Constrained Nonlinear Optimization

Moritz Diehl & Sébastien Gros

・ロト ・聞ト ・ヨト ・ヨト

Outline

1 KKT conditions

2 Some intuitions on the KKT conditions

3 Second Order Sufficient Conditions (SOSC)

Outline

1 KKT conditions

Some intuitions on the KKT c

3 Second Order Sufficient Conditions (SOSC)

э

▲ロ → ▲圖 → ▲ 画 → ▲ 画 →

Consider the unconstrained problem: $\min_{\mathbf{w}} \Phi(\mathbf{w})$

1st-Order Necessary Condition of Optimality (FONC)

 $\mathbf{w}^* \text{ local optimum } \quad \Rightarrow \quad \nabla \Phi(\mathbf{w}^*) = \boldsymbol{0}, \ \mathbf{w}^* \text{ stationary point}$

2nd-Order **Sufficient** Conditions of Optimality (SOSC)

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \succ \mathbf{0} \implies x^*$ strict local minimum

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \prec \mathbf{0} \implies x^*$ strict local maximum

No conclusion can be drawn in the case $\nabla^2 \Phi(\mathbf{w}^*)$ is indefinite!

Consider the unconstrained problem: $\min_{\mathbf{w}} \Phi(\mathbf{w})$

1st-Order Necessary Condition of Optimality (FONC)

 $\mathbf{w}^* \text{ local optimum } \Rightarrow \quad \nabla \Phi(\mathbf{w}^*) = \mathbf{0}, \ \mathbf{w}^* \text{ stationary point}$

2nd-Order **Sufficient** Conditions of Optimality (SOSC) NLP:

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \succ \mathbf{0} \implies x^*$ strict local minimum

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \prec \mathbf{0} \Rightarrow x^*$ strict local maximum

No conclusion can be drawn in the case $\nabla^2 \Phi(\mathbf{w}^*)$ is indefinite!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Consider the unconstrained problem: $\min_{\mathbf{w}} \Phi(\mathbf{w})$

1st-Order Necessary Condition of Optimality (FONC)

 $\mathbf{w}^* \text{ local optimum } \Rightarrow \quad \nabla \Phi(\mathbf{w}^*) = \mathbf{0}, \ \mathbf{w}^* \text{ stationary point}$

2nd-Order **Sufficient** Conditions of Optimality (SOSC) NLP:

$$abla \Phi(\mathbf{w}^*) = \mathbf{0} \text{ and } \nabla^2 \Phi(\mathbf{w}^*) \succ \mathbf{0} \quad \Rightarrow \quad x^* \text{ strict local minimum}$$

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \prec \mathbf{0} \Rightarrow x^*$ strict local maximum

No conclusion can be drawn in the case $\nabla^2 \Phi(\mathbf{w}^*)$ is indefinite!

Note:

•
$$abla \Phi(\mathbf{w}^*) = 0$$
 then $\nexists \mathbf{d}$ such that $abla \Phi(\mathbf{w}^*)^\mathsf{T} \mathbf{d} < 0$

•
$$\nabla^2 \Phi \succ 0$$
 then $\forall \mathbf{d} \neq 0$, $\mathbf{d}^T \nabla^2 \Phi(\mathbf{w}^*) \mathbf{d} > 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Consider the unconstrained problem: $\min_{\mathbf{w}} \Phi(\mathbf{w})$

1st-Order Necessary Condition of Optimality (FONC)

 $\mathbf{w}^* \text{ local optimum } \quad \Rightarrow \quad \nabla \Phi(\mathbf{w}^*) = \boldsymbol{0}, \ \mathbf{w}^* \text{ stationary point}$

2nd-Order **Sufficient** Conditions of Optimality (SOSC) NLP:

$$abla \Phi(\mathbf{w}^*) = \mathbf{0} \text{ and } \nabla^2 \Phi(\mathbf{w}^*) \succ \mathbf{0} \quad \Rightarrow \quad x^* \text{ strict local minimum}$$

 $\nabla \Phi(\mathbf{w}^*) = \mathbf{0}$ and $\nabla^2 \Phi(\mathbf{w}^*) \prec \mathbf{0} \implies x^*$ strict local maximum

No conclusion can be drawn in the case $\nabla^2 \Phi(\mathbf{w}^*)$ is indefinite!

Note:

•
$$\nabla \Phi(\mathbf{w}^*) = 0$$
 then $\nexists \mathbf{d}$ such that $\nabla \Phi(\mathbf{w}^*)^\mathsf{T} \mathbf{d} < 0$

•
$$\nabla^2 \Phi \succ 0$$
 then $\forall \mathbf{d} \neq 0$, $\mathbf{d}^T \nabla^2 \Phi(\mathbf{w}^*) \mathbf{d} > 0$

Local optimum: "No direction d can improve the cost (locally)"

Consider the NLP problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$
s.t. $\mathbf{g}(\mathbf{w}) = 0$

Consider the NLP problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$
s.t. $\mathbf{g}(\mathbf{w}) = 0$

Definition: a point w satisfies LICQ^a iff $\nabla \mathbf{g}(\mathbf{w})$ is full column rank

^aLinear Independence Constraint Qualification

3

イロト イポト イヨト イヨト

Consider the NLP problem:

 $\min_{\mathbf{w}} \Phi(\mathbf{w})$ s.t. $\mathbf{g}(\mathbf{w}) = 0$

Definition: a point w satisfies LICQ^a iff $\nabla g(w)$ is full column rank

^aLinear Independence Constraint Qualification

First-order Necessary Conditions

Let Φ , g in C^1 . If w^{*} is a (local) optimum, and w^{*} satisfies LICQ, then there is a unique vector λ such that:

 $\begin{array}{ll} \mbox{Dual feasibility:} & \nabla \Phi(\mathbf{w}^*) + \nabla \mathbf{g}(\mathbf{w}^*) \boldsymbol{\lambda} & = 0 \\ \mbox{Primal feasibility:} & \mathbf{g}(\mathbf{w}^*) & = 0 \end{array}$

(日) (周) (三) (三)

Consider the NLP problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$
s.t. $\mathbf{g}(\mathbf{w}) = 0$

Square system: (n + m) conditions in (n + m) variables (\mathbf{w}, λ)

Lagrange multipliers: $\lambda_i \leftrightarrow \mathbf{g}_i$

Dual feasibility \equiv Lagrangian stationarity:

$$abla \mathcal{L}(\mathbf{w}^*, oldsymbol{\lambda}^*) = \mathbf{0}$$

Definition: a point w satisfies LICQ^a iff $\nabla \mathbf{g}(\mathbf{w})$ is full column rank where $\mathcal{L}(\mathbf{w})$

^aLinear Independence Constraint Qualification

where $\mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w})$ is the Lagrangian

First-order Necessary Conditions

Let Φ , g in C^1 . If w^{*} is a (local) optimum, and w^{*} satisfies LICQ, then there is a unique vector λ such that:

 $\begin{array}{ll} \mbox{Dual feasibility:} & \nabla \Phi(\mathbf{w}^*) + \nabla \mathbf{g}(\mathbf{w}^*) \boldsymbol{\lambda} & = 0 \\ \mbox{Primal feasibility:} & \mathbf{g}(\mathbf{w}^*) & = 0 \end{array}$

5 / 12

Consider the NLP problem:

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

3

イロト イヨト イヨト イヨト

Consider the NLP problem:

$$\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{array}$$

A point (w*, μ^* , λ^*) is called a KKT point if it satisfies:

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

Consider the NLP problem:

$$\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{array}$$

A point $(\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ is called a KKT point if it satisfies:

Dual Feasibility: $abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},\,\boldsymbol{\mu}^{*},\,\boldsymbol{\lambda}^{*}\,\right)=0,\quad \boldsymbol{\mu}^{*}\geq0,$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

Consider the NLP problem:

$$\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{array}$$

A point (w*, μ^* , λ^*) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

Consider the NLP problem:

$$\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{array}$$

A point ($\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*$) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$oldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall i$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

First-Order Necessary Conditions (FONC)

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

First-Order Necessary Conditions

Let Φ , g, h be C^1 . If w^{*} is a (local) optimum and satisfies LICQ, then there is a unique vector λ^* and μ^* such that (w^*, λ^*, ν^*) is a KKT point.

イロト イポト イヨト イヨト

First-Order Necessary Conditions (FONC)

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

First-Order Necessary Conditions

Let Φ , g, h be C^1 . If \mathbf{w}^* is a (local) optimum and satisfies LICQ, then there is a unique vector λ^* and μ^* such that $(\mathbf{w}^*, \lambda^*, \nu^*)$ is a KKT point.

Active constraints:

- $\mathbf{h}_i(\mathbf{w}) < 0$ then $\boldsymbol{\mu}_i^* = 0$, and \mathbf{h}_i is inactive
- $\mu_i^* > 0$ and $\mathbf{h}_i(\mathbf{w}) = 0$ then $\mathbf{h}_i(\mathbf{w})$ is strictly active
- $\mu_i^* = 0$ and $\mathbf{h}_i(\mathbf{w}) = 0$ then then $\mathbf{h}_i(\mathbf{w})$ is weakly active
- We define the **active set** \mathbb{A}^* as the set of indices *i* of the active constraints

イロト 不得 トイヨト イヨト

First-Order Necessary Conditions (FONC)

 $\begin{array}{ll} \displaystyle \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{array} \end{array} \begin{array}{l} \displaystyle \text{Definition: a point \mathbf{w} satisfies LICQ iff} \\ \displaystyle \left[\nabla \mathbf{g}\left(\mathbf{w}\right), \quad \nabla \mathbf{h}_{\mathbb{A}^{*}}\left(\mathbf{w}\right)\right] \\ & \text{is full column rank} \end{array}$

First-Order Necessary Conditions

Let Φ , g, h be C^1 . If w^{*} is a (local) optimum and satisfies LICQ, then there is a unique vector λ^* and μ^* such that (w^{*}, λ^* , ν^*) is a KKT point.

Active constraints:

- $\mathbf{h}_i(\mathbf{w}) < 0$ then $\boldsymbol{\mu}_i^* = 0$, and \mathbf{h}_i is inactive
- $\mu_i^* > 0$ and $\mathbf{h}_i(\mathbf{w}) = 0$ then $\mathbf{h}_i(\mathbf{w})$ is strictly active
- $\mu_i^* = 0$ and $\mathbf{h}_i(\mathbf{w}) = 0$ then then $\mathbf{h}_i(\mathbf{w})$ is weakly active
- We define the **active set** \mathbb{A}^* as the set of indices *i* of the active constraints

Outline

KKT conditions

2 Some intuitions on the KKT conditions

3 Second Order Sufficient-Conditions (SOSC)

・ロン ・聞と ・ヨン ・ヨン

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$ s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

ヘロト 人間ト 人造ト 人造ト

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$ s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

ヘロト 人間ト 人造ト 人造ト

S. Gros, M. Diehl

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$ s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

ヘロト 人間ト 人造ト 人造ト

S. Gros, M. Diehl

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

• $-\nabla \Phi$ is the gravity

ヘロト 人間ト 人造ト 人造ト

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \geq 0$ means the fence can only "push" the ball.

 \mathbf{w}_1

イロト イヨト イヨト イヨト

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \geq 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.
- Weakly active constraint:

$$h(\mathbf{w}) = \mathbf{0}, \quad \mu = \mathbf{0}$$

the ball touches the fence but no force is needed.

Balance of the forces: $\nabla \mathcal{L} = \nabla \Phi(\mathbf{w}) + \mu \nabla h(\mathbf{w}) = 0$

イロト イポト イヨト イヨト

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.
- Weakly active constraint:

$$h(\mathbf{w}) = \mathbf{0}, \quad \mu = \mathbf{0}$$

the ball touches the fence but no force is needed.

• Inactive constraint $h(\mathbf{w}) < 0, \ \mu = 0$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$
s.t. $h(\mathbf{w}) \leq \mathbf{0}$

Ball rolling down a valley blocked by a fence

- $-\nabla \Phi$ is the gravity
- $-\mu \nabla h$ is the force of the fence. Sign $\mu \ge 0$ means the fence can only "push" the ball.
- Weakly active constraint:

$$h(\mathbf{w}) = \mathbf{0}, \quad \mu = \mathbf{0}$$

the ball touches the fence but no force is needed.

- Inactive constraint $h(\mathbf{w}) < 0, \ \mu = 0$
- Complementary slackness μh = 0 describes a contact problem (force exists only if the ball touches)

Outline

KKT conditions

Some intuitions on the KKT of

3 Second Order Sufficient Conditions (SOSC)

э

・ロン ・部 ・ ・ ヨ ・ ・ ヨ ・

A point (w*, μ^* , λ^*) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall i$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

A point (w*, μ^* , λ^*) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall \ i$

where $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$

• Let Φ , \mathbf{g} , \mathbf{h} be \mathcal{C}^2

3

ヘロト 人間ト 人間ト 人目ト

A point ($\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*$) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall i$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

- Let Φ , \mathbf{g} , \mathbf{h} be \mathcal{C}^2
- Suppose that \mathbf{w}^* is regular and $\exists \ \lambda^*, \mu^*$ such that $(\mathbf{w}^*, \lambda^*, \nu^*)$ is a KKT point

ヘロト 人間ト 人間ト 人目ト

A point ($\mathbf{w}^*, \mu^*, \lambda^*$) is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall i$

where $\mathcal{L} = \Phi(\mathbf{w}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}(\mathbf{w}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}(\mathbf{w})$

- Let Φ , \mathbf{g} , \mathbf{h} be \mathcal{C}^2
- Suppose that \mathbf{w}^* is regular and $\exists \lambda^*, \mu^*$ such that $(\mathbf{w}^*, \lambda^*, \nu^*)$ is a KKT point
- Set of feasible directions:

$$\mathcal{F} = \left\{ \mathbf{d} \mid \nabla \mathbf{g}(\mathbf{w}^*)^\top \mathbf{d} = \mathbf{0}, \quad \nabla \mathbf{h}_i(\mathbf{w}^*)^\top \mathbf{d} \leq \mathbf{0}, \quad \forall i \in \mathbb{A}^*
ight\}$$

ヘロト 人間 とくほ とくほ とう

A point $(\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\mu_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall i$

where $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$

- Let Φ , \mathbf{g} , \mathbf{h} be \mathcal{C}^2
- Suppose that \mathbf{w}^* is regular and $\exists \lambda^*, \mu^*$ such that $(\mathbf{w}^*, \lambda^*, \nu^*)$ is a KKT point
- Set of feasible directions:

$$\mathcal{F} = \left\{ \mathbf{d} \mid \nabla \mathbf{g}(\mathbf{w}^*)^\top \mathbf{d} = \mathbf{0}, \quad \nabla \mathbf{h}_i(\mathbf{w}^*)^\top \mathbf{d} \leq \mathbf{0}, \quad \forall i \in \mathbb{A}^*
ight\}$$

• If for any $\mathbf{d} \in \mathcal{F} \setminus \{0\}$ with $\nabla \mathbf{h}_i(\mathbf{w}^*)^\top \mathbf{d} = 0$ for $\boldsymbol{\mu}_i^* > 0$ the inequality: $\mathbf{d}^\top \nabla^2 \mathcal{L}(\mathbf{w}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) \mathbf{d} > 0$

holds

イロト 不得下 イヨト イヨト 二日

A point $(\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ is called a KKT point if it satisfies:

Dual Feasibility:	$ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$
Primal Feasibility:	$\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$
Complementary Slackness:	$\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0, \forall \ i$

where $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$

- Let Φ , \mathbf{g} , \mathbf{h} be \mathcal{C}^2
- Suppose that \mathbf{w}^* is regular and $\exists \lambda^*, \mu^*$ such that $(\mathbf{w}^*, \lambda^*, \nu^*)$ is a KKT point
- Set of feasible directions:

$$\mathcal{F} = \left\{ \mathbf{d} \mid \nabla \mathbf{g}(\mathbf{w}^*)^\top \mathbf{d} = \mathbf{0}, \quad \nabla \mathbf{h}_i(\mathbf{w}^*)^\top \mathbf{d} \leq \mathbf{0}, \quad \forall i \in \mathbb{A}^*
ight\}$$

• If for any $\mathbf{d} \in \mathcal{F} \setminus \{0\}$ with $\nabla \mathbf{h}_i(\mathbf{w}^*)^\top \mathbf{d} = 0$ for $\boldsymbol{\mu}_i^* > 0$ the inequality: $\mathbf{d}^\top \nabla^2 \mathcal{L}(\mathbf{w}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) \mathbf{d} > 0$

holds

Then, \mathbf{w}^* is a local minimum.

◆□ → ◆聞 → ◆臣 → ◆臣 → □ □

Summary of Optimality Conditions

Optimality conditions for NLP with equality and/or inequality constraints:

- 1st-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is a KKT point
- 2nd-Order Sufficient Conditions require positivity of the Hessian in all critical feasible directions

Non-convex problem \Rightarrow minimum is not necessarily global. But some non-convex problems have a unique minimum.

Some important practical consequences...

- A local (global) optimum may not be a KKT point.
- A KKT point may not be a local (global) optimum.

... the lack of equivalence results from a lack of regularity and/or SOSC

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙