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Algebraic Characterization of Unconstrained Local Optima
Consider the unconstrained problem: minw Φ(w)

1st-Order Necessary Condition of Optimality (FONC)

w
∗ local optimum ⇒ ∇Φ(w∗) = 0, w

∗ stationary point

2nd-Order Sufficient Conditions of Optimality (SOSC)
NLP:

∇Φ(w∗) = 0 and ∇2Φ(w∗) ≻ 0 ⇒ x
∗ strict local minimum

∇Φ(w∗) = 0 and ∇2Φ(w∗) ≺ 0 ⇒ x
∗ strict local maximum

No conclusion can be drawn in the case ∇2Φ(w∗) is indefinite!
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w
∗ local optimum ⇒ ∇Φ(w∗) = 0, w

∗ stationary point
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∇Φ(w∗) = 0 and ∇2Φ(w∗) ≺ 0 ⇒ x
∗ strict local maximum

No conclusion can be drawn in the case ∇2Φ(w∗) is indefinite!

Note:

∇Φ(w∗) = 0 then ∄d such that ∇Φ(w∗)Td < 0

∇2Φ ≻ 0 then ∀d 6= 0, dT∇2Φ(w∗)d > 0

Local optimum: ”No direction d can improve the cost (locally)”
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FONC for equality constraints

Consider the NLP problem:

min
w

Φ (w)

s.t. g (w) = 0
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a
Linear Independence Constraint Qualification

First-order Necessary Conditions

Let Φ, g in C1. If w∗ is a (local) optimum, and w∗ satisfies LICQ, then there is a
unique vector λ such that:

Dual feasibility: ∇Φ(w∗) +∇g(w∗)λ = 0

Primal feasibility: g(w∗) = 0
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min
w

Φ (w)

s.t. g (w) = 0

Definition: a point w satisfies LICQa

iff ∇g (w) is full column rank

a
Linear Independence Constraint Qualification

Square system: (n +m) conditions in
(n +m) variables (w,λ)

Lagrange multipliers: λi ↔ g
i

Dual feasibility ≡ Lagrangian stationarity:

∇L(w∗
,λ∗) = 0

where L(w,λ)
∆
= Φ(w) + λTg(w) is the

Lagrangian
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First-Order Necessary Conditions (FONC)

min
w

Φ(w)

s.t. g (w) = 0

h (w) ≤ 0

First-Order Necessary Conditions

Let Φ, g, h be C1. If w∗ is a (local) optimum and satisfies LICQ, then there is a unique
vector λ∗ and µ∗ such that (w∗

, λ∗
, ν∗) is a KKT point.

S. Gros, M. Diehl 7 / 12



First-Order Necessary Conditions (FONC)

min
w

Φ(w)

s.t. g (w) = 0

h (w) ≤ 0

First-Order Necessary Conditions

Let Φ, g, h be C1. If w∗ is a (local) optimum and satisfies LICQ, then there is a unique
vector λ∗ and µ∗ such that (w∗
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hi (w) < 0 then µ∗

i
= 0, and hi is inactive

µ∗
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i
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Some intuitions on the KKT conditions

min
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s.t. h(w) ≤ 0

Ball rolling down a valley blocked by a fence
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Ball rolling down a valley blocked by a fence
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Ball rolling down a valley blocked by a fence

−∇Φ is the gravity

−µ∇h is the force of the fence. Sign
µ ≥ 0 means the fence can only
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h (w) = 0, µ = 0
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is needed.
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Second-Order Sufficient Conditions for a Local Minimum

A point (w∗
, µ∗

, λ∗ ) is called a KKT point if it satisfies:

Dual Feasibility: ∇wL (w∗
, µ

∗
, λ

∗ ) = 0, µ
∗ ≥ 0,

Primal Feasibility: g (w∗) = 0, h (w∗) ≤ 0,

Complementary Slackness: µ
∗

i
hi (w

∗) = 0, ∀ i

where L = Φ (w) + λTg (w) + µTh (w)
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Summary of Optimality Conditions

Optimality conditions for NLP with equality and/or inequality constraints:

1st-Order Necessary Conditions: A regular local optimum of a (differentiable)
NLP is a KKT point

2nd-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Non-convex problem ⇒ minimum is not necessarily global.
But some non-convex problems have a unique minimum.

Some important practical consequences...

A local (global) optimum may not be a KKT point.

A KKT point may not be a local (global) optimum.

... the lack of equivalence results from a lack of regularity and/or SOSC
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