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Newton - a general-purpose sledgehammer for algebraic equations...

... will be used to solve the KKT conditions !!

S. Gros Optimal Control with DAEs, lecture 5 17th of February, 2016 3 / 32



Outline

1 KKT conditions - Quick Reminder

2 The Newton method

3 Newton on the KKT conditions

4 Sequential Quadratic Programming

5 Hessian approximation

6 Maratos effect
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KKT point

Consider the NLP problem:

min
w

Φ(w)

s.t. g (w) = 0

h (w) ≤ 0
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in essence ”KKT
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Core idea
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Key idea: guess w, iterate the linear model:
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This is a full-step Newton iteration
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Key idea: guess w, iterate the linear model:

r (w +∆w) ≈ r (w) +∇r (w)⊤ ∆w = 0

This is a full-step Newton iteration

Reduced steps are often needed

Algorithm: Newton method

Input: w, tol
while ‖r (w) ‖∞ ≥ tol do

Compute

r (w) and ∇r (w)

Compute the Newton direction

∇r (w)T ∆w = −r (w)

Newton step, t ∈ ]0, 1]

w← w + t∆w

return w
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Why reduced steps ?

Newton step with t ∈ ]0, 1]:

∇r (w)⊤ ∆w = −r (w)

w← w + t∆w
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The full-step Newton iteration can be unstable !!
While the reduced-steps Newton iteration is stable...
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Does Newton always work ?

Is the Newton step ∆w always providing a direction ”improving” r (w) ?
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∣
∣
∣
∣
t=0

= −2‖r (w) ‖2 < 0
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Does Newton always work ?

Is the Newton step ∆w always providing a direction ”improving” r (w) ?
I.e. is there always a t > 0 s.t. ‖r (w + t∆w) ‖ < ‖r (w) ‖ is true ? Yes... but

How to select the step size t ∈ ]0, 1] ? Globalization...

Line-search: reduce t until some criteria of progression on ‖r‖ are met

Trust region: confine the step ∆w within a region where ∇r (w) provides a good
model of r (w)

Filter techniques: monitor progress on specific components of r (w) separately

...

... ensures that progress is made in one way or another.

Note: most of these techniques are specific to optimization.
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But still, Newton can fail...

Solve r (w) = 0

r(
w

)

-0.4

-0.2

0

0.2

0.4

0.6

w

w
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But still, Newton can fail...

Solve r (w) = 0

r(
w

)

-0.4

-0.2

0

0.2

0.4

0.6

w

w

Newton stops with

r (w) 6= 0 and ∇r (w) singular

i.e. the Newton direction ∆w given by

∇r (w)⊤ ∆w = −r (w)

is undefined...
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But still, Newton can fail...

Solve r (w) = 0

r(
w

)

-0.4

-0.2

0

0.2

0.4

0.6

w

w

Newton stops with

r (w) 6= 0 and ∇r (w) singular

i.e. the Newton direction ∆w given by

∇r (w)⊤ ∆w = −r (w)

is undefined...

This is a common failure mode for Newton-based solvers when tackling very non-linear r
and starting with a poor initial guess !!
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Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w
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Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )
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Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )

Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

S. Gros Optimal Control with DAEs, lecture 5 17th of February, 2016 12 / 32



Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )

Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −M
−1
k r (wk)

S. Gros Optimal Control with DAEs, lecture 5 17th of February, 2016 12 / 32



Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )

Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −M
−1
k r (wk)

Theorem: assume

Nonlinearity of r:
∥
∥
∥M

−1
k

(

∇r(w)T −∇r(w∗)T
)∥
∥
∥ ≤ ω ‖w −w∗‖, for

w ∈ [wk,w
⋆]
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Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −M
−1
k r (wk)

Theorem: assume

Nonlinearity of r:
∥
∥
∥M

−1
k

(

∇r(w)T −∇r(w∗)T
)∥
∥
∥ ≤ ω ‖w −w∗‖, for

w ∈ [wk,w
⋆]

Jacobian approximation error:
∥
∥
∥M

−1
k

(∇r(wk)
T −Mk)

∥
∥
∥ ≤ κk < 1
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Theorem: assume

Nonlinearity of r:
∥
∥
∥M

−1
k

(

∇r(w)T −∇r(w∗)T
)∥
∥
∥ ≤ ω ‖w −w∗‖, for

w ∈ [wk,w
⋆]

Jacobian approximation error:
∥
∥
∥M

−1
k

(∇r(wk)
T −Mk)

∥
∥
∥ ≤ κk < 1

Good initial guess ‖w0 −w∗‖ ≤ 2
ω
(1−max {κk})
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Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )

Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −M
−1
k r (wk)

Theorem: assume

Nonlinearity of r:
∥
∥
∥M

−1
k

(

∇r(w)T −∇r(w∗)T
)∥
∥
∥ ≤ ω ‖w −w∗‖, for

w ∈ [wk,w
⋆]

Jacobian approximation error:
∥
∥
∥M

−1
k

(∇r(wk)
T −Mk)

∥
∥
∥ ≤ κk < 1

Good initial guess ‖w0 −w∗‖ ≤ 2
ω
(1−max {κk})

Then wk → w∗ with the following linear-quadratic contraction in each iteration:

‖wk+1 −w
∗‖ ≤

(

κk +
ω

2
‖wk −w

∗‖
)

‖wk −w
∗‖.
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Convergence of full-step Newton methods

Newton method:

∇r (w)⊤ ∆w = −r (w)

w← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −∇r (wk)
−⊤

r (wk )

Newton-type method (Jacobian approx.)

M∆w = −r (w)

w ← w +∆w

Yields the iteration k = 0, 1, ....:

wk+1 ← wk −M
−1
k r (wk)

Theorem: assume

Nonlinearity of r:
∥
∥
∥M

−1
k

(

∇r(w)T −∇r(w∗)T
)∥
∥
∥ ≤ ω ‖w −w∗‖, for

w ∈ [wk,w
⋆]

Jacobian approximation error:
∥
∥
∥M

−1
k

(∇r(wk)
T −Mk)

∥
∥
∥ ≤ κk < 1

Good initial guess ‖w0 −w∗‖ ≤ 2
ω
(1−max {κk})

Then wk → w∗ with the following linear-quadratic contraction in each iteration:

‖wk+1 −w
∗‖ ≤

(

κk +
ω

2
‖wk −w

∗‖
)

‖wk −w
∗‖.

What about reduced steps ? Slow convergence when t < 1 (damped phase). When
full steps become feasible, fast convergence to the solution.
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Newton methods - Short Survival Guide

Exact Newton method:

∇r (w)⊤ ∆w = −r (w)

w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w
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∇r (w)⊤ ∆w = −r (w)

w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w

Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]

S. Gros Optimal Control with DAEs, lecture 5 17th of February, 2016 13 / 32



Newton methods - Short Survival Guide

Exact Newton method:

∇r (w)⊤ ∆w = −r (w)

w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w

Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]

Inexact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]
if M > 0
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Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]
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Exact full (t = 1) Newton steps converge quadratically if close enough to the
solution
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w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w

Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]

Inexact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]
if M > 0

Exact full (t = 1) Newton steps converge quadratically if close enough to the
solution

Inexact full (t = 1) Newton steps converge linearly if close enough to the solution
and if the Jacobian approximation is ”sufficiently good”

S. Gros Optimal Control with DAEs, lecture 5 17th of February, 2016 13 / 32



Newton methods - Short Survival Guide

Exact Newton method:

∇r (w)⊤ ∆w = −r (w)

w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w

Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]

Inexact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]
if M > 0

Exact full (t = 1) Newton steps converge quadratically if close enough to the
solution

Inexact full (t = 1) Newton steps converge linearly if close enough to the solution
and if the Jacobian approximation is ”sufficiently good”

Newton iteration fails if ∇r becomes singular
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Newton methods - Short Survival Guide

Exact Newton method:

∇r (w)⊤ ∆w = −r (w)

w ← w + t∆w

Newton-type method

M∆w = −r (w)

w← w + t∆w

Exact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]

Inexact Newton direction ∆w improves r for a sufficiently small step size t ∈ ]0, 1]
if M > 0

Exact full (t = 1) Newton steps converge quadratically if close enough to the
solution

Inexact full (t = 1) Newton steps converge linearly if close enough to the solution
and if the Jacobian approximation is ”sufficiently good”

Newton iteration fails if ∇r becomes singular

Newton methods with globalization converge in two phases: damped (slow) phase
when reduced steps (t < 1) are needed, quadratic/ linear when full steps are
possible.
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Outline

1 KKT conditions - Quick Reminder

2 The Newton method

3 Newton on the KKT conditions

4 Sequential Quadratic Programming

5 Hessian approximation

6 Maratos effect
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Core idea

A vast majority of solvers try to find a KKT point w, µ, λ i.e:

Primal Feasibility: g (w) = 0, h (w) ≤ 0,

Dual Feasibility: ∇wL (w, µ, λ ) = 0, µ ≥ 0,

Complementarity Slackness: µihi (w) = 0, i = 1, ...

where L = Φ (w) + λ⊤g (w) + µ⊤h (w)
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Complementarity Slackness: µihi (w) = 0, i = 1, ...

where L = Φ (w) + λ⊤g (w) + µ⊤h (w)

Let’s consider for now equality constrained problems, i.e. find w,λ s.t.:

∇wL(w,λ) = 0

g(w) = 0
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A vast majority of solvers try to find a KKT point w, µ, λ i.e:

Primal Feasibility: g (w) = 0, h (w) ≤ 0,

Dual Feasibility: ∇wL (w, µ, λ ) = 0, µ ≥ 0,

Complementarity Slackness: µihi (w) = 0, i = 1, ...

where L = Φ (w) + λ⊤g (w) + µ⊤h (w)

Let’s consider for now equality constrained problems, i.e. find w,λ s.t.:

∇wL(w,λ) = 0

g(w) = 0

Idea: apply the Newton method on the KKT conditions, i.e.

Solve...

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0
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Core idea

A vast majority of solvers try to find a KKT point w, µ, λ i.e:

Primal Feasibility: g (w) = 0, h (w) ≤ 0,

Dual Feasibility: ∇wL (w, µ, λ ) = 0, µ ≥ 0,

Complementarity Slackness: µihi (w) = 0, i = 1, ...

where L = Φ (w) + λ⊤g (w) + µ⊤h (w)

Let’s consider for now equality constrained problems, i.e. find w,λ s.t.:

∇wL(w,λ) = 0

g(w) = 0

Idea: apply the Newton method on the KKT conditions, i.e.

Solve...

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

... by iterating

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)
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Newton method on the KKT conditions

KKT conditions

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

Newton direction

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)
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Newton method on the KKT conditions

KKT conditions

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

Newton direction

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)

Given by:

∇2
wL(w,λ)∆w + ∇w,λL(w,λ)∆λ = −∇wL(w,λ)
∇g(w)T∆w = −g(w)
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Newton method on the KKT conditions

KKT conditions

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

Newton direction

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)

Given by: using ∇wL(w,λ) = ∇Φ(w) +∇g(w)λ

∇2
wL(w,λ)∆w + ∇g(w) (λ+∆λ) = −∇Φ(w)
∇g(w)T∆w = −g(w)
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Newton method on the KKT conditions

KKT conditions

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

Newton direction

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)

Given by: using ∇wL(w,λ) = ∇Φ(w) +∇g(w)λ

∇2
wL(w,λ)∆w + ∇g(w) (λ+∆λ) = −∇Φ(w)
∇g(w)T∆w = −g(w)

The Newton direction on the KKT conditions

[
∇2

wL(w,λ) ∇g(w)

∇g(w)T 0

]

︸ ︷︷ ︸

KKT matrix (symmetric indefinite)

[
∆w

λ+∆λ

]

= −

[
∇Φ(w)
g(w)

]
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∇2
wL(w,λ)∆w + ∇g(w) (λ+∆λ) = −∇Φ(w)
∇g(w)T∆w = −g(w)

The Newton direction on the KKT conditions

[
H (w,λ) ∇g(w)

∇g(w)T 0

]

︸ ︷︷ ︸

KKT matrix (symmetric indefinite)

[
∆w

λ+∆λ

]

= −

[
∇Φ(w)
g(w)

]

where H (w,λ) = ∇2
wL(w,λ) is the Hessian of the problem.
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Newton method on the KKT conditions

KKT conditions

r (w,λ) =

[
∇wL(w,λ)

g(w)

]

= 0

Newton direction

∇r (w,λ)T
[

∆w

∆λ

]

= −r (w,λ)

Given by: using ∇wL(w,λ) = ∇Φ(w) +∇g(w)λ

∇2
wL(w,λ)∆w + ∇g(w) (λ+∆λ) = −∇Φ(w)
∇g(w)T∆w = −g(w)

The Newton direction on the KKT conditions

[
H (w,λ) ∇g(w)

∇g(w)T 0

]

︸ ︷︷ ︸

KKT matrix (symmetric indefinite)

[
∆w

λ+

]

= −

[
∇Φ(w)
g(w)

]

where H (w,λ) = ∇2
wL(w,λ) is the Hessian of the problem. Note: update of the dual

variable is λ+ = λ+∆λ
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Newton Iteration for Optimization - Example
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Newton Iteration for Optimization - Example

Algorithm: Newton method

Input: guess w, λ

while ‖∇L‖ or ‖g‖ ≥ tol do

Compute

H (w,λ) , ∇g (w) , ∇Φ(w) , g (w)

Compute Newton direction

[
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∇gT 0
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Invertibility of the KKT matrix

The Newton direction of the KKT conditions

[
H (w,λ) ∇g(w)

∇g(w)T 0

]

︸ ︷︷ ︸

KKT matrix (symmetric indefinite)

[
∆w

λ+

]

= −

[
∇Φ(w)
g(w)

]
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∀d 6= 0, such that ∇g(w)⊤d = 0

d
⊤
H (w,λ)d > 0 (SOSC)

If (w,λ) is LICQ & SOSC, then the KKT matrix

is invertible in a neighborhood of (w,λ)

In practice, when the solution fails
LICQ/SOSC, it is common to
observe the solver struggling

numerically, as the KKT matrix
becomes increasingly
ill-conditioned !!

If LICQ & SOSC hold at the solution, then the Newton iteration is well defined in

its neighborhood
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Quadratic model interpretation

Problem:

min
w

Φ(w)

s.t. g (w) = 0

The Newton direction is given by

[
H(w,λ) ∇g (w)

∇g (w)T 0

] [
∆w

λ+

]

= −

[
∇Φ(w)
g (w)

]
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Dual variables λ+ given by the dual variables of the QP, i.e. λ+ = λQP

Proof: the KKT conditions of the QP are equivalent to the system providing the

Newton direction

The Newton direction is given by solving a quadratic models of the original problem !!
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Outline

1 KKT conditions - Quick Reminder

2 The Newton method

3 Newton on the KKT conditions

4 Sequential Quadratic Programming

5 Hessian approximation

6 Maratos effect
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What about inequality constraints ?

Find the ”primal-dual” variables x,µ,λ such that:

Primal Feasibility: g (w) = 0, h (w) ≤ 0,

Dual Feasibility: ∇wL (w, µ, λ ) = 0, µ ≥ 0,

Complementarity Slackness: µihi (w) = 0, i = 1, ...
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h
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active

Solution manifold of µihi (w) = 0

Manifold generated by the Complementary
Slackness condition is not smooth, Newton

can not be used !!
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Quadratic model interpretation

NLP

min
w

Φ(w)

s.t. g (w) = 0

The Newton direction is given by

[
H(w,λ) ∇g (w)

∇g (w)T 0

] [
∆w

λ+

]

= −

[
∇Φ(w)
g (w)

]

with H(w,λ) = ∇2
wL(w,λ)
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λ+

]

= −

[
∇Φ(w)
g (w)

]

with H(w,λ) = ∇2
wL(w,λ)

The Newton direction is given by the Quadratic Program (QP):

min
∆w

1

2
∆w

T
H(w,λ)∆w +∇Φ(w)T ∆w

s.t. g (w) +∇g (w)T ∆w = 0

Dual variables λ+ given by the dual variables of the QP, i.e. λ+ = λQP
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Quadratic interpretation for inequality constraints

Problem:
min
w
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s.t. g (w) = 0

s.t. h (w) ≤ 0
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min
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2
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T
H(w,λ,µ)∆w +∇Φ(w)T ∆w

s.t. g (w) +∇g (w)T ∆w = 0

h (w) +∇h (w)T ∆w ≤ 0

with H(w,λ) = ∇2
wL(w,λ)

Dual variables λ+ and µ+ given by the dual variables of the QP, i.e.

λ
+ = λQP, µ

+ = µQP
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SQP Algorithm

Algorithm: SQP with line-search

Input: guess w, λ, µ

while ‖∇L‖∞ or ‖g‖∞ or max (0,hi ) ≥ tol do

Compute g, h, ∇Φ(w), ∇g(w), ∇h(w), H (w,µ,λ)
Compute Newton direction by solving the QP

min
∆w

1

2
∆w

T
H(w,λ,µ)∆w +∇Φ(w)T ∆w

s.t. g (w) +∇g (w)T ∆w = 0

h (w) +∇h (w)T ∆w ≤ 0

Select step size t to ensure progress (c.f. globalization / line-search)
Take primal step: w← w + t∆w

Take dual step: λ← (1− t)λ+ tλQP , µ← (1− t)µ+ tµQP

return w, λ, µ
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SQP - Illustration

NLP:

min
w

1

2
‖w −w0‖

2
Q

s.t. h (w) ≤ 0

QP:

min
w

1

2
∆w

⊤
H (w,µ)∆w +∇Φ(w)⊤ ∆w

s.t. h (w) +∇h (w)⊤ ∆w ≤ 0

Hessian:

H (w,µ) = ∇2
wΦ (w) +∇2

w

(

µ
⊤
h (w)

)
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Some remarks

The Newton direction is given by the Quadratic Program (QP):

min
∆w

1

2
∆w

T
H(w,λ,µ)∆w +∇Φ(w)T ∆w

s.t. g (w) +∇g (w)T ∆w = 0

h (w) +∇h (w)T ∆w ≤ 0

with H(w,λ) = ∇2
wL(w,λ)
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SQP inherits the convergence properties of the Newton method

What happens if SOSC fails during the iterations ? I.e. for an iterate w,λ,µ:

d
⊤
H(w,λ,µ)d ≯ 0

for some d 6= 0 being a critical feasible direction ? QP unbounded !! Heuristics are
used in SQP methods to modify H(w,λ,µ) and recover an adequate curvature in
the QP cost (regularization).
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Outline

1 KKT conditions - Quick Reminder

2 The Newton method

3 Newton on the KKT conditions

4 Sequential Quadratic Programming

5 Hessian approximation

6 Maratos effect
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Newton-type Methods - Gauss-Newton Hessian approximation

Cost function of the type Φ(w) = 1
2
‖R(w)‖2, with R(w) ∈ IRm

Gauss-Newton Hessian approximation

Observe that

∇2
wΦ(w) =

∂

∂w
(∇R(w)R(w)) = ∇R(w)∇R(w)⊤ +

m∑

i=1

∇2
Ri (w)Ri(w)
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Gauss-Newton method proposes to use: Bk = ∇R(wk)∇R(wk)
T + αk I

Bk is a good approximation if:

constraints are close to linear or

Φ(w⋆) ≈ 0 (implies λ, µ ≈ 0)
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Gauss-Newton Hessian approximation

Observe that

∇2
wΦ(w) =

∂

∂w
(∇R(w)R(w)) = ∇R(w)∇R(w)⊤ +

m∑

i=1

∇2
Ri (w)Ri(w)

Gauss-Newton method proposes to use: Bk = ∇R(wk)∇R(wk)
T + αk I

Bk is a good approximation if:

constraints are close to linear or

Φ(w⋆) ≈ 0 (implies λ, µ ≈ 0) and
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Newton-type Methods - Gauss-Newton Hessian approximation

Cost function of the type Φ(w) = 1
2
‖R(w)‖2, with R(w) ∈ IRm

Gauss-Newton Hessian approximation

Observe that

∇2
wΦ(w) =

∂

∂w
(∇R(w)R(w)) = ∇R(w)∇R(w)⊤ +

m∑

i=1
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Ri (w)Ri(w)

Gauss-Newton method proposes to use: Bk = ∇R(wk)∇R(wk)
T + αk I

Bk is a good approximation if:

constraints are close to linear or

Φ(w⋆) ≈ 0 (implies λ, µ ≈ 0) and

all ∇2Ri (w) are small (R close to
linear), or

all Ri(w) are small, i.e. Φ(w⋆) ≈ 0

Typical application to tracking & fitting problems: R(w) = y(w)− ȳ

Convergence

If Φ (wk )→ 0 then κk → 0

Can get superlinear convergence...
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Newton-type Methods - BFGS

Compute numerical derivative of H(w) in an efficient (iterative) way

BFGS

Define
sk = wk+1 −wk

yk = ∇L(wk+1)−∇L(wk)

Idea: Update Bk → Bk+1 such that Bk+1sk = yk (secant condition)
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yk = ∇L(wk+1)−∇L(wk)
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BFGS formula: Bk+1 = Bk −
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TBk

sTBks
+

yyT

sTy
, B0 = I
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See ”Powell’s trick” to make sure that Bk+1 > 0
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Compute numerical derivative of H(w) in an efficient (iterative) way

BFGS

Define
sk = wk+1 −wk

yk = ∇L(wk+1)−∇L(wk)

Idea: Update Bk → Bk+1 such that Bk+1sk = yk (secant condition)

BFGS formula: Bk+1 = Bk −
Bkss

TBk

sTBks
+

yyT

sTy
, B0 = I

See ”Powell’s trick” to make sure that Bk+1 > 0

Convergence

It can be shown that Bk → H(w), then κk → 0

Can get superlinear convergence...
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Outline

1 KKT conditions - Quick Reminder

2 The Newton method

3 Newton on the KKT conditions

4 Sequential Quadratic Programming

5 Hessian approximation

6 Maratos effect
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Maratos effect - Some NLPs can yield ”creeping” convergence
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What is going on ?!? This is a case of the Maratos effect, can happen with nonlinear
constraints...
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Maratos effect

Consider the NLP :

min
u,v

Φ = 3v2 − 2u

s.t. g = u − v
2 = 0

Optimum: w∗ =
[
0 0

]
.

Consider the iterate:

wk =
[
a2 a

]

The Newton step is:

∆wk = −
[
2a2 a

]

for λ = 2...

Define: w =
[
u v

]
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But:
Φ(wk+1) > Φ(wk)
|g(wk+1)| > |g(wk)|

No penalty function can accept ∆wk !!
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