣∣δ(i)∣∣∣ = Constant
∣∣∣δ(i−1)∣∣∣m (4.10)

for i sufficiently large. The biggest difficulty with the Newton-Raphson

method is that convergence is not guaranteed. Left multiplication of both sides

of equation (4.8) by the gradient V ′(θ) gives:

V ′(θ(i))δ(i) = −V ′(θ(i))
(
V ′′(θ(i))−1V ′(θ(i))

)
. (4.11)

The left hand side should be negative to guarantee a successful step towards

a minimum. However, if the Hessian matrix V ′′(θ(i)) on the right hand side is

not positive definite, there is no guarantee that the expression will be negative,

and the procedure can diverge. Only if the cost function is differentiable and

the minimum is not a multiple solution (the Hessian matrix is not singular) will

it be certain that the second order derivatives will be positive definite in the

neighborhood of the solution.

Note that also here it is possible to improve the method by adding for ex-

ample a line search in each step along the Newton direction. Another simple

trick to improve the convergence in case of convergence problems (at a cost of

a reduced convergence rate) is to update the parameters with only a fraction of

the proposed step.

4.4 Gauss-Newton algorithm

A drawback of the Newton-Raphson method is the need to calculate second or-

der derivatives, which can be quite time consuming. The Gauss-Newton method

avoids these calculations by approximating the second order derivatives, making

use of the quadratic nature of the cost function. Considering for example the

nonlinear least squares cost function (the discussion can be generalized with-

out any problem to weighted nonlinear least squares problems with multiple
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outputs):

VLS(θ) = 1
2e

T(θ)e(θ) = 1
2 (y − g(u, θ))

T
(y − g(u, θ))

= 1
2

∑N
k=1 (y(k)− g(u(k), θ))

2
(4.12)

the second order derivatives are given by

V ′′LS(θ) =

N∑
k=1

((
∂g(u(k), θ)

∂θ

)T(
∂g(u(k), θ)

∂θ

)
− (y(k)− g(u(k), θ))

∂2g(u(k), θ)

∂θ2

)
(4.13)

If the second term in this sum becomes small (i.e. y − g is small) it can be

neglected, and the second order derivatives can be approximated by

V ′′LS(θ) ≈
N∑
k=1

(
∂g(u(k), θ)

∂θ

)T(
∂g(u(k), θ)

∂θ

)
= JTJ , (4.14)

with J[k,i] =
∂g(u(k), θ)

∂θi
(the Jacobian matrix). (4.15)

Substitution of this approximation in the Newton-Raphson algorithm, and

replacement of the first derivatives of V by

V ′(θ) = −JT (y − g(u, θ)) (4.16)

results in the Gauss-Newton method:

δ(i) =
(
J (i)TJ (i)

)−1
J (i)T

(
y − g(u, θ(i))

)
, with J (i) = J(θ(i)) (4.17)

For most problems the Gauss-Newton method demands less computation

time per iteration step than the Newton-Raphson algorithm, and its behavior is

quite similar. In the neighborhood of the solution the Newton-Raphson method

will converge much faster than Gauss-Newton, except in problems where the

term
N∑
k=1

(y(k)− g(u(k), θ))
∂2g(u(k), θ)

∂θ2
(4.18)
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which we have neglected in the expression for the Hessian goes to zero. But

the convergence region of the Gauss-Newton method will be larger because we

have replaced the Hessian, which is not guaranteed to be semi-positive defi-

nite, by a matrix which is semi-positive definite. A step of the Gauss-Newton

algorithm will always be in the proper direction, except at saddle points and sin-

gularity points. However, convergence is still not assured; even if a step is in the

right direction, the cost function can still increase if change in the parameters

is too large.

Another method can be derived which will always converge, at least to a

local minimum.

4.5 Method of Levenberg-Marquardt

The method of Levenberg-Marquardt is a combination of the Gauss-Newton

method and the gradient method. New parameter updates are generated using

the following formula:

δ(i) =
(
J (i)TJ (i) + λ Inθ

)−1
J (i)T

(
y − g(u, θ(i))

)
. (4.19)

The Gauss-Newton algorithm is the limit of the expression for λgoing to

zero, while the gradient method is the limit for λgoing to ×:

λ→ 0 δ(i) =
(
J (i)TJ (i)

)−1
J (i)T

(
y − g(u, θ(i))

)
λ→∞ δ(i) = 1

λJ
(i)T

(
y − g(u, θ(i))

)
= − 1

λ gradVLS(θ)
(4.20)

The Levenberg-Marquardt method moves progressively from the gradient

method to the Gauss-Newton method as λ changes from × to zero. The addition

of the term λ Inθ has two stabilizing effects:

1. If the algorithm is converging towards a saddle point, then the matrix

J (i)TJ (i) which is semi-positive definite will become singular. Conse-

quently, the set of linear equations to be solved is ill-conditioned, and it
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will be very difficult to get good numerical solutions. Conditioning of the

equations is considerably improved by adding the Levenberg-Marquardt

term.

2. A second possible reason for divergence is if the proposed step is too large;

even if the direction of the step is correct, the final result may be worse.

By increasing λwe also reduce the step length, and move more in the

direction of the gradient.

Instead of adding λ Inθ to the equations, it is also possible to use λ diag
(
J (i)TJ (i)

)
.

The advantage of this approach is that if the original set of equations is diago-

nally dominant, sensitivity to the individual parameters remains unchanged.

The basic structure of a Levenberg-Marquardt method is in general quite

simple:

1. Select a set of starting value θ(0), and choose a large starting value for

λ(i), put the iteration number i = 0.

2. Calculate the Jacobian matrix J (i)

3. Calculate an updated parameter vector

δ(i) =
(
J (i)TJ (i) + λ Inθ

)−1
J (i)T

(
y − g(u, θ(i))

)
(4.21)

4. Is this an improvement: V (θ(i+1)) ≤ V (θ(i))?

Yes: decrease λ, e.g. with a factor 2; i = i+ 1, and jump to Step 5

No: increases λ, e.w. with a factor 10, and go back to Step 3, unless the

stop criterion is met.

5. Go to Step 2, unless the stop criterion is met
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4.6 Summary

In this section we have given a brief introduction to numerical iteration methods

of minimizing the value of a cost function. There is an extensive literature on this

subject; the few methods we have discussed were selected for their applicability

to optimization problems we will meet later on.
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Chapter 5

Recursive Identification

Methods

In this chapter, recursive parameter estimation schemes are proposed. After

each new sample, an update of the estimate is made. This allows online pro-

cessing of the results. By adding a ‘forgetting factor’ to the cost function, the

least squares least squares is generalized to an adaptive algorithm.

5.1 Introduction

In Chapter 2, a number of cost functions were proposed. The estimates were

found as the minimizers of this cost function. Two possibilities exist: in the first

case the optimization is postponed till all measurements are available, while in

the second case the estimates are calculated each time a new sample is available.

In this chapter we focuss on the second class of algorithms. A straightforward

solution is to redo all the calculations after each sample. A numerical more

efficient solution is to reformulate the problem such that only the newly required

calculations are made, recuperating all the previous results. This chapter gives

an introduction to this class of methods.

119
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5.1.1 Eample: Recursive calculation of the mean value

The mean value µy has to be estimated from a series of measurements y(k),

k = 1, . . . , N . These measurements come available one after another. The aim

is to find an algorithm that allows to update the mean value estimate, each time

a new measurement is available. An estimate for the mean value is:

µ̂y(N) =
1

N

N∑
k=1

y(k). (5.1)

Once the new measurement y(N + 1) is available, a new estimate can be calcu-

lated:

µ̂y(N + 1) =
1

N

N+1∑
k=1

y(k) (5.2)

Instead of summing all the old measurements once more, the previous sum can

be recuperated:

µ̂y(N + 1) = 1
N+1

∑N
k=1 y(k) + 1

N+1y(N + 1)

= N
N+1 µ̂y(N) + 1

N+1y(N + 1)
(5.3)

Although this form meets already our requirements, it is possible to rearrange

it to a more suitable expression:

µ̂y(N + 1) = µ̂y(N) +
1

N + 1
(y(N + 1)− µ̂y(N)) . (5.4)

Although this expression is very simple, it is very informative because almost

every recursive algorithm can be reduced to a similar form. The following

observations can be made:

• The new estimate µ̂y(N+1) equals the old estimate µ̂y(N) + a correction

term: 1
N+1 (y(N + 1)− µ̂y(N)).

• The correction term consists again of two terms: a gain factor 1/ (N + 1),

and an error term.

1. The gain factor decreases towards zero as more measurements are
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already accumulated in the previous estimate. This means that in

the beginning of the experiment less importance is given to the old

estimate µ̂y(N), and more attention is paid to the new incoming

measurements. When N starts to grow, the error term becomes

small compared to the old estimate. The algorithm relies more and

more on the accumulated information in the old estimate µ̂y(N),

and it does not vary it that much for accidental variations of the

new measurements. The additional bit of information in the new

measurement becomes small compared with the information that is

accumulated in the old estimate.

2. The second term (y(N + 1)− µ̂y(N)) is an error term. It makes the

difference between the predicted value of the next measurement on

the basis of the model (in this case µ̂y(N)) and the actual measure-

ment y(N + 1)

• When properly initiated (µ̂y(1) = y(1)), this recursive result is exactly

equals to the nonrecursive implementation. However, from numerical

point of view, it is a very robust procedure, because calculation errors

etc. are compensated in each step.

The previous scheme is a special case of a more general class of algorithms: the

stochastic approximation methods.

5.1.2 Stochastic approximation algorithms

From the discussion in the previous section, we learned that the recursive algo-

rithm can be written as a combination of an old estimate and a correction term

that is properly weighted. This result can be generaly formulated:

θ̂(N + 1) = θ̂(N)− 1

2
K (N)gradV (N) (5.5)

In this equation is
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• θ̂(N + 1): the estimate after N + 1 measurements

• θ̂(N): the estimate after N measurements

• K (N): the gain factor, balancing the new information versus the old one

• V (N): the cost function that should be minimized, for example the squared

difference between the new measurement and the model based prediction:

V (N) =
(
y(N + 1)− ŷ(N + 1, θ̂(N))

)2
It is clear that not every choice of K (N) will lead to a consistent estimate. It

is proven that under quite weak conditions, θ̂(N) is consistent if the following

conditions on the gain are met:

K (N) ≥ 0,
∞∑
N=1

K (N) =∞, and
∞∑
N=1

K 2(N) is finite. (5.6)

These conditions can be interpreted as follows:

• K (N) ≥ 0: in order to minimize the cost function, the updates should

move against the gradient. This is so if the gain is positive.

•
∑∞
N=1K(N) = ∞: This condition expresses that the gain can not go

too fast to zero. This is necessary to account sufficiently for the new

measurements.

•
∑∞
N=1 K

2(N) is finite: This condition imposes that the gain should go

fast enough to zero in order to allow the estimate to converge for N →∞.

The variance of the estimates can not converge to zero for N →∞ if this

constraint is not met. The new measurements keep pulling the estimate.

A sequence that meets the previous conditions is

K (N) =
1

Nα
, with 0.5 < α ≤ 1. (5.7)

The stochastic approximation algorithm is a very simple scheme. However it

is possible to improve it. In the next section, the scalar gain factor K (N) will
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be replaced by a vector. This will allow for a faster convergence and more

information about the uncertainty on the estimated parameters.

5.2 Recursive least squares with constant param-

eters

5.2.1 Problem statement

In this section we show how the linear least squares method of Section ?? can be

reformulated into a recursive method. These techniques can also be generalized

to models that are nonlinear in the parameters, but this is outside the scope of

this course.

Consider a multiple input, single output system that is linear in the param-

eters:

y0(k) = K(u0)θ0, (5.8)

with u0(k) ∈ R1×nθ , y0(k) ∈ R1×1.

Noisy output observations are made:

y(k) = y0(k) + ny(k). (5.9)

After collecting N measurements, the equations are under matrix form refor-

mulated:

yN = KNθ0 + nN , (5.10)

with

yN = (y(1), . . . , y(N))
T ∈ RN×1, (5.11)

KN =


K (u0, 1)

...

K (u0, N)

 ∈ RN×nθ (5.12)

nN = (ny(1), . . . , ny(N))
T ∈ RN×1 (5.13)
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5.2.2 Recursive solution of the least squares problem

The least squares estimate for this problem is given by (2.14). For simplicity

we drop the arguments in K.

θ̂LS(N) =
(
KT
NKN

)−1
KT
Ny (5.14)

= PNK
T
Ny (5.15)

with

PN =
(
KT
NKN

)−1 ∈ Rnθ×nθ . (5.16)

The following recurrence relation follows imediately from the definition:

P−1N = P−1N−1 +KT(u0, N)K(u0, N) (5.17)

KT
NyN = KT

N−1yN−1 +KT(u0, N)y(N) (5.18)

Using the matrix inverse lemma1, eq. (5.17)can be written as:

PN = PN−1−PN−1KT(u0, N)
(
K(u0, N)PN−1K

T(u0, N) + 1
)−1

K(u0, N)PN−1

(5.19)

Note that
(
K(u0, N)PN−1K

T(u0, N) + 1
)
is a scalar, so that its inversion re-

quires no time consuming matrix inversions.

Substitution of these results in (5.14) results in

θ̂LS(N) =
(
KT
NKN

)−1
KT
N (5.20)

= PNK
T
Ny (5.21)

=
(
PN−1 − PN−1KT(u0, N)

(
K(u0, N)PN−1K

T(u0, N) + 1
)−1

K(u0, N)PN−1

)
(5.22)

×
(
KT
N−1yN−1 +KT(u0, N)y(N)

)
(5.23)

1Matrix inversion lemma: If A−1 = B−1 +HTR−1H, then the following relation is valid:
A = B −BHT

(
HBHT +R

)−1
HB
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This results eventually in the following set of recursive equations:

θ̂LS(N) = θ̂LS(N − 1)−KN

(
K(u0, N)θ̂LS(N − 1)− y(N)

)
(5.24)

KN =
PN−1K

T(u0, N)

1 +K(u0, N)PN−1KT(u0, N)
(5.25)

PN = PN−1 −
PN−1K

T(u0, N)K(u0, N)PN−1
1 +K(u0, N)PN−1KT(u0, N)

(5.26)

These expressions allow a recursive implementation of the least squares. If

properly initiated (choice of θ̂LS(0), P0), they calculate exactly the same solution

as the nonrecursive estimated.

5.2.3 Discussion

• The recursive structure, as it was indicated before (see Section 5.1.2) is

clearly visible again. The new estimate θ̂LS(N) is given by the old estimate

θ̂LS(N − 1) plus an update KN

(
K(u0, N)θ̂LS(N − 1)− y(N)

)
. The up-

date consists of the difference between the predicted output measurement

K(u0, N)θ̂LS(N − 1), and the actual measured value y(N). A vectorial

scale factor KN scales and directs this error signal into a parameter up-

date.

• From Section 2.2.3 we know that for white and uncorrelated disturbing

noise Cov {ny} = σ2
y IN the Cov

{
θ̂LS

}
is

Cov
{
θ̂LS(N)

}
= σ2

y

(
KTK

)−1
= σ2

yPN . (5.27)

• So we calculate the covariance matrix at the same time as the updated

parameters.

• PN =
(
KT
NKN

)−1 decreases towards zero if the system is persistently

excited during the experiment (loosely spoken, persistency means that

the experiment is informative, on average, each new sample adds some

additional information) because KT
NKN grows to infinity. This means
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that the uncertainty on the parameters goes to zero.

• Also the gain factor KN is proportional to PN . Hence it also decays to

zero.

5.3 Recursive least squares with (time)-varying

parameters

5.3.1 Introduction

In many problems, the system to be modelled is slowly varying in time. Typical

examples are: systems with dynamics that depend on the temperature (chemical

plants), linear approximations to nonlinear systems around a changing working

point, etc. Such a problem needs special care. A first approach could be to model

the variations explicetily, but this increases the modelling effort significantly.

An alternative is to built a model with varying parameters. The parameters

should track the slow variations. Such an algorithm will be presented in this

section. In principal the problem could be solved with the previous developped

recursive least squares. By fixing the K to a small value (avoiding convergence

towards zero), the new measurements will continue to update the parameters.

However, it is possible to make a more systematic approach to the problem.

Basically, we should avoid that the data collected long ago are still influencing

the actual parameters, since these old measurements do no longer obey the same

system equations as the fresh measurements (the system changed in time!). This

should be expressed in the cost function. Here, an exponential forgetting factor

is proposed, changing the original least squares cost function

VLS(θ,N) =
1

2

N∑
k=1

e2N (k, θ), with eN (θ) = y −KN (u0)θ (5.28)

to:

VEF(θ,N) =
1

2

N∑
k=1

gN−ke2N (k, θ), with 0 ≤ g ≤ 1. (5.29)
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Because g is smaller than 1, measurements from a far past will be exponentially

forgotten. Note that this can be interpreted as a first order filter with impuls

response h(l) = g
l
2 acting on eN (k, θ). This cost function can also be written

using matrix notations:

VEF(θ,N) = eTNReN , (5.30)

with

RN =



gN−1 0 . . . 0 0

0 gN−2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . g 0

0 0 0 . . . 0 1


. (5.31)

5.3.2 The recursive solution

The solution of this weighted least squares problem is

θ̂EF(N) =
(
KT
NRNKN

)−1
KT
NRNyN (5.32)

Define

PN =
(
KT
NRNKN

)−1 ∈ Rnθ×nθ , (5.33)

then we get that

P−1N = gP−1N−1 +KT(u0, N)K(u0, N). (5.34)

From here, the same steps can be made as in the previous section, applying the

matrix inversion lemma with B = 1
gPN−1, and R = 1, results in

θ̂LS(N) = θ̂LS(N − 1)−KN

(
K(u0, N)θ̂LS(N − 1)− y(N)

)
KN = PN−1K

T(u0,N)
g+K(u0,N)PN−1KT(u0,N)

PN = 1
g

(
PN−1 − PN−1K

T(u0,N)K(u0,N)PN−1

g+K(u0,N)PN−1KT(u0,N)

) (5.35)
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5.3.3 Discussion

Note that these equations are completely similar to those of the recursive least

squares by putting g = 1.

The price to be paid for the additional flexibility of the model is an increased

uncertainty on the estimates. Due to the forgetting factor, the information ma-

trix P−1N is not growing anymore towards infinity. Each time a new measure-

ment is added, a fraction of the old information is lost. The smaller g, the more

information is lost, but the faster the algorithm can track parameter variations.
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Chapter 6

Kalman Filtering

6.1 Introduction

In practice one frequently encounters situations where a signal disturbed by

noise is to be measured. We want to reconstruct the original signal correspond-

ing to the measured disturbed signal. One possibility to do so is by filtering the

measured signal. This begs the question how one choses a suited filter. During

World War II, this problem was studied by Wiener. His solution is known as

‘Wiener filtering’. His proposed solution, however, was hard to implement in

practice. During the early nineteen-sixties Kalman and Bucy deduced a more

general solution. The problem they regarded can be posed as follows. Consider

a system whose model is known. This system is excited by the known input

signal u(t) and it is disturbed by the noise source v(t). We wish to study the

system by its output quantities y(t), but these observations are disturbed by a

noise source n(t). We wish to estimate the state x(t) of the system from the

measurements y(t). Depending on what time instance we consider, this is called:

• x(t− τ): an interpolation problem,

• x(t): a filtering problem,

• x(t+ τ): an extrapolation or prediction problem.
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6.2 Construction of the Kalman filter

In the general case, we can consider this case for nonlinear systems. For sim-

plicity’s sake, we only consider the linear problem. This can be described as

follows.

Continuous state equations:


ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + n(t)

(6.1)

In these equations x, u, v, y, n are vectors and A,B,C are matrices. A similar

formulation can be used for discrete systems:


x(k + 1) = Ax(k) +Bu(k) + v(k)

y(k) = Cx(k) + n(k)

The corresponding block diagram is shown in Figure 6.1.

Figure 6.1: Block diagram of the state equation

The information that is available before solving this problem:

• A, B, C are known

• E {v(k)} = 0 Cov
{
v(k) v(j) T

}
= Rvδkj

• E {n(k)} = 0 Cov
{
n(k)n(j)

T
}

= Rnδkj

• v and n are independent variables

In the following derivation, B is kept 0 for simplicity.
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Let Y (k) = {y(1) , y(2) , . . . , y(k)}

If we denote E {x(k)|Y (k)} = X(k)

We can prove the following relation immediately:

E {x(k + 1)|Y (k)} = AX(k) (6.2)

as

E {x(k + 1)|Y (k)} = E {Ax(k) + v(k)|Y (k)} (6.3)

= AE {x(k)|Y (k)}+ E {v(k)|Y (k)} (6.4)

= AX(k) (6.5)

Denote Cov {x(k + 1)|Y (k)} = E
{

(x(k)−X(k)) (x(k)−X(k))
T
}

= P (k)

Then we can prove that

Cov {x(k + 1)|Y (k)} = A · P (k) ·AT +Rv = Q(k + 1) (6.6)

since
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Cov {x(k + 1)|Y (k)} = Cov {Ax(k) + v(k)|Y (k)} (6.7)

= E
{

(Ax(k) + v(k)−AX(k)) (Ax(k) + v(k)−AX(k))
T
∣∣∣Y (k)

}
(6.8)

= E
{
A · (x(k)−X(k)) (x(k)−X(k))

T
AT
∣∣∣Y (k)

}
+ E

{
v(k)x(k)

T
∣∣∣Y (k)

}
AT +A · E

{
x(k) v(k)

T
∣∣∣Y (k)

}
− E

{
v(k)X(k)

T
∣∣∣Y (k)

}
AT −A · E

{
X(k) v(k)

T
∣∣∣Y (k)

}
+ E

{
v(k) v(k)

T
∣∣∣Y (k)

}
(6.9)

= A · E
{

(x(k)−X(k)) (x(k)−X(k))
T
∣∣∣Y (k)

}
AT +Rv

(6.10)

= A · P (k) ·AT +Rv = Q(k + 1) (6.11)

using the information we deduced above, it is possible to construct the prob-

ability density function of x(k + 1). In doing so an extension of Bayes’ rule is

needed.

P (a, b, c) = P (a| b, c) P (b, c) = P (a| b, c) P (b| c) P (c) (6.12)

P (a, b, c) = P (a, b| c) P (c) (6.13)

From equations (6.12) and (6.13) one can immediately derive:

P (a| b, c) =
P (a, b| c)
P (b| c)

(6.14)

Substituting a = x(k + 1), b = y(k + 1), c = Y (k)into (6.14) yields:
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P (x(k + 1)| y(k + 1) , Y (k)) =
P (x(k + 1) , y(k + 1)|Y (k))

P (y(k + 1)|Y (k))
(6.15)

=
P (y(k + 1)|x(k + 1) , Y (k)) P (x(k + 1)|Y (k))

P (y(k + 1)|Y (k))

(6.16)

The numerator of this expression can be expanded even further:

P (x(k + 1) , y(k + 1)|Y (k)) = Pn (y(k + 1)− Cx(k + 1)) · P (x(k + 1)|Y (k))

(6.17)

wherein Pn is the probability density function of the noise on the measure-

ments. After substitution of this result into (6.15), we find:

posterior︷ ︸︸ ︷
P (x(k + 1)| y(k + 1) , Y (k)) =

Pn (y(k + 1)− Cx(k + 1)) ·

prior︷ ︸︸ ︷
P (x(k + 1)|Y (k))

P (y(k + 1)|Y (k))

(6.18)

This expression is very informative. At the left hand side, we find the so-

called ‘posterior’ (pdf) of x(k + 1), which includes the knowledge obtained from

the measurement y(k + 1). The posterior is calculated from the ‘prior’ (pdf) by

taking the latest measurement y(k + 1) into account.

In the following part, we are going to determine x(k + 1) such that the prob-

ability of realizing x(k + 1) after the measurement y(k + 1) is maximal. We im-

pose the limitation that the probability density functions of the noise (Pn and

Pv) are normal distributions. Since the covariance matrix Cov {x(k + 1)|Y (k)}

is known from (6.6) and Rn and Rv are given, these probability densitity func-

tions are determined completely. The denominator at the right hand side of

(6.18) is independent of x(k + 1) and can therefore be considered as a constant

when finding the maximum.
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P (x(k + 1)| y(k + 1) , Y (k)) = Cte · exp

(
−1

2
(x(k + 1)−AX(k))

T
Q(k + 1)

−1
(x(k + 1)−AX(k))

)
× exp

(
−1

2
(y(k + 1)− CX(k))

T
R−1n (y(k + 1)− CX(k))

)

One could rearrange this expression to an expression of the form

exp

(
−1

2
(x(k + 1)− . . .)T

(
Q−1(k + 1) + CTR−1n C

)
(x(k + 1)− . . .)

)

This also means that

Cov {x(k + 1)|Y (k + 1)} = P (k + 1) =
(
Q−1(k + 1) + CTR−1n C

)−1
(6.19)

This result will be useful further on.

The probability density function P (x(k + 1)| y(k + 1) , Y (k)) is to be maxi-

mized with respect to x(k + 1). This corresponds to minimizing the exponent.

We consider the condition for stationarity:

Q−1(k + 1) (x(k + 1)−AX(k))− CTR−1n (y(k + 1)− Cx(k + 1)) = 0

The value of X(k + 1) = x(k + 1) that statisfies this equation, is the esti-

mator of x(k + 1).

(
Q−1(k + 1) + CTR−1n C

)
X(k + 1) = Q−1(k + 1)AX(k) + CTR−1n y(k + 1)

At the left hand side, we can identify the value of P (k + 1) which was found

in 6.19.
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Using the matrix inverse lemma

P =
(
Q−1 + CTR−1n C

)−1
= Q−QCT

(
CQCT +Rn

)−1
CQ

and the following relation

(
Q−1 + CTR−1n C

)−1
CTR−1n = QCT

(
CQCT +Rn

)−1
one can derive the solution:

X(k + 1) = AX(k)+Q(k + 1)CT
(
CQ(k + 1)CT +Rn

)−1
(y(k + 1)− CAX(k))

Recursive algorithm The preceding results can be combined into the fol-

lowing recursive algorithm:

Q(k + 1) = AP (k)AT +Rv (6.20)

K(k + 1) = Q(k + 1)CT
(
CQ(k + 1)CT +Rn

)−1
(6.21)

P (k + 1) = (I−K(k + 1)C)Q(k + 1) (6.22)

X(k + 1) = AX(k) +K(k + 1) (y(k + 1)− CAX(k)) (6.23)

Remarks:

• Q(k + 1) = P (k + 1|k) is the prior covariance matrix of X(k + 1) derived

using k measurements,

• P (k + 1) is the posterior covariance matrix of X(k + 1) derived using k+1

measurements,

• AX(k) is the extrapolated state variable given k measurements,

• CAX(k) is the value of the measurement given the extrapolated state,
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• The matricesQ, P andK are independent of the measurements. Therefore

they can be calculated beforehand.

• This method remains useable when the noise is not normally distributed.

However, in that case the solution found will no longer be an optimal

solution.

If the input matrix B is not equal to 0, one can derive following recursive

equations for Kalman filtering:

Q(k + 1) = AP (k)AT +Rv (6.24)

K(k + 1) = Q(k + 1)CT
(
CQ(k + 1)CT +Rn

)−1
(6.25)

P (k + 1) = (I−K(k + 1)C)Q(k + 1) (6.26)

X(k + 1) = AX(k) +Bu(k) +K(k + 1) (y(k + 1)− CAX(k)− CBu(k))

(6.27)

In that case, AX(k)+Bu(k) is the extrapolated state and C (AX(k) +Bu(k))is

the measurement corresponding to the extrapolated state.

6.3 Example

Let’s examine a system that is described by the following state equations for

which we will construct a Kalman filter:

x(k + 1) = ax(k) + v(k) met a =
√

0.5 (6.28)

y(k) = x(k) + n(k) (6.29)

The prior information available is:

• v and n are normally distributed
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• E {v(k)} = 0 E
{
v(k) v(j) T

}
= σ2

vδkj

• E {n(k)} = 0 E
{
n(k)n(j)

T
}

= σ2
nδkj

• v and n are independent

The solution follows immediately from the equations derived above.

Q(k + 1) = a2P (k) + σ2
v (6.30)

K(k + 1) =
Q(k + 1)

Q(k + 1) + σ2
n

(6.31)

P (k + 1) = (1−K(k + 1)C)Q(k + 1) (6.32)

X(k + 1) = aX(k) +K(k + 1) (y(k + 1)− aX(k)) (6.33)

The expressions for K(k + 1) and P (k + 1) can be simplified even further:

K(k + 1) =
σ2
nQ(k + 1)

Q(k + 1) + σ2
n

=
σ2
n

(
a2P (k) + σ2

v

)
a2P (k) + σ2

v + σ2
n

(6.34)

P (k + 1) =
σ2
n

(
a2P (k) + σ2

v

)
σ2
n + a2P (k) + σ2

v

(6.35)

In Table 6.1 the gain K(k), Q(k) and P (k) of the corresponding Kalman

filter are calculated explicitly. The initial value x(0) was chosen to be 0. As

we have no confidence in this initial value, the corresponding covariance matrix

P (0) was put at infinity. For simplicity, both σn and σv were equated to σ.

Table 6.1: Gain K(k), Q(k) and P (k) of the Kalman filter

k Q(k) K(k) P (k)

0 ∞
1 ∞ 1 σ2

2 1.5σ2 0.6 0.6σ2

3 1.3σ2 0.565 0.565σ2

4 1.283σ2 0.56 0.56σ2

5 1.28σ2 0.56 0.56σ2

Table 6.1 allows us to gain some insight into Kalman filtering.
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One notices that the gain sequence K(k) is a decreasing sequence that

doesn’t converge to 0. This means that at first more weight is put in the

measurements than in the predictions. After a certain amount of iterations, an

equilibrium is reached between the importance of a measurement and a predic-

tion. In contrast to the recursive least squares approach, measurements keep

influencing the predictions in Kalman filtering when k grows large. This is due

to the fact that the system is internally disturbed by noise (the source v(k) in

particular).

The value of P (k) also converges to a nonzero limit value. The Kalman

filter is stationary when P (k + 1) = P (k). This limiting value can be calculated

easily by equating P (k + 1) and P (k) in (6.26). By doing so for this example,

one obtains:

P = P (∞) =
σ2
n

(
a2P + σ2

v

)
σ2
n + a2P + σ2

v

A quadratic equation in P ensues. Its solution for a =
√

5 and σn = σv = σ

is P ≈ 0.56σ2. This is the value we already encountered in Table 6.1.

Study of the effect of the noise v(k): When the noise v(k) = 0, it is

possible to simplify expression (6.35):

P (k + 1) =
σ2
n

(
a2P (k)

)
σ2
n + a2P (k)

(6.36)

P (k + 1)

P (k)
=

1
1
a2 + P(k)

σ2
n

=
a2

1 + a2 P(k)σ2
n

(6.37)

For a stable system |a| < 1 and the second term in the denominator in (6.37)

is positive. Therefore we can conclude that

P (k + 1)

P (k)
≤ a < 1.

This means that P (k) converges to 0 for large k. A similar result is valid

139



CHAPTER 6. KALMAN FILTERING

for K(k). If one examines the constituent relations of the Kalman filter, one

concludes that the Kalman filter will eventually cease to take measurements

into account in its predictions when v(k) is assumed to be 0. It will predict

the system behavior using only the supplied model and the estimated state. In

theory such a situation is plausible, but in a practical setting this is a dangerous

set-up. It is impossible to know a given system perfectly, there will always

be (small?) model errors. Such model errors will cause the divergence of the

estimated state with respect to the measured value, given that the gain factor

K(∞) = 0. The filter will correct for these errors no longer. In a nutshell: one

always has to include the noise term v(k) in the state equations, even when

there is no direct motive to do so. By doing so, P (k) will not converge to 0 (due

to a large incertainty) but the Kalman filter will be able to handle model errors

more gracefully.

In this chapter the Kalman filter was constructed for linear state equations.

It is possible however to construct generalized versions that are applicable for

nonlinear equations. Using these techniques, one can estimate both the model

parameters and the state of the system at the same time. (Why is this last

set-up a nonlinear problem?)
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departement ELEC, Pleinlaan 2, B1050 Brussels. email: johan.schoukens@vub.ac.be

What you will learn: The aim of this chapter is to illustrate basic aspects of system identifi-
cation:
- least squares, weighted least squares and maximum likelihood estimation
- uncertainties and distribution of the estimates
- impact of disturbing noise on the input and the output

7.1 INTRODUCTION

The aim of system identification is to extract a mathematical model  from a set of measure-
ments . Measurement data are disturbed by measurement errors and process noise, described as
disturbing noise on the data:

. (1)

Since the selected model class  does in general not include the true system , model errors ap-
pear:

 and , (2)

with  the model errors. The goal of the identification process is to select , and to tune the model
parameters  such that the ‘distance’ between the model and the data becomes as small as possible.
This distance is measured by the cost function that is minimized. The selection of these three items
(data, model, cost function) sets the whole picture, all the rest are technicalities that do not affect the
quality of the estimates. Of course this is an over simplification. The numerical methods used to min-
imize the cost function, numerical conditioning problems, model parameterizations, ... are all exam-
ples of very important choices that should be properly addressed in order to get reliable parameter
estimates. Failing to make a proper selection can even drive the whole identification process to use-
less results. A good understanding of each of these steps is necessary to find out where a specific
identification run is failing: is it due to numerical problems, convergence problems, identifiability
problems, or a poor design of the experiment?

In this chapter we will study the following issues:

■ What is the impact of noise on the estimates (stochastic and systematic errors)?
■ What are the important characteristics of the estimates?
■ How to select the cost function?
■ How does the choice of the cost function affect the results?
■ How to select the complexity of the model? What is the impact on the estimates?
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nz

Z Z0 nz+=

M S0

S0 M0∈ M0 M Mε+=

Mε M
θ



166 Chapter ■

7.2 ILLUSTRATION OF SOME IMPORTANT ASPECTS OF 
SYSTEM IDENTIFICATION

In this section, we illustrates on a simple example some important aspects of system identifi-
cation. The impact of the noise on the final estimates is illustrated. It will be shown that zero
mean measurement noise can result in systematic errors on the estimates (the mean of the pa-
rameter errors is not equal to zero!). Also the uncertainty it studied. Depending on the choice
of the cost function, a larger or smaller noise sensitivity will be observed. All these aspects
are studied on a very simple example: the measurement of the value of a resistance starting
from a series of voltage and current measurements.

7.2.1 Least squares estimation: a basic approach to system 
identification

Exercise 3.a (Least squares estimation of the value of a resistance) Goal: estimate
the resistance value starting from a series of repeated current and voltage measurements:

, (7-1)

with  the exact values of the voltage and the current.
Generate an experiment with  measurements. The cur-

rent  is uniformly distributed in  with A (use the Matlab™ routine
rand(N,1)), . The current is measured without errors, the voltage is disturbed
by independent, zero mean, normally distributed noise  with: .

, (7-2)

To measure the distance between the model and the data, we select in this exercise a least
squares cost function: . Notice that many other possible
choices can be made.

The least squares estimate  is defined as the minimizer of the following cost function:

(7-3)

■ Show that the minimizer of (7-3) is given by:

. (7-4)

■ Generate 100 data sets with a length , and calculate for
each of these the estimated value .

■ Plot the 100 estimates, together with the exact value for each , and compare the
results.

Observations -  (see Figure 7-1) From the figure it is seen that the estimates are scat-
tered around the exact value. The scattering decreases for an increasing number . It can be
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shown that under very general conditions, the standard deviation of the estimates decreases
as . This is further elaborated in the next exercise.

Exercise 3.b (Analysis of the standard deviation In this exercise, it is verified how
the standard deviation varies as a function of . Consider the resistance

, . (7-5)

with a constant current A, and . Generate  experiments with
 measurements. The current is measured without errors, the

voltage is disturbed by independent, zero mean Gaussian distributed noise  in
:

, (7-6)

■ Calculate for the four values of  the standard deviation of . Make a loglog-plot.
■ Compare it with the theoretical value of the standard deviation that is given in this

simplified case (constant current) by:

. (7-7)

Observations - (see Figure 7-2) From the figure it is seen that the standard deviation de-
creases as . Collecting more data allows to reduce the uncertainty. To get a reduction
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Figure 7-1 Estimated resistance values  for  = 10, 100, 1000, 10000 for 100 repeated
experiments. Gray line: exact value, dots: estimated value.
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with a factor 10 in uncertainty, an increase of the measurement time with a factor 100 is
needed. This shows that it still pays off to spend enough time on a carefully setup of the ex-
periment in order to reduce the level of the disturbing noise  on the raw data.

Remark: for the general situation with a varying current, the expression for the standard
deviation  for a given current sequence  is:

(7-8)

Exercise 3.c (Study of the asymptotic distribution of an estimate) The goal of this
exercise is to show that the distribution of an estimate is asymptotically for  normally
distributed, and this almost independent of the distribution of the disturbing noise (within
some regularity conditions, like finite variance, and a restricted ‘correlation’ length of the
noise).
Consider the previous exercise for , and  repetitions. Use a constant cur-
rent A, measured without errors. For the voltage we consider two situations. In the
first experiment, the voltage is disturbed by independent, zero mean Gaussian distributed
noise . In the second experiment the voltage noise is uniformly distributed in

.
■ Verify that the standard deviation of the uniformly distributed noise source also

equals 1. 
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Figure 7-2 Experimental (black bullets) and theoretical (gray dots) standard deviation on  as a function
of . The error drops with  if the number of data  grows with a factor 10.
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■ Calculate the least squares solution (see eq. 7-4) for  and repeat this
 times for both noise distributions. Plot the estimated pdf for the eight different

situations.
■ Calculate the mean value and the standard deviation over all realizations (repeti-

tions) for each situation, and compare the results.
h

Observations - (see Figure 7-3) From the figure it is seen the distribution of the esti-

mates depends on the distribution of the noise. For example, for , the pdf for the
Gaussian disturbed noise case is significantly different from that corresponding to the uni-
formly disturbed experiment. These differences disappear for a growing number of data per
experiment (  increases), and for  it is already hard to see by a simple visual inspec-
tion a different shape. The uniform distribution converges to the Gaussian distribution for
growing values of . This is a general valid result.
In this case, the mean value and the variance is the same for all values of . This is again a
general result for models that are linear in the measurements (e.g.  is linear in ,
while  is nonlinear in the measurements). The covariance matrix of the estimates
depends only on the second order properties of the disturbing noise. This conclusion can not
be generalized to models that are nonlinear in the measurements. In the latter case, the esti-
mates will still be Gaussian distributed, but the mean value and variance will also depend on
the distribution of the disturbing noise.

7.2.2 Systematic errors in least squares estimation

In the previous section it was shown that disturbing noise on the voltage resulted in
noisy estimates of the resistor value, the estimated value of the resistor varies from one ex-
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Figure 7-3 Evolution of the pdf of  as a function of , for . Black: Gaussian disturbing
noise; Gray: uniform disturbing noise.
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periment to the other. We characterized this behavior by studying the standard deviation of
the estimator. The mean value of these disturbances was zero: the estimator converged to the
exact value for a growing number of experiments. The goal of this exercise is to show that
this behavior of an estimator is not for granted. Compared with the previous Exercises 3.a -
3.c, we add in the next two exercises also disturbing noise on the current. The impact of the
current noise will be completely different from that of the voltage noise, besides the varia-
tions from one experiment to the other, also a systematic error will become visible.

Exercise 3.d (Impact of disturbing noise on the regressor or input 
measurements)
Consider the previous exercise for , and  repetitions. The current  is uni-
formly distributed between A. It is measured this time with white disturbing
noise added to it: , with a normal distribution . The voltage mea-
surement is also disturbed with normally distributed noise: .

■ Repeat the simulations of the previous exercise once without and once with noise on
the current. Vary the current noise standard deviation in 3 successive simulations:

A.
■ Calculate the least squares solution (see eq. 7-4) for  and repeat this 

times for all situations and plot the pdf for each of them.
■ Calculate the mean value and the standard deviation over all realizations (repeti-

tions) for each situation, and compare the results.
h

Observations - (see Figure 7-4) From the figure it is seen that the distribution of the es-

timates depends strongly on the presence of the noise on the current measurement. Not only
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Figure 7-4 Evolution of the pdf of  as a function of the noise level at the current. Black: Only noise on
the voltage V; Gray: noise on the voltage V and the current.
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the standard deviation is affected, also a bias becomes visible that grows with the variance of
the current noise. This result is closely linked to the fact that the current is used as regressor
or independent variable that explains the voltage as a dependent variable: we used a model
where the current is the input, and the voltage is the output. Whenever the measurement of
the input variable is disturbed by noise, bias problems will appear unless special designed
methods are used. These will be studied in Section 7.6.

Exercise 3.e (The importance of the choice of the independent variable or input)
In the previous Exercise 3.d it became clear that noise on the input or independent variable
creates a bias. The importance of this choice is explicitly illustrated by repeating Exercise
3.c. where the disturbing noise is only added to the voltage. In this exercise the same data are
processed two times:

■ Process the data using the current as independent variable, corresponding to the
function  and an estimate of :

 (7-9)

■ Process the data using the voltage as independent variable, corresponding to
, with G the conductance:

 and . (7-10)

■ Repeat each experiment  times, and calculate the pdf of the estimated resistance
h

Discussion - (see Figure 7-5) Whenever the measurement of the variable that appears
squared in the denominator of (7-9) or (7-10) is disturbed by noise, a bias will become visi-
ble. This shows that the signal with the highest SNR should be used as independent variable
or input in order to reduce the systematic errors. The bias will be proportional to the inverse
SNR (noise power/signal power).

7.2.3 Weighted least squares: optimal combination of 
measurements of different quality

The goal of this section is to combine measurements with different quality. A first possibility
would be to throw away the poorest data, but even these poor data contain information. Better
is to make an optimal combination of all measurements taking into account their individual
quality. This will result in better estimates with a lower standard deviation. The price to be
paid for this improvement is the need for additional knowledge about the behavior of the dis-
turbing noise. While the least squares (LS) estimator does require no information at all about
the disturbing noise distribution, we have to know the standard deviation (or in general the
covariance matrix) of the disturbing noise in order to be able to use the improved weighted
least squares (WLS) estimator. That is illustrated in this exercise.

Exercise 4.a (combining measurements with a varying SNR: Weighted Least 
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squares estimation) Estimate the resistance value starting from a series of repeated current
and voltage measurements:

, (7-11)

with  the exact values of the voltage and the current. Two different voltmeters are used,
resulting in two data sets, the first one with a low noise level, the second one with a high
noise level.

■ Generate an experiment with  measurements,  uniformly distributed in
A, . The current is measured without errors, the voltage

measured by the 2 voltmeters is disturbed by independent, zero mean, normally dis-
tributed noise  with:  for the first good voltmeter, and 
for the second bad one.

, (7-12)

■ Calculate the weighted least squares solution, given below:

, (7-13)

with  the weighting of the  measurement:  for the measurements
of the first voltmeter, and  for the measurements of the second one.

■ Repeat this exercise 10000 times for . Estimate the resistance also with the
least squares method of Exercise 3.a. Make an histogram of both results.
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Figure 7-5 Study of the impact of the selection of the independent variable for the
estimation of the resistance. Only the voltage is disturbed with noise. The pdf
of the estimated resistance is shown for the independent variable being the
current (black) or the voltage (gray).
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Observations - (see Figure 7-6) From the figure it is seen that the.estimates are scat-

tered around the exact value. However, the standard deviation of the weighted least squares is
smaller than that of the least squares estimate. It can be shown that the inverse of the covari-
ance matrix of the measurements is the optimal weighting for least squares methods.

Exercise 4.b (Weighted least squares estimation: Study of the variance) In this
exercise we verify by simulations the theoretical expressions that can be used to calculate the
variance of a least squares and a weighted least estimator. It is assumed that there is only
noise on the voltage. The exactly measured current is used as regressor (input). The theoreti-
cal variance of the least squares estimator (no weighting applied) for the resistance estimate
is given by

, (7-14)

and the variance of the weighted least squares estimator using the variance on the output (the
voltage) as weighting is

. (7-15)

■ Consider Exercise 4.a, calculate the theoretical value for the standard deviation, and
compare this to the results obtained from the simulations.

Observations - A typical result of this exercise is:
theoretical standard deviation LS: 19.4, experimental standard deviation: 19.3
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Figure 7-6 Estimated resistance values for  = 100, combining measurements of a good and a bad
voltmeter. Black: pdf of the least squares; gray: pdf of the weighted least squares estimates.
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theoretical standard deviation WLS: 9.1, experimental standard deviation: 9.2
Remark: the expressions (7-14) and (7-15) for the theoretical values of the variance are

valid for a given input sequence. If the averaged behavior over all (random) inputs is needed,
an additional expectation with respect to the input current should be calculated.

7.2.4 Models that are linear-in-the-parameters

The least squares estimates of the resistor that are studied till now were based on the
minimization of the weighted cost function

, (7-16)

with  the measured voltage (output) and current (input) respectively.
In general, the difference between a measured output  and a modelled output

 is minimized for a given input signal . All model parameters are
grouped in . This can be formulized under a matrix notation. Define the signal vec-
tors , for example:

, (7-17)

and a positive weighting matrix . Then the weighted least squares cost function be-
comes:

. (7-18)

For a diagonal matrix , and  elsewhere, equation (7-18) reduces to

. (7-19)

The estimate  is found as the minimizer of this cost function:

. (7-20)

In general it will be impossible to solve this minimization problem analytically. However, if
the model is linear-in-the-parameters, then it is possible to formulate the solution explicitly,
and it is also possible to calculate it in a stable numerical way with one instruction in Mat-
lab™™. A model is called linear-in-the-parameters if the output is a linear combination of
the model parameters:

 with . (7-21)

Note that  can be a nonlinear function of the input. The explicit solution of the (weighted)
least squares problem becomes:
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 and . (7-22)

Numerical stable solutions to calculate this expression avoid the explicit calculation of the
product  to improve the numerical conditioning. The Matlab™™ solution is given
by:

 with 

. (7-23)

Exercise 5 (Least squares estimation of models that are linear in the 
parameters) Consider the model y0=tan(u0*0.9*pi/2), evaluated for the inputs
u0=linspace(0,1,N). 

■ Generate a data set . Put , and vary  to 20. Use the Matlab™
instruction

■ Calculate the least squares solution ( ) for the different values of , using
the stable Matlab™ solution (7-23) and the direct implementation (7-22).

■ Compare the solutions, and calculate the condition number of  and .
This can be done with Matlab™ instruction cond( )

■ Compare the modeled output with the exact output and calculate the rms-value of the
error.

h

Observations - (see Figure 7-7) From this figure, it can be seen that the condition num-

ber of the numerical unstable method (7-22) grows two times faster on a logarithmic scale
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than that of the stable method (7-23). The number of digits required to make the equations is
given by the exponent of the condition number. From order 10 or larger more than 15 digits
are needed which is more than the calculation precision of Matlab™. As a result, the obtained
models are no longer reliable, even if there was no disturbing noise in the experiment. This
shows that during system identification procedures, it is always necessary to verify the nu-
merical conditions of the calculations. The condition number of the stable numerical imple-
mentation grows less fasts, allowing to solve higher order polynomial approximations. 

Remark: if very high order polynomial approximations are needed, other more robust
polynomial representations can be used using orthogonal polynomials. The nature of these
polynomials will depend upon the applied input signal.

7.2.5 Interpretation of the covariance matrix & Impact 
experiment design

In the previous Section 7.5.1, a one and a two parameter model was considered. In this sec-
tion it is shown that: 1) The variance of a set of parameters is not enough to make conclusions
on the model uncertainty, the full covariance matrix is needed. 2) The covariance matrix (and
the correlation between the parameters) is strongly influenced by the experiment design.

Exercise 6 (Characterizing a 2-dimensional parameter estimate)
Generate a set of measurements:

. (7-24)

In the first experiment  is generated by linspace(-3,3,N), distributing  points
equally between -3 and 3. In the second experiment  is generated by
linspace(2,5,N).

■ Choose , , and   with . 
■ Use as a model , and estimate the parameters  using the method

of Exercise 5.
■ Repeat this experiment  times. 
■ Estimate the LS-parameters for both experiments, calculate the covariance matrix,

and plot  as a function of . 
■ Plot also the estimated lines for the first  experiment
Observations - (Figure 7-8) In Figure 7-8, top the parameters are plotted against each

other. For the second experiment (  in [2,5]), the parameters are strongly corre-
lated, as can be seen from the linear relation between the estimated values  and .
This is not so for the first experiment ( ), the black cloud has is main axis parallel
to the horizontal and vertical axis which is the typical behavior of an uncorrelated variable.
This can also be seen in the covariance matrices:

, and , (7-25)

or even better from the correlation matrices
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, and . (7-26)

The correlation in the first matrix is almost zero, while for the second experiment it is almost
one, indicating that a strong linear relation between the offset and slope estimate exists. This
means that both variables vary considerable (a large standard deviation), but they vary to-
gether (a large correlation) so that the effect on the modelled output is small in the input
range that the experiment was made (see Figure 7-8, middle and bottom). In that range, the
variations of  or mostly cancelled by those of . Outside this range, the standard deviation
of the modelled output will be larger compared to that obtained with the first experiment be-
cause there the offset-slope compensation is no longer valid. This shows that the covariances
play an important role in the model uncertainty.

7.3 MAXIMUM LIKELIHOOD ESTIMATION FOR GAUSSIAN 
AND LAPLACE DISTRIBUTED NOISE

In Section 7.2 and 7.3, Gaussian distributed noise was added as disturbances to the measure-
ments. It is shown in theory that least squares estimators, where the cost function is a qua-
dratic function of the errors, perform optimal under these conditions. The smallest
uncertainty on the estimators is found if a proper weighting is selected. This picture changes
completely if the disturbing noise has no Gaussian distribution. In the identification theory it
is shown that for each noise distribution, there corresponds an optimal choice of the cost
function. A systematic approach to find these estimators is the maximum likelihood theory.
Discussing this theory is out of the scope of this book, but some of its results will be illus-
trated on the resistance example. The disturbances will be selected once to have a normal dis-
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tribution, and once to have a Laplace distribution. The optimal cost functions corresponding
to these distributions are a least squares and a least absolute value cost function.

Exercise 7.a (Dependence of the optimal cost function on the distribution of the 
disturbing noise) Consider a set of repeated measurements:

, (7-27)

with  the exact values of the voltage and the current. Two different voltmeters are used,
resulting in two data sets, the first one disturbed by Gaussian (normal) distributed noise, the
second one disturbed with Laplace noise.

Generate an experiment with  measurements,  uniformly distributed in
, and . The current is measured without errors. The voltage

measured with the first voltmeter is disturbed by independent, zero mean, normally distrib-
uted noise , the second voltmeter is disturbed by Laplace distributed noise
with zero mean, and .

, (7-28)

For the Gaussian noise, the maximum likelihood solution reduces to a least squares (LS) esti-
mate as in (7-4), for the Laplace distribution the maximum likelihood estimator is found as
the minimizer of

, and , (7-29)

called the least absolute values (LAV) estimate. 
■ Repeat this exercise 10000 times for . 
■ Apply both estimators also to the other data set. 
■ Calculate the mean value, the standard deviation, and plot for each situation the his-

togram.
Help 1: Laplace distributed noise with zero mean and standard deviation  can be gener-
ated from uniformly distributed noise  using the following Matlab™ implementation:
x=rand(NData,1); % generate uniform distributed noise
nLap=zeros(size(x)); % vector used to store the Laplace noise
nLap(x<=0.5) = log(2*x(x<=0.5))/sqrt(2)*stdU; 
nLap(x>0.5) =  - log(2*(1-x(x>0.5)))/sqrt(2)*stdU;
Help 2: to minimize , a simple scan can be made over  belonging to [800:0.1:1200]

Observations - (see Figure 7-9) From Figure 7-9, it is seen that the estimates are scat-
tered around the exact value. For the Gaussian case, the LS squares estimate is less scattered
than the LAV estimate. For the Laplace case the situation is reversed. The mean and standard
deviations are given in TABLE 7-10. This shows that the maximum likelihood estimator is
optimal for the distribution that it is designed for. If the noise distribution is not prior known,
but the user can guarantee that the variance of the noise is finite, than it can be shown that the
least squares estimate is optimal in the sense that it minimizes the worse possible situation
among all noise distributions with a finite variance.
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7.4 IDENTIFICATION FOR SKEW DISTRIBUTIONS WITH 
OUTLIERS

In Section 7.3, it was shown that the optimal choice of the cost function depends on the distri-
bution of the disturbing noise. The maximum likelihood theory offers a theoretic framework
for the generation of the optimal cost function. In practice a simple rule of thumb can help to
select a good cost function. Verify if the disturbing noise has large outliers: large errors ap-
pear to be more likely than expected from a Gaussian noise distribution. 

In this exercise the LS- and the LAV-estimate are applied to a -distribution with 1
degree of freedom: this is nothing than a squared Gaussian distributed variable. Compared to
the corresponding Gaussian distribution, the extreme large values appear to frequent (due to
the square value). Neither of both estimates (LS, LAV) is the MLE for this situation. But from
the rule of thumb we expect that the LAV will perform better than the LS estimator. It will
turn out that a necessary condition to get good results is to apply a proper calibration proce-
dure for each method, otherwise a bias will become visible.

Gaussian noise 1000.040 17.5] 999.94 22.0

Laplace noise 1000.002  17.3 999.97 13.7

TABLE 7-10 Mean and standard deviation of the Gaussian and Laplace Maximum Likelihood estimators, 
applied to a Gaussian and Laplace noise disturbance.
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Figure 7-9 PDF of the Gaussian  and Laplace  Maximum Likelihood estimators, applied to a
Gaussian and Laplace noise disturbance. Black line: , gray line: .
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Exercise 8 (Identification in the presence of outliers) Consider a set of repeated
measurements:

, (7-30)

with  the exact values of the voltage and the current. The voltage measurement is dis-
turbed by noise, generated from a -distribution with 1 degree of freedom (= squared Gaus-
sian noise).
Generate an experiment with  measurements,  uniformly distributed in 
(use the Matlab™ routine rand), . The current is measured without errors. The
measured voltage  is disturbed by -distribution distributed noise  with: 

, with  generated as . 
Note that the mean value of , and .

, (7-31)

■ In order to reduce the systematic errors, calibrate the data first. To do so, the mean
value or the median of the noise should be extracted from the measurements. Make
first a measurement with zero current, so that .

■ Repeat the exercise 10000 times and estimate each time the LS- and the LAV-esti-
mate for both data sets. 

■ Estimate the pdf of the estimates, and calculate their mean value and standard devia-
tion. 

Observations -  (see Figure 7-11) From the figure it is seen that the estimates are no
longer scattered around the exact value . Only the combination (LS-estimate,
mean value calibration) and the combination (LAV-estimate, median value calibration) works
well. The other combinations show a significant bias. 
The mean and standard deviations are given in Table 7-12. Observe that the standard devia-

tion of the LAV-estimate is smaller than that of the LS-estimate. LAV-estimates are less sensi-
tive to outliers! Note that the mean value of the LAV-estimator, combined with the median
calibration has still a small systematic error of 1.85, which is larger than the uncertainty on
the mean value: 18.62/sqrt(10000)=0.18. If instead of using the mean, the median value is se-
lected to average the 10000 estimates, the bias disappears completely.
Conclusion: The LS-estimate should be combined with a calibration based on the mean, and
the mean should be used to average the results. It is sensitive to outliers.

Calibr.: mean value 999.84 24.30 924.29 16.26

Calibr.: median 1081.86  24.43 1001.85 18.62

TABLE 7-12Mean and standard deviation of the Gaussian and Laplace Maximum Likelihood estimators, 
applied to a Gaussian and Laplace noise disturbance.
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The LAV-estimate should be combined with a calibration based on the median, the median
should be used to average the results, and it is less sensitive to the presence of outliers.

7.5 SELECTION OF THE MODEL COMPLEXITY

7.5.1 Influence of the number of parameters on the 
uncertainty of the estimates

In this exercise it will be shown that, once the model includes all important contributions, the
uncertainty grows if the number of model parameters is still increased. 

Exercise 9 (Influence of the number of parameters on the model uncertainty) In
order to measure the flow of a tap, the height  of the water level in a measuring jug is re-
corded as a function of time . However, the starting point of the measurements is uncertain.
Hence two models are compared:

 and . (7-32)

The first model estimates only the flow assuming that the experiment started at time zero,
while the second one also estimates the start of the experiment.

Generate a set of measurements:

, with . (7-33)
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Figure 7-11 PDF of the Gaussian  and Laplace  applied to  disturbed data. Top: calibration
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■ Choose , , and   with . 
■ Repeat this experiment  times.
■ Estimate the LS-parameters of both models, and compare  for the one- and two-pa-

rameter model by estimating the pdf of .
■ Calculate the mean value and the standard deviation of the slope. 
■ Plot also the estimated lines for the first  experiments. 

h

Observations - The results are shown below in TABLE 7-13 and Figure 7-14. From the

table it is seen that the uncertainty of the 1-parameter estimate is significantly smaller than
that of the 2-parameter model. The mean value of both estimates are unbiased, the error
equals the exact value within the uncertainty after averaging 100 experiments. Also in
Figure 7-14 the same observations can be made. Notice, that due to the prior knowledge of
the one-parameter model (at time zero the height is zero), a significantly smaller uncertainty

1-parameter model 2-parameter model

mean 0.996  0.987

std. dev. 0.57 1.13

TABLE 7-13Mean and standard deviation of  in the one- and two-parameter model.
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on  is found for small values of . The one-parameter model is less scattered than the two-
parameter model. If this prior knowledge would be wrong, systematic errors would be made
on the flow estimate; if it is correct better estimates are found. An analysis of the residuals
can guide the user to find out in which of both cases is faced.

7.5.2 Model selection

The goal of this section is to show how to select an optimal model for a given data set. Too
simple models will fail to capture all important aspects of the output, and this will result in
too large errors in most cases. Too complex models use too many parameters. As was illus-
trated in the previous section such models also result in a poor behavior of the modeled out-
put because the model becomes too sensitive to the noise. Hence we need a tool that helps us
to select the optimal complexity that balances the model errors against the sensitivity to the
noise disturbances. It is clear that this choice will depend on the quality of the data. All these
aspects are illustrated in the next exercise where we propose the Akaike information criterion
as a tool for model selection.

Consider a single input single output linear dynamic system, excited with an input
 and output . The system has an impulse response  that is infi-

nitely long (infinite impulse response or IIR-system). For a stable system  decays expo-
nentially to zero, so that the IIR system can be approximated by a system with a finite length
impulse response ,  (finite impulse response or FIR-system). For , the
remaining contribution can considered to be negligible. The choice of  will depend not only
on , but also on the SNR of the measurements.

, with  for . (7-34)

In (7-34) it is assumed that the system is initially in rest. If this is not the case, transient errors
will appear, but these disappear in this model for  (why?).

The model parameters  are in this case the values of the impulse response.  is esti-
mated from the measured data , , with  the output measurement
that is disturbed with i.i.d. noise with zero mean and variance :

. (7-35)

The estimates  are estimated by minimizing the least squares cost function:

, with (7-36)

Note that this model is linear-in-the-parameters, and solution (7-24) can be used.
In order to find the ‘best’ model, a balance is made between the model errors and the

noise errors using a modified cost function that accounts for the complexity of the model.
Here we propose to use amongst others the AIC criterion:

. (7-37)
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Exercise 10 (Model selection using the AIC criterion) Consider the discrete time
system  given by its transfer function:

, (7-38)

Generate the filter coefficients  using the Matlab™ instruction 

[b,a]=cheby1(3,0.5,[2*0.15 2*0.3]) (7-39)

This is a band pass system with a ripple of 0.5 dB in the pass band. Generate two data sets
 and , the former with length  being used to identify the model, the latter with

length  to validate the estimated model. Note that the initial conditions for both sets are
zero! Use the Matlab™ instruction 

y0=filter(b,a,u0), y=y0+ny (7-40)

with  zero mean normally distributed noise with , and  zero mean white Gauss-
ian noise with  equal to 0.5 for a first experiment, and 0.05 for a second experiment. Put

, and  in both experiments.

■ Use the linear least squares procedure (7-24) to estimate the model parameters, and
this for varying orders from 0 to 100. 

■ Calculate for each of the models the simulated output , and calcu-
late the cost function (7-36) on  and on . 

■ Calculate .

■ Calculate  on the undisturbed output of the validation
set.

■ Plot  as a function of the model order. Normalize the value of the cost
function by  to make an easier comparison of the behavior for different noise lev-
els.

■ Plot  as a function of the model order.
h

Observations - The results are shown in Figure 7-15, the following observations can be
made:
i) Increasing the model order results in a monotonic decreasing cost function . This result
was to be expected because a simpler model is always included by the more complex model,
and the linear LS always retrieve the absolute minimum of the cost function, no local minima
exist. Hence increasing the complexity of the model should reduce the value of the cost func-
tion.
ii) On the validation data we observe first a decrease and next an increase of . In the be-
ginning, the additional model complexity is mainly used to reduce the model errors, a steep
descent of the cost function is observed. From a given order on, the reduction of the model er-
rors is smaller than the increased noise sensitivity due to the larger number of parameters, re-
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sulting in a deterioration of the capability of the model to simulate the validation output. As a
result the validation cost function  starts to increase.
iii)  gives a good indication, starting from the estimation data only, where  will be
minimum. This reduces the need for long validation records, and it allows to use as much
data as possible for the estimation step.
iv) The optimal model order increases for a decreasing disturbing noise variance. Since the
plant is an IIR system with an infinite long impulse response, it is clear that in the absence of
disturbing noise , the optimal order would become infinite. In practice this value is
never reached due to the presence of calculation errors that act also as a disturbance.

v) A fair idea about the quality of the models is given by . The normalized rms-value
 is plotted on the right side of Figure 7-15. This figure shows that a wrong selection

of the model can result in much larger simulation errors. The good news is that the selection
of the best model order is not so critical, the minimum is quite flat and all model orders in the
neighborhood of the minimum result in good estimates.

7.6 NOISE ON INPUT AND OUTPUT MEASUREMENTS: THE 
IV-METHOD

In Section 7.2.2 it was shown that the presence of disturbing noise on the input measurements
creates a systematic error. In this set of exercises more advanced identification methods are
illustrated that can deal with this situation. Two methods are studied, the first is called the in-
strumental variables method (IV), the second is the errors-in-variables (EIV) method. The
major advantage of the IV-methods is its simplicity. No additional information is required
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from the user. The disadvantage is that this method does not always perform well. Both situa-
tions are illustrated in the exercises. The EIV performs well in many cases, but in general ad-
ditional information of the user is required. The covariance matrix of the input-output noise
should be known. All methods are illustrated again on the resistance example with measured
current and voltage , . Both measurements are disturbed by mutually
uncorrelated Gaussian noise: 

(7-41)

The least squares estimate is given by: 

, (7-42)

the instrumental variables estimator (IV) is:

, (7-43)

with  a user selectable shift parameter. Note that the IV-estimator equals the LS-estimator
for .
The EIV estimator is given by

, (7-44)

with  the variance of the voltage and current noise, the covariance is assumed to be
zero in this expression: .

Exercise 11.a (Noise on input and output: the instrumental variables method)
Generate the current  from a Gaussian white noise source, filtered by a first order Butter-
worth filter with cut-off frequency :

, (7-45)

with [ , ]=butter(1,2* ).
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Generate the measured current and voltage (7-41), where  is white Gaussian noise:
. The current noise  is obtained from a Gaussian white noise source filtered by

a second order Butterworth filter with cut-off frequency :

=filter( ), (7-46)

with [ , ]=butter(2,2* ), and  white Gaussian noise. Its variance is
scaled to .

■ Experiment 1: Generate three sets of 1000 experiments with  measure-
ments each, and the following parameter settings: 

, ,
, , . (7-47)

■ Process these measurements with the LS-estimator, and with the IV-estimator with
the shift parameter .

■ Experiment 2: Generate 1000 experiments with  measurements each, and
the following parameter settings: 

, , , , . (7-48)

■ Process these measurements with the LS-estimator, and with the IV-estimator with
the shift parameter .

Plot for both experiments: 
■ the pdf of  and ,
■ the auto-correlation function of  and  (hint: use the Matlab™ instruction
xcorr)

■ the FRF of the generator and the noise filter.
h

Observations - The results are shown below Figure 7-16 and Figure 7-17. In the first
Figure 7-16, the results are shown for a fixed generator filter and a varying noise filter. The
shift parameter for the IV is kept constant to 1. From this figure it is clearly seen that the LS
are strongly biased. This is due to the noise on the input, the relative bias is in the order of

. For the IV-results, the situation is more complicated. For the white noise situation,
no bias is visible. However, once the output noise is filtered, a bias becomes visible. The rel-
ative bias is proportional to the ratio of the auto correlation functions of the noise and the cur-
rent .
The same observations can also be made in Figure 7-17. In this figure, the shift parameter is
changed while the filters are kept constant. It can be seen that the bias becomes smaller with
increasing shift , because  is getting smaller. At the same time the dispersion
is growing, mainly because  is getting smaller. Observe also that the sign of the bias
depends on the sign of . The IV-method works well if the bandwidth of the generator
signal is much smaller than that of the noise disturbances.

Exercise 11.b (Noise on input and output: the errors-in-variables method) : In
this exercise the EIV-method is used as an alternative for IV-method to reduce/eliminate the
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bias of the least squares estimate. This time no constraint is put on the power spectra (band-
width) of the excitation and the disturbing noise, but instead the variance of the input and out-
put disturbing noise should be priorly given. This is illustrated again on the resistance
example with measured current and voltage , .

The least squares estimate is given by

, (7-49)

the EIV-estimator is

, (7-50)

where the sum runs over . It is shown to be the minimizer of the following cost
function:
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, (7-51)

with respect to  under the constraint .
■ Setup: Generate the current  from a white zero mean Gaussian noise source

.
Generate the measured current and voltage as:

, (7-52)

 and  are white Gaussian noise sources with zero mean and variance 
and  respectively.

■ Generate a set of 1000 experiments with  measurements each, and the
following parameter settings: 

, , , . (7-53)

Calculate the LS- and EIV-estimate. Plot the histogram with  and .
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Observations - The results are shown below in Figure 7-18., From this figure it is

clearly seen that the LS are strongly biased (mean value is 990.15). This is due to the noise on
the input, the relative bias is in the order of . No systematic error can be observed in
the EIV-results (mean value is 999.96). The IV-estimate would fail completely in this situa-
tion (why?).
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Chapter 8

Further reading

In this chapter we give a list of books dealing with identification. Most of

them deal with the identification of linear dynamic systems using a discrete

time representation. Only a few books are focussed on the general identification

problem.

• System Identification: A frequency domain approach, by R. Pintelon and
J. Schoukens, IEEE Press and John Wiley & Sons, Inc.

– The first and second chapter of this course are based on this book.
It presents a general approach to the identification of linear dynamic
systems from noisy data. The book gives a general approach to this
problem, with both practical examples and theoretical discussions
that give the reader a sound understanding of the subject and the
pitfalls that might occur on the road from raw data to validated
model.

• System Identification, theory for the user, by L. Ljung, Prentice-Hall, 1987

– This is a quite exceptional book that is focused on the identification of
linear dynamic systems. It provides the user with working algorithms
starting from a basic introduction to the identification theory. A
commercial software package (toolbox) Matlab™is available. Each
chapter ends with a summary and exercises.

• Perturbation Signals for System Identification, edited by K. Godfrey,
Prentice Hall, 1993.
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– An edited book that is focused on the design of excitation signals
that can be used to identify a system.

• System Identification, T. Söderström and P. Stoica, Prentice-Hall, 1989

– The book addresses the needs of both newcomers and experts in the
field. It introduces the reader to basic concepts and results. There are
also advanced results given at the end of the chapters. Each chapter
ends with a summary and exercises. The theory is illustrated on a
lot of simulation examples, however no real measurement results are
shown.

• Theory of optimal Experiments, V. Fedorov, Academic Press, 1972

– This book gives a mathematical treatment of the problem of the opti-
mal design of experiments.This book gives a mathematical treatment
of the problem of the optimal design of experiments.

• System Identification, Parameter and State Estimation, P. Eykhoff, John
Wiley, 1974.

– This is one of the first books providing a general and coherent intro-
duction to the identification problem of linear dynamic systems.

• System Identification: Advances and case studies., edited by R. Mehra
and D. Lainiotis, Academic Press, 1976

– The setup of this book is very similar to the book edited by P.
Eykhoff: System Identification.

• Dynamic Identification: Experiment Design and Data Analysis, G. Good-
win, R. Payne, 1977, Academic Press

– This book gives a general introduction to the theory of mathematical
model building, using experimental data.

• Parameter Estimation in Engineering and Science, J. Beck, K.Arnold,
John Wiley & Sons, 1977

– The objectives of this book are to provide (1) methods for estimat-
ing constants (i.e., parameters) appearing in mathematical models,
(2) estimates of the accuracy of the estimated parameters, and (3)
tools and insights for developing improved mathematical models. The
book presents methods that can use all the available statistical infor-
mation.
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• Optimal Experiment Design for Dynamic System Identification, M. Zarrop,
Springer-Verlag, 1979

– This book is concerned with the problem of experiment design for the
efficient identification of a linear single input, single output dynamic
system from input-output data in the presence of disturbances.

• Parameter Estimation, principles and problems, H. Sorenson, Marcel Dekker,
inc., 1980

– The purpose of this book is to present the fundamental concepts and
major results of parameter estimation theory (not focused on the
identification of linear dynamic systems) in a manner that will make
the material accessible to as large and audience as possible.

• Trends and Progress in System Identification, edited by P. Eykhoff, Perg-
amon Press, 1981.

– This book provides a profound introduction to system identification.
It is divided into different parts, covering the whole bench of identi-
fication problems (modelling, estimating, optimal experimentation)
written by specialists on each specific topic.

• Spectral Analysis and Time Series, M. Priestly, Academic Press, 1981.

– This book gives a profound tutorial review of the spectral analysis
and time series analysis problem.

• Adaptive Filtering, Prediction and Control, G. Goodwin, K. Sang Sin,
Prentice-Hall, 1984

– This book is designed to be a unified treatment of the theory of
adaptive filtering, prediction and control. It is largely confined to
linear discrete-time systems and explores the natural extensions to
nonlinear systems.

• Adaptive Signal Processing, B. Widrow, S. Stearns, Prentice Hall, Inc.,
1985.

– The purpose of this book is to present certain basic principles of
adoption; to explain the design, operating characteristics, and ap-
plications of the simple forms of adaptive systems; and to describe
means for their physical realization. The types of systems discussed
include those designed primarily for the purposes of adaptive control
and adaptive signal processing.
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• An Introduction to Identification, J.P. Norton, Academic Press, 1986.

– The aim of this book is to provide a general introduction to identifi-
cation on the undergraduate and introductory graduate level.

• Identification of continuous systems, H. Unbehauen, G. Rao, North-Holland,
1987

– This book deals with certain recent trends in continuous model iden-
tification in view of several advantages in retaining the models of ac-
tually time-continuous dynamical systems in continuous time-domain
without resorting to discretization for identification.

• Theory and Practice of Recursive Identification, L. Ljung and T. Söder-
ström, MIT Press, 1987

– The book unfolds a systematic framework for developing, describing,
and analysing the algorithms that may be used in a wide spectrum
of on-line adaptive systems, and will serve as a guide to the large
number of algorithms now in use.

• System Modeling and Identification, R. Johansson, Prentice Hall, 1993

– The book provides a general introduction to system identification at
the undergraduate level.

• Identification of Continuous-Time Systems, edited by N.K. Sinha and
G.P. Rao

– It is an edited book consisting of a series of specialized chapters
dealing with the identification of continuous time systems starting
from discrete time measurements, written by specialists in the field.

• Modeling of dynamic systems, L. Ljung and T. Glad, Prentice Hall, 1994.

– This book is focused on building models starting from measurements
and physical insight.

• Identification of Parametric Models from Experimental Data, Éric Walter
and Luc Pronzato, Springer, 1997.

– The emphasis of the book is put on the practical aspects of the gen-
eral identification problem (numerical aspects of optimization, ex-
periment design, uncertainty calculation). Also attention is paid on
other criteria than least squares.
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Course on System Identification

Transparencies chapter 1

An introduction to identification

Johan Schoukens 

Vrije Universiteit Brussel

Johan.Schoukens@vub.ac.be

6

Goal of the course

From data to model

Basic steps

- Choice of an experiment: collect data

- choice of a model

- match data and model: choice of an estimator

- model validation/selection

Apply it to the identification of linear dynamic systems
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A general introduction to identification

A motivating example: why do you need system identification?!

Describing the stochastic behaviour of estimates

Basic steps of the identification process

A statistic approach to system identification

8

Why do you need identification methods?

A simple experiment

Multiple measurements lead to conflicting results.

How to combine all this information?
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Why do you need identification methods

Measurement of a resistance

u k( )

i k( )

10

2 sets of measurements 
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3 different estimators
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and their results

Remarks

- variations decrease as function of , except for 

- the asymptotic values are different

-  behaves ‘strange’
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Repeating the experiments.

- the distributions become more concentrated around their limit value

-  behaves ‘strange’ for group A
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Repeating the experiments
.

- the standard deviation decrease in 

- the uncertainty also depends on the estimator
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Strange behaviour of  for group A
.

- The current takes negative values for group A

- the estimators tend to a normal distribution although the noise behaviour is completely different

R̂LS

0

250

500

-1 0 1 2 3

N
u

m
b

e
r 

o
f 

re
a

liz
a

ti
o

n
s

0

250

500

-1 0 1 2 3

N
u

m
b

e
r 

o
f 

re
a

liz
a

ti
o

n
s

i i

Group A Group B

Histogram of the current measurements.

16

Simplified analysis

Why do the asymptotic values depend on the estimator?

Can we explain the behaviour of the variance?

Why does the  estimator behave strange for group A?

More information is needed to answer these questions

- noise model of the measurements

- Assumption:  and  are mutually independent zero mean iid (independent and identically

distributed) random variables with a symmetric distribution and with variance  and .

R̂SA

i k( ) i0 ni k( )+= u k( ) u0 nu k( )+=

ni k( ) nu k( )

σu

2
σi

2
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Statistical tools

1

N
---- x k( )

k 1=

N

∑
N ∞→
lim 0=

1

N
---- x k( )

2

k 1=

N

∑
N ∞→
lim σx

2
=

1

N
---- x k( )y k( )

k 1=

N

∑
N ∞→
lim 0=
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Asymptotic value of 

Or 

And finally

It converges to the wrong value!!!

R̂LS

R̂LS N( )
N ∞→
lim u k( )i k( )

k 1=

N

∑ 
  i2 k( )

k 1=

N

∑ 
 ⁄

N ∞→
lim=

1

N
---- u0 nu k( )+( ) i0 ni k( )+( )

k 1=

N

∑
1

N
---- i0 ni k( )+( )

2

k 1=

N

∑
-------------------------------------------------------------------------------

N ∞→
lim=

R̂LS N( )
N ∞→
lim  =

u0i0

u0

N
----- ni k( )

k 1=

N

∑
i0

N
---- nu k( )

k 1=

N

∑
1

N
---- nu k( )ni k( )

k 1=

N

∑+ + +

i0
2 1

N
---- ni

2
k( )

k 1=

N

∑
2i0

N
------- ni k( )

k 1=

N

∑+ +

----------------------------------------------------------------------------------------------------------------------------------------------------
N ∞→
lim

R̂LS N( )
N ∞→
lim

u0i0

i0
2

σi

2
+

----------------- R0
1

1 σi

2
i0
2

⁄+
------------------------= =
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Asymptotic value of 

It converges to the exact value!!!

R̂EV

R̂EV N( )
N ∞→
lim u k( )

k 1=

N

∑ 
  i k( )

k 1=

N

∑ 
 ⁄

N ∞→
lim=

1

N
---- u0 nu k( )+( )

k 1=

N

∑
1

N
---- i0 ni k( )+( )

k 1=

N

∑
----------------------------------------------------

N ∞→
lim=

u0
1

N
---- nu k( )

k 1=

N

∑+

i0
1

N
---- ni k( )

k 1=

N

∑+

-----------------------------------------------
N ∞→
lim

 
 
 
 
 
 

=

R0=
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Asymptotic value of 

The series expansion exist only for small noise distortions

 for 

Group A: A detailed analysis shows that the expected value does not exist for the data of group A. 

The estimator does not converge.

Group B: For group B the series converges and

The estimator converges to the wrong value!!

R̂LS

R̂SA N( )
1

N
----

u k( )

i k( )
---------

k 0=

N

∑
1

N
----

u0 nu k( )+

i0 ni k( )+
------------------------

k 0=

N

∑
1

N
----

u0

i0
-----

1 nu k( ) u0⁄+

1 ni k( ) i0⁄+
-------------------------------

k 0=

N

∑= = =

1

1 x+
------------ 1–( )

l
x

l

l 0=

∞

∑= x 1<

R̂SA N( )
N ∞→
lim R0 1

σi

2

i0
2

------+

 
 
 
 

=
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Variance expressions

First order approximation

- variance decreases in 

- variance increases with the noise

- for low noise levels, all estimators have the same uncertainty

---> Experiment design

σ
R̂LS

2
N( ) σ

R̂EV

2
N( ) σ

R̂SA

2
N( )

R0

2

N
------

σu

2

u0

2
------

σi

2

i0
2

------+

 
 
 
 

= = =

1 N⁄
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Cost function interpretation

The previous estimates match the model  as good as possible on the data.

A criterion to express the goodness of the fit is needed ----> Cost function interpretation.

.

 subject to 

u Ri=

R̂SA N( )

VSA R( )
1

N
---- R k( ) R–( )

2

k 1=

N

∑=

R̂LS N( )

VLS R( )
1

N
---- u k( ) Ri k( )–( )

2

k 1=

N

∑=

R̂EV N( )

VEV R i0 u0, ,( )
1

N
---- u k( ) u0–( )

2

k 1=

N

∑ i k( ) i0–( )
2

k 1=

N

∑+ 
 = u0 Ri0=
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Conclusion

- A simple problem

- Many solutions

- How to select a good estimator?

- Can we know the properties in advance?

----> need for a general framework !!

24

Basic steps in identification

1) collect the information: experiment setup

2) select a model
parametric >< nonparametric models

white>< black box models

linear><nonlinear models

linear -in-the-parameters><nonlinear-in-the-parameters

, 

3) match the model to the data
select a cost function

--> LS, WLS, MLE, Bayes estimation

4) validation
does the model explain the data?

can it deal with new data?

Remark: this scheme is not only valid for the classical identification theory. It also applies to neural nets,

fuzzy logic, ...

ε y a1u a2u
2

+( )–= ε ω( ) Y ω( )
a0 a1jω+

b0 b1jω+
------------------------U ω( )–=
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Characterizing estimators

Location properties: are the parameters concentrated around the ‘exact value’ ?

Dispersion properties: is the uncertainty small or large?

26

Location properties

unbiased and consistent estimators

Unbiased estimates: the mean value equals the exact value

Definition

An estimator  of the parameters  is unbiased if , for all true parameters . Otherwise it is

a biased estimator.

Asymptotic unbiased estimates: unbiased for 

θ̂ θ0 E θ̂{ } θ0= θ0

N ∞→
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Example
The sample mean

 

Unbiased?

The sample variance

Unbiased?

Alternative expression

û N( )
1

N
---- u k( )

k 1=

N

∑=

E û N( ){ }
1

N
---- E u k( ){ }

k 1=

N

∑
1

N
---- u0

k 1=

N

∑ u0= = =

σ̂u

2
N( )

1

N
---- u k( ) û N( )–( )

2

k 1=

N

∑=

E {σ̂u
2

N( )}
N 1–

N
-------------σu

2
=

1

N 1–
------------- u k( ) û N( )–( )

2

k 1=

N

∑
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Consistent estimates: the probability mass gets concentrated around the exact value

 Prob
N ∞→
lim θ̂ N( ) θ0– δ 0> >( ) 0=

0

5
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Example

R̂EV N( )
N ∞→
plim

1

N
---- u k( )

k 1=

N

∑
1

N
---- i k( )

k 1=

N

∑
--------------------------------

N ∞→
plim=

1

N
---- u k( )

k 1=

N

∑ 
 

N ∞→
plim

1

N
---- i k( )

k 1=

N

∑ 
 

N ∞→
plim

-------------------------------------------------=

u0

i0
-----=

R0=
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Dispersion properties

efficient estimators

- Mostly the covariance matrix is used, however alternatives like percentiles exist.

- For a given data set, there exists a minimum bound on the covariance matrix: the Cramér-Rao lower

bound.

 

with

.

The derivatives are calculated in 

CR θ( ) Fi
1–

θ0( )=

Fi θ0( ) E
θ∂

∂
l Z θ( ) 

 
T

θ∂

∂
l Z θ( ) 

 

 
 
 

E

θ
2

2

∂

∂
l Z θ( )–

 
 
 

–= =

θ θ0=
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The likelihood function

1) Consider the measurements  

2)  is generated by a hypothetical, exact model with parameters 

3)  is disturbed by noise --> stochastic variables

4) Consider the probability density function  with

. 

5)Interpret this relation conversely, viz: 

how likely is it that a specific set of measurements  are generated by a

system with parameters ? 

In other words, we consider now a given set of measurements and view the model parameters as the free

variables:

, 

with  the free variables.

 is called the likelihood function. 

Z R
N

∈

Z θ0

Z

f Z θ0( )

f Z θ0( ) Zd
z R

N
∈∫ 1=

Z Zm=

θ

L Zm θ( ) f Z Zm= θ( )=

θ

L Zm θ( )
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Example

Determine the flow of tap water by measuring the height  of the water in a measuring jug as a

function of time 

Model

 with 

Measurements

Noise model

: iid zero mean normally distributed 

Likelihood function

for the set of measurements :

h0 t( )

t

h0 t( ) a t tstart–( ) at b+= = θ a b,[ ]=

h k( ) atk b nh k( )+ +=

nh k( ) N 0 σ
2

,( )

h h 1( ) t1,( ) ... h N( ) tN,( ), ,{ }=

L h a b,( )
1

2πσ
2

( )
N 2⁄

---------------------------e

1

2σ
2

--------- h k( ) atk– b–( )
2

k 1=

N

∑–

=
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Example Continued

Log likelihood function

Information matrix

, 

Cramér-Rao lower bound

 

with  and .

l h a b,( )
N

2
---- 2πσ

2
( )log–

1

2σ
2

--------- h k( ) atk– b–( )
2

k 1=

N

∑–=

Fi θ0( ) E
θ∂

∂
l Z θ( ) 

 
T

θ∂

∂
l Z θ( ) 

 

 
 
 

E

θ
2

2

∂

∂
l Z θ( )–

 
 
 

–= =

Fi a b,( )
1

σ
2

------ Ns
2

Nµ

Nµ N

=

CR a b,( )
σ

2

N s
2

µ
2

–( )
-------------------------

1 µ–

µ– s
2

=

µ
1

N
---- tk

k 1=

N

∑= s
2 1

N
---- tk

2

k 1=

N

∑=
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Example continued

Case 1:  and  unknown: consider 

Case 2:  unknown: consider 

Discussion points

- impact of the number of measurements

- impact of the number of parameters

- the analysis is done without selecting an estimator

a b Fi
1–

a b,( )

σa

2
a b,( )

σ
2

N s
2

µ
2

–( )
-------------------------=

a Fi
1–

a( )

σa

2
a( )

σ
2

Ns
2

---------=
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, with  and , 

model 1:  (two parameters)

model 2:  (one parameter)
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, and 

, and 
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.
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Interpretation of the covariance matrix, and the impact of the experiment design on 

the model uncertainty.
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A statistical framework: choice of the cost functions

, , 

Least squares estimation

Weighted least squares estimation

Maximum likelihood estimation

y0 G u θ0,( )= y y0 ny+= e y G u θ0,( )–=

VLS θ( )
1

N
---- e

2
k θ,( )

k 1=

N

∑=

VWLS θ( )
1

N
----e θ( )TWe θ( )=

f y θ0( ) fny
y G u θ0,( )–( )=

θML
argmaxf ym θ( )

θ

=
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