
i
i

“e01” — 2016/2/15 — 11:10 — page 1 — #1 i
i

i
i

i
i

AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg

Exercise 1: Introduction to CasADi and Quadratic Programming

Andrea Zanelli, Joel Andersson, Joris Gillis, Sebastien Gros, Moritz Diehl

CasADi is an open-source software tool for solving optimization problems in general and opti-
mal control problems in particular. In its most typical usage, it leaves it to the user to formulate
the problem as a standard form constrained optimization problem of the form:

minimize
x

f(x)

subject to x ≤ x ≤ x

g ≤ g(x) ≤ g,

(1)

where x ∈ Rnx is the decision variable, f : Rnx → R is the objective function, and g : Rnx →
Rng is the constraint function. For equality constraints, the upper and lower bounds are equal.

In this exercise, f is a convex quadratic function and g is a linear function, in which case we
refer to problem (1) as a (convex) quadratic program (QP). To solve a QP with CasADi, start
by creating a struct containing expressions for x, f and g:

1 x = SX.sym('x',n)
2 f = (some expression of x)
3 g = (some expression of x)
4 prob = {'x':x,'f':f,'g':g}

This symbolic representation of the problem is then used to construct a QP solver as follows:

1 solver = qpsol('solver','qpoases',prob)

where the arguments are, respectively, the display name of the solver s, the solver plugin –
here the open-source QP solver qpOASES – and and the above symbolic problem formulation.
A set of algorithmic options can be passed as an optional forth argument. Optimization solvers
are functions in CasADi that are evaluated to get the solution:

1 arg={'x0':x0,'lbx':lbx,'ubx':ubx,'lbg':lbg,'ubg':ubg}
2 res = solver(arg)

Where lbx, ubx, lbg and ubg are the bounds of x and g(x) and x0 is an initial guess for x
(less important for convex QPs, since the solution is unique).

1



i
i

“e01” — 2016/2/15 — 11:10 — page 2 — #2 i
i

i
i

i
i

Equilibrium position for a hanging chain

We want to model a chain attached to two supports and hanging in between. Let us discretize it
with N mass points connected by N−1 springs. Each mass i has position (yi, zi), i = 1, . . . , N .
The equilibrium point of the system minimises the potential energy. The potential energy of
each spring is

V i
el =

1

2
Di

(
(yi − yi+1)

2 + (zi − zi+1)
2
)
.

The gravitational potential energy of each mass is

V i
g = mi g0 zi.

The total potential energy is thus given by:

Vchain(y, z) =
1

2

N−1∑
i=1

Di

(
(yi − yi+1)

2 + (zi − zi+1)
2
)
+ g0

N∑
i=1

mi zi, (2)

where y = [y1, · · · , yN ]T and z = [z1, · · · , zN ]T .

We wish to solve

minimize
y,z

Vchain(y, z) (3)

subject to constraints modeling the ground, to be introduced below.

Tasks:

1.1 Go to the CasADi website and locate the user guide. Make sure the version of the user
guide matches the version of CasADi used in the course (3.0.0-rc2). Then, with a Python
or MATLAB interpreter in front of you, read Chapter 3 as well as Sections 4.1-4.3 in
Chapter 4 of the user guide.

1.2 From the course website, you will find solution scripts for Python and MATLAB that
solve the unconstrained problem using N = 40, mi = 40/N kg, Di = 70N N/m, g0 =
9.81 m/s2 with the first and last mass point fixed to (−2, 1) and (2, 1), respectively. Go
through the script and make sure you understand the steps.

1.3 Introduce ground constraints: zi ≥ 0.5 and zi−0.1 yi ≥ 0.5, for i = 2, · · · , N −2. Solve
your QP again, plot the result and compare it with the previous one.

1.4 Extra: What would happen if you add instead of the linear ground constraints, the non-
linear ground constraints zi ≥ 0.5+ 0.1 y2i to your problem? The resulting problem is no
longer a QP, but is it convex?

1.5 Extra: What would happen if you would add instead the nonlinear ground constraints
zi ≥ 0.5− 0.1 y2i to your problem? Is the problem convex?

2

http://casadi.org

