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Algebraic Characterization of Unconstrained Local Optima

Consider the unconstrained problem: minw  $ (w)
1st-Order Necessary Condition of Optimality (FONC)
w” local optimum = V&(w") =0, w" stationary point J
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Algebraic Characterization of Unconstrained Local Optima
Consider the unconstrained problem: minw  $ (w)

1st-Order Necessary Condition of Optimality (FONC)

w” local optimum = V&(w") =0, w" stationary point

2nd-Order Sufficient Conditions of Optimality (SOSC)
NLP:

Vo(w*) =0 and V’O(w*) =0 = x* strict local minimum

Vo(w*) =0and V’O(w*) <0 = x" strict local maximum

No conclusion can be drawn in the case V2®d(w™) is indefinite!

Note:
® Vo(w*) =0 then #d such that V&(w*)'d < 0
® V?® - 0 then Vd #0, d"V2d(w*)d > 0

Local optimum: " No direction d can improve the cost (locally)” J
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FONC for equality constraints

Consider the NLP problem:
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FONC for equality constraints

Consider the NLP problem:
Square system: (n+ m) conditions in

min ®(w) (n + m) variables (w, \)
st. g(w)=0 Lagrange multipliers: \; <> g;

Dual feasibility = Lagrangian stationarity:

Definition: a point w satisfies LICQ? ‘ VLW, A*)=0 ‘
iff Vg (w) is full column rank

where £(w, A) £ d(w) + ATg(w) is the

aLinear Independence Constraint Qualification Lagrang|an

First-order Necessary Conditions

Let &, g in C'. If w* is a (local) optimum, and w* satisfies LICQ, then there is a
unique vector A such that:

Dual feasibility: V&(w™) 4+ Vg(w* )X =0
Primal feasibility: g(w™) =0
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KKT point

Consider the NLP problem:

m“i,n o (w)
st. g(w)=0
h(w)<0
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KKT point

Consider the NLP problem:
min  $ (w)

st. g(w)=0
h(w)<0

A point (w*, p*, X" ) is called a KKT point if it satisfies:

Dual Feasibility: Vwl (W p*, A")=0, p* >0,
Primal Feasibility: g(w’)=0, h(w") <0,
Complementary Slackness: pihi(w*) =0, Vi
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First-Order Necessary Conditions (FONC)

m“i’n d (w)
st. g(w)=0
h(w) <0

First-Order Necessary Conditions

Let &, g, h be C'. If w* is a (local) optimum and satisfies LICQ, then there is a unique
vector A* and p* such that (w*, A", v*) is a KKT point.
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min ®(x)

w

st. h(w) <0

Ball rolling down a valley blocked by a fence
@ —V is the gravity

@ —uVh is the force of the fence. Sign
4 > 0 means the fence can only
"push” the ball.

@ Weakly active constraint:

h(w)=0, p=0

the ball touches the fence but no force
is needed.

Balance of the forces:
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—V & is the gravity

—uVh is the force of the fence. Sign
4 > 0 means the fence can only
"push” the ball.

Weakly active constraint:
h(w)=0, p=0

the ball touches the fence but no force
is needed.
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Some intuitions on the KKT conditions

min ®(x)

w

st. h(w) <0

Ball rolling down a valley blocked by a fence

)
)

—V & is the gravity

—uVh is the force of the fence. Sign
4 > 0 means the fence can only
"push” the ball.

Weakly active constraint:
h(w)=0, p=0

the ball touches the fence but no force
is needed.

@ Inactive constraint h(w) <0, u=0

@ Complementary slackness uh = 0

describes a contact problem (force
exists only if the ball touches)

Balance of the forces:
VL=V®(w)+ uVh(w)=0
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Second-Order Sufficient Conditions for a Local Minimum

A point (w*, p*, X" ) is called a KKT point if it satisfies:

Dual Feasibility: Vwl (W, p", A" ) =0, up" >0,
Primal Feasibility: g(w")=0, h(w")<0,
Complementary Slackness: pihi(w") =0, Vi

where £ =& (w) +ATg(w)+ pu"h(w)
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A point (w*, p*, X" ) is called a KKT point if it satisfies:
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Second-Order Sufficient Conditions for a Local Minimum

A point (w*, p*, A" ) is called a KKT point if it satisfies:

Dual Feasibility: Vwl (W, p*, A") =0,
Primal Feasibility: g(w’)=0, h(w") <0,
Complementary Slackness: pihi(w*)=0, Vi
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@ Suppose that w* is regular and 3 A*, ™ such that (w*, A", v") is a KKT point
@ Set of feasible directions:
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@ If for any d € F \ {0} with Vh;(w*)"d = 0 for u} > 0 the inequality:
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Second-Order Sufficient Conditions for a Local Minimum

A point (w*, p*, A" ) is called a KKT point if it satisfies:

Dual Feasibility: Vwl (W, p*, A") =0,
Primal Feasibility: g(w’)=0, h(w") <0,
Complementary Slackness: pihi(w*)=0, Vi

u" >0,

where £ =& (w) +ATg(w) + p"h(w)

@ Let ®, g, h be C?
@ Suppose that w* is regular and 3 A*, ™ such that (w*, A", v") is a KKT point
@ Set of feasible directions:

F= {d | Vg(w')'d=0, Vh(w")'d<0, Vie A*}

@ If for any d € F \ {0} with Vh;(w*)"d = 0 for u} > 0 the inequality:
d'VL(wH, A%, v")d >0
holds

‘ Then, w” is a local minimum. ‘
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Summary of Optimality Conditions

Optimality conditions for NLP with equality and/or inequality constraints:

@ 1st-Order Necessary Conditions: A regular local optimum of a (differentiable)
NLP is a KKT point

@ 2nd-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Non-convex problem => minimum is not necessarily global.
But some non-convex problems have a unique minimum.

Some important practical consequences...
@ A local (global) optimum may not be a KKT point.
@ A KKT point may not be a local (global) optimum.

... the lack of equivalence results from a lack of regularity and/or SOSC
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