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In the exercises so far, we solved the NLPs with IPOPT which is a popular open-source primal-
dual interior point solver. Other NLP solvers can be used from CasADi including SNOPT,
WORHP and KNITRO. In the following, we will write our own simple NLP solver implemen-
ting sequential quadratic programming (SQP).

Starting from a given initial guess for the primal and dual variables (2°, \°), SQP solves the
NLP by iteratively computing local convex quadratic approximations of the NLP at the current
iterate (:1:’“, )\k) and solving them by using a convex quadratic programming (QP) solver. For
an NLP of the form:

<7z (1)

these approximations take the form:
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where (2%, \¥) is the current approximation of the primal-dual solution to the NLP in (@) and

L(x,\) = f(x) + A\ g(x) + p"(x — T) + v"(z — x) is the Lagrangian. The solution of this
QP gives the step Az and new approximation of the multipliers (A, y, v/).

=3 3 a popular variant is to use
the so called Gauss-Newton approximation of the Hessian of the Lagrangian:

For nonlinear least square objectives of the form f(z) = % || R(z)

V2L(2% \F) =~ VR(2*)VR(z*)". (3)

In this exercise we will consider the optimization problem

min f(z) = 3~ 17 + (100, — ) + 13
s.t. g(fL’) = + (]_ — $2)2 =0 (4)

h(z):=02+2] — 25 <0



Tasks:

5.1

5.2

5.3

54

5.5

Re-write on paper the objective function in nonlinear least-square form F'(z) = 1 || R(x) [Es

and derive the Gauss-Newton approximation of the Hessian of the Lagrangian.

We will start by implementing an SQP solver for the unconstrained problem obtained
by removing both ¢ and ~ from (). Using the template provided with this exercise,
implement the CasADi functions £ and Jf that return evaluations of f and its Jacobian.
Use the numerical values given in the template to check that your implementation is
correct. Do the same for the residual function R and its Jacobian.

Using the Jacobian of f and R build the Gauss-Newton objective function
1
fon = §Aa;TVR(x’f)VR(x’f)TAx + Vo f (") Ax.

Then, allocate an instance of the QP solver qpOASES using CasADi and use it to sol-
ve the local quadratic approximations in the SQP iterations. Plot the results using the
template. Where do the iterates converge to?

Include now the equality constraints. Define two CasADi functions G and Jg that return
evaluations of ¢ and its Jacobian and use them to define the linearized equality constraint

g = g(2") + Vg, (2")T Az,

Include this constraint in the QP formulation and run the simulation again. Does the
solution change?

Finally, include the inequality constraints. As in Task 5.4, define H and Jh and use them
to define the linearized inequality constraints. Include them in the QP formulation and
run the finalized version of the SQP solver.



