## In case you missed it - Who am I ?



| Name:        | Sébastien Gros                    |
|--------------|-----------------------------------|
| Nationality: | Swiss                             |
| Residence:   | Göteborg, Sweden                  |
| Affiliation: | Chalmers University of Technology |
| Department:  | Signals & Systems                 |
| Position:    | Assistant Professor               |
| Email:       | grosse@chalmers.se                |
| Tel.         | +46 31 772 15 55                  |

**Recent research topics**: distributed & parallelized methods for optimal control, estimation & system identification, NMPC & Economic NMPC, optimal control for complex mechanical systems, integrators for real-time optimal control, robust optimal control, aerospace applications, airborne wind energy, wind turbine control, smart grids, traffic control

# Numerical Optimal Control with DAEs Lecture 5: Newton method & SQP

Sébastien Gros

AWESCO PhD course

# Survival map of Direct Optimal Control



# Survival map of Direct Optimal Control



Newton - a general-purpose sledgehammer for algebraic equations...

< 17 × <

## Survival map of Direct Optimal Control



Newton - a general-purpose sledgehammer for algebraic equations... ... will be used to solve the KKT conditions !!

17<sup>th</sup> of February, 2016

# Outline

1 KKT conditions - Quick Reminder

- 2 The Newton method
- 3 Newton on the KKT conditions
- 4 Sequential Quadratic Programming
- 5 Hessian approximation
- 6 Maratos effect

# Outline

1 KKT conditions - Quick Reminder

The Newton method

Newton on the KKT conditions

Sequential Quadratic Programmin

Hessian approximation

6 Maratos effect

Consider the NLP problem:

$$\begin{array}{ll} \displaystyle \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \mathrm{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{array}$$

3

・ロト ・聞ト ・ヨト ・ヨト

Consider the NLP problem:

 $\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{array}$ 

A point {w<sup>\*</sup>,  $\mu^*$ ,  $\lambda^*$  } is called a KKT point if it satisfies:

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

3

Consider the NLP problem:

 $\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{array}$ 

A point {w<sup>\*</sup>,  $\mu^*$ ,  $\lambda^*$  } is called a KKT point if it satisfies:

Dual Feasibility:  $abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},\,\boldsymbol{\mu}^{*},\,\boldsymbol{\lambda}^{*}\,\right)=0,\quad \boldsymbol{\mu}^{*}\geq0,$ 

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

周 ト イ ヨ ト イ ヨ ト

Consider the NLP problem:

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:   | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility: | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
|                     |                                                                                                                                |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

**A** 

2

Consider the NLP problem:

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:        | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility:      | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
| Complementary Slackness: | $oldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0,  \forall  i$                                                               |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

**A** 

2

Consider the NLP problem:

$$\begin{split} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = \mathbf{0} \\ & \mathbf{h}\left(\mathbf{w}\right) \leq \mathbf{0} \end{split}$$

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:        | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility:      | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
| Complementary Slackness: | $\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0,  \forall  i$                                                             |

where  $\mathcal{L}=\Phi\left(\mathbf{w}
ight)+\boldsymbol{\lambda}^{\mathsf{T}}\mathbf{g}\left(\mathbf{w}
ight)+\boldsymbol{\mu}^{\mathsf{T}}\mathbf{h}\left(\mathbf{w}
ight)$ 

Optimality conditions for NLP with equality and/or inequality constraints:

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E 990

Consider the NLP problem:

 $\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{array}$ 

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:        | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility:      | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
| Complementary Slackness: | $\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0,  \forall \ i$                                                            |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

Optimality conditions for NLP with equality and/or inequality constraints:

• 1st-Order Necessary Conditions: A (local) optimum w<sup>\*</sup> satisfying LICQ of a (differentiable) NLP corresponds to a unique KKT point

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider the NLP problem:

 $\begin{array}{ll} \min_{\mathbf{w}} & \Phi\left(\mathbf{w}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{array}$ 

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:        | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility:      | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
| Complementary Slackness: | $\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0,  \forall \ i$                                                            |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

Optimality conditions for NLP with equality and/or inequality constraints:

- 1st-Order Necessary Conditions: A (local) optimum w<sup>\*</sup> satisfying LICQ of a (differentiable) NLP corresponds to a unique KKT point
- 2nd-Order Sufficient Conditions require positivity of the Hessian  $\nabla^2_{\mathbf{w}} \mathcal{L}$  in all critical feasible directions at the solution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider the NLP problem:  $\min_{\mathbf{w}} \Phi(\mathbf{w})$   $\text{s.t.} \mathbf{g}(\mathbf{w}) = 0$   $\mathbf{h}(\mathbf{w}) \leq 0$ Most NLP solvers are in essence "KKT solvers"

A point  $\{\mathbf{w}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*\}$  is called a KKT point if it satisfies:

| Dual Feasibility:        | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}^{*},oldsymbol{\mu}^{*},oldsymbol{\lambda}^{*} ight)=0,oldsymbol{\mu}^{*}\geq0,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primal Feasibility:      | $\mathbf{g}\left(\mathbf{w}^{*} ight)=0,\mathbf{h}\left(\mathbf{w}^{*} ight)\leq0,$                                            |
| Complementary Slackness: | $\boldsymbol{\mu}_i^* \mathbf{h}_i(\mathbf{w}^*) = 0,  \forall  i$                                                             |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{h}\left(\mathbf{w}\right)$ 

Optimality conditions for NLP with equality and/or inequality constraints:

- 1st-Order Necessary Conditions: A (local) optimum w<sup>\*</sup> satisfying LICQ of a (differentiable) NLP corresponds to a unique KKT point
- 2nd-Order Sufficient Conditions require positivity of the Hessian ∇<sup>2</sup><sub>w</sub> L in all critical feasible directions at the solution

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

# Outline

1 KKT conditions - Quick Reminder

# 2 The Newton method

Newton on the KKT condition

Sequential Quadratic Programmin

Hessian approximation

## 6 Maratos effect

・ 「 ト ・ ヨ ト ・ ヨ

**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Э

8 / 32

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 

A 10

э

**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 

э

**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r}(\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r}(\mathbf{w}) + \nabla \mathbf{r}(\mathbf{w})^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r}(\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r}(\mathbf{w}) + \nabla \mathbf{r}(\mathbf{w})^{\top} \Delta \mathbf{w} = 0$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r}(\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r}(\mathbf{w}) + \nabla \mathbf{r}(\mathbf{w})^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:  $\mathbf{r} (\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r} (\mathbf{w}) + \nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = 0$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r}(\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r}(\mathbf{w}) + \nabla \mathbf{r}(\mathbf{w})^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r}(\mathbf{w} + \Delta \mathbf{w}) \approx \mathbf{r}(\mathbf{w}) + \nabla \mathbf{r}(\mathbf{w})^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:

 $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:  $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



This is a full-step Newton iteration

 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle$ 17<sup>th</sup> of February, 2016

**Goal**: solve  $\mathbf{r}(\mathbf{w}) = 0...$  how ?!?



Key idea: guess w, iterate the linear model:  $\mathbf{r} \left( \mathbf{w} + \Delta \mathbf{w} \right) \approx \mathbf{r} \left( \mathbf{w} \right) + \nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \Delta \mathbf{w} = \mathbf{0}$ 



This is a full-step Newton iteration

Reduced steps are often needed

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ </li>
 17<sup>th</sup> of February, 2016

Newton step with  $t \in [0, 1]$ :

$$egin{aligned} & 
abla \mathbf{r}\left(\mathbf{w}
ight)^{ op} \mathbf{\Delta}\mathbf{w} = -\mathbf{r}\left(\mathbf{w}
ight) \ & \mathbf{w} \leftarrow \mathbf{w} + t\mathbf{\Delta}\mathbf{w} \end{aligned}$$



 $17^{
m th}$  of February, 2016

-

< - 17 →

э

Newton step with  $t \in ]0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$ 

$$\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$$



< 🗇 🕨

э

Newton step with  $t \in [0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



-

э

< 🗇 🕨

Newton step with  $t \in ]0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$ 

$$\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$$



< 🗇 🕨

э

Newton step with  $t \in [0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



17<sup>th</sup> of February, 2016

-

< 🗇 🕨

э
Newton step with  $t \in [0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



-

э

< 🗇 🕨

Newton step with  $t \in ]0, 1]$ :  $abla \mathbf{r} (\mathbf{w})^{ op} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



< - 17 →

э

-

Newton step with  $t \in ]0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



э

9 / 32

< 🗇 🕨

Newton step with  $t \in ]0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



 $17^{\mathrm{th}}$  of February, 2016 9 / 32

Newton step with  $t \in ]0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 



Newton step with  $t \in [0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 1.5 t = 0.81 0.5 r(w)0 w -0.5 -1 -1.5  $\mathbf{w}$ 

The full-step Newton iteration can be unstable !!

э

9 / 32

A (10) × (10) × (10)

Newton step with  $t \in [0, 1]$ :  $\nabla \mathbf{r} (\mathbf{w})^{\top} \Delta \mathbf{w} = -\mathbf{r} (\mathbf{w})$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}$ 1.5 t = 0.81 0.5 0 w -0.5 -1

w

The full-step Newton iteration can be unstable !! While the reduced-steps Newton iteration is stable...

r(w)

-1.5

< 🗇 🕨

Is the Newton step  $\Delta w$  always providing a **direction** "improving" r(w)?

A⊒ ► < 3

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true?

17<sup>th</sup> of February, 2016 10 / 32

▲ 同 ▶ → 三 ▶

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

▲ 同 ▶ → 三 ▶

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

**Proof**:  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  holds for some t > 0 if

$$\left.\frac{\mathrm{d}}{\mathrm{d}t}\|\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)\|^{2}\right|_{t=0}<0$$

with  $\|\mathbf{r}(\mathbf{w})\|^2$  differentiable.

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

**Proof**:  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  holds for some t > 0 if

$$rac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{r} \left( \mathbf{w} + t \Delta \mathbf{w} 
ight) \|^2 \bigg|_{t=0} < 0$$

with  $\|\mathbf{r}(\mathbf{w})\|^2$  differentiable. I.e.

$$2\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)_{t=0}<0$$

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

**Proof**:  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  holds for some t > 0 if

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathbf{r} \left( \mathbf{w} + t \Delta \mathbf{w} \right) \right\|^2 \bigg|_{t=0} < 0$$

with  $\|\mathbf{r}(\mathbf{w})\|^2$  differentiable. I.e.

$$2\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)_{t=0}<0$$

We have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)_{t=0}=\nabla\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\Delta\mathbf{w}=-\nabla\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\nabla\mathbf{r}\left(\mathbf{w}\right)^{-\mathsf{T}}\mathbf{r}\left(\mathbf{w}\right)=-\mathbf{r}\left(\mathbf{w}\right)$$

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

**Proof**:  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  holds for some t > 0 if

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathbf{r} \left( \mathbf{w} + t \Delta \mathbf{w} \right) \right\|^2 \bigg|_{t=0} < 0$$

with  $\|\mathbf{r}(\mathbf{w})\|^2$  differentiable. I.e.

$$2\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)_{t=0}<0$$

We have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}\left(\mathbf{w}+t\Delta\mathbf{w}\right)_{t=0}=\nabla\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\Delta\mathbf{w}=-\nabla\mathbf{r}\left(\mathbf{w}\right)^{\mathsf{T}}\nabla\mathbf{r}\left(\mathbf{w}\right)^{-\mathsf{T}}\mathbf{r}\left(\mathbf{w}\right)=-\mathbf{r}\left(\mathbf{w}\right)$$

Then

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathbf{r} \left( \mathbf{w} + t \Delta \mathbf{w} \right) \right\|^2 \bigg|_{t=0} = -2 \| \mathbf{r} \left( \mathbf{w} \right) \|^2 < 0$$

Is the Newton step  $\Delta \mathbf{w}$  always providing a **direction** "improving"  $\mathbf{r}(\mathbf{w})$ ? I.e. is there always a t > 0 s.t.  $\|\mathbf{r}(\mathbf{w} + t\Delta \mathbf{w})\| < \|\mathbf{r}(\mathbf{w})\|$  is true? **Yes... but** 

How to select the step size  $t \in [0, 1]$ ? Globalization...

- Line-search: reduce t until some criteria of progression on  $||\mathbf{r}||$  are met
- Trust region: confine the step  $\Delta w$  within a region where  $\nabla r(w)$  provides a good model of r(w)
- Filter techniques: monitor progress on specific components of r(w) separately

Ο..

... ensures that progress is made in one way or another.

Note: most of these techniques are specific to optimization.

< ロ > < 同 > < 回 > < 回 >

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



< ∃⇒

э

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



< - 17 →

3.5 3

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



3.5 3

11 / 32

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



3.5 3

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



Newton stops with

 $\mathbf{r}\left(\mathbf{w}
ight) 
eq 0$  and  $abla \mathbf{r}\left(\mathbf{w}
ight)$  singular

i.e. the Newton direction  $\Delta w$  given by

$$\nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \mathbf{\Delta w} = -\mathbf{r} \left( \mathbf{w} \right)$$

is undefined...

э

A.

Solve  $\mathbf{r}(\mathbf{w}) = 0$ 



Newton stops with

 $\mathbf{r}\left(\mathbf{w}\right)\neq\mathbf{0}$  and  $\nabla\mathbf{r}\left(\mathbf{w}\right)$  singular

i.e. the Newton direction  $\Delta {\bf w}$  given by

$$\nabla \mathbf{r} \left( \mathbf{w} \right)^{\top} \mathbf{\Delta w} = -\mathbf{r} \left( \mathbf{w} \right)$$

is undefined...

This is a common failure mode for Newton-based solvers when tackling very non-linear  ${\bf r}$  and starting with a poor initial guess !!

Newton method:

$$egin{aligned} \nabla \mathbf{r}\left(\mathbf{w}
ight)^{ op} \mathbf{\Delta w} &= -\mathbf{r}\left(\mathbf{w}
ight) \ \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta w} \end{aligned}$$

17<sup>th</sup> of February, 2016

< □ > < A > >

э

-

#### Newton method:

$$egin{aligned} \nabla \mathbf{r}\left(\mathbf{w}
ight)^{ op} \mathbf{\Delta w} &= -\mathbf{r}\left(\mathbf{w}
ight) \ \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta w} \end{aligned}$$

Yields the iteration k = 0, 1, ...:

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \nabla \mathbf{r} \left( \mathbf{w}_k 
ight)^{- op} \mathbf{r} \left( \mathbf{w}_k 
ight)$$

イロト イポト イヨト イヨト

3

Newton method:

Newton-type method (Jacobian approx.)  $M\Delta \mathbf{w} = -\mathbf{r}(\mathbf{w})$ 

 $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$ 

$$egin{aligned} & 
abla \mathbf{r}\left(\mathbf{w}
ight)^{ op} \mathbf{\Delta}\mathbf{w} = -\mathbf{r}\left(\mathbf{w}
ight) \ & \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta}\mathbf{w} \end{aligned}$$

Yields the iteration k = 0, 1, ...:

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - 
abla \mathbf{r} \left( \mathbf{w}_k 
ight)^{- op} \mathbf{r} \left( \mathbf{w}_k 
ight)^{- op}$$

Newton method:

$$abla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} = -\mathbf{r} \left( \mathbf{w} 
ight)$$
  
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w}$ 

Yields the iteration k = 0, 1, ...:

 $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - 
abla \mathbf{r} \left( \mathbf{w}_k 
ight)^{- op} \mathbf{r} \left( \mathbf{w}_k 
ight)^{- op}$ 

Newton-type method (Jacobian approx.)

$$\begin{aligned} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{aligned}$$

Yields the iteration k = 0, 1, ...:  $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - M_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

12 / 32

Newton method:

$$abla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} = -\mathbf{r} \left( \mathbf{w} 
ight)$$
  
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w}$ 

Newton-type method (Jacobian approx.)

$$\begin{aligned} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{aligned}$$

Yields the iteration 
$$k = 0, 1, ...$$
:Yields the $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \nabla \mathbf{r} (\mathbf{w}_k)^{-\top} \mathbf{r} (\mathbf{w}_k)$  $\mathbf{w}_{k+1}$ 

Yields the iteration 
$$k = 0, 1, ...$$
: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - M_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

Theorem: assume

• Nonlinearity of 
$$\mathbf{r}$$
:  $\left\| \boldsymbol{M}_{k}^{-1} \left( \nabla \mathbf{r}(\mathbf{w})^{\mathsf{T}} - \nabla \mathbf{r}(\mathbf{w}^{*})^{\mathsf{T}} \right) \right\| \leq \omega \|\mathbf{w} - \mathbf{w}^{*}\|$ , for  $\mathbf{w} \in [\mathbf{w}_{\mathbf{k}}, \mathbf{w}^{*}]$ 

- 31

イロト イポト イヨト イヨト

Newton method:

$$abla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} = -\mathbf{r} \left( \mathbf{w} 
ight)$$
  
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w}$ 

Newton-type method (Jacobian approx.)

$$\begin{aligned} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{aligned}$$

Yields the iteration 
$$k = 0, 1, ...$$
:  
 $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \nabla \mathbf{r} (\mathbf{w}_k)^{-\top} \mathbf{r} (\mathbf{w}_k)$ 

Yields the iteration k = 0, 1, ...:  $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \mathbf{M}_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

Theorem: assume

Wk

- Nonlinearity of  $\mathbf{r}$ :  $\left\| \boldsymbol{M}_{k}^{-1} \left( \nabla \mathbf{r}(\mathbf{w})^{\mathsf{T}} \nabla \mathbf{r}(\mathbf{w}^{*})^{\mathsf{T}} \right) \right\| \leq \omega \|\mathbf{w} \mathbf{w}^{*}\|$ , for  $\mathbf{w} \in [\mathbf{w}_{\mathbf{k}}, \mathbf{w}^{\star}]$
- Jacobian approximation error:  $\left\| M_k^{-1} (\nabla \mathbf{r}(\mathbf{w}_k)^{\mathsf{T}} M_k) \right\| \leq \kappa_k < 1$

12/32

・ロン ・ 理 と ・ ヨ と ・ ヨ と … ヨ

Newton method:

$$abla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} = -\mathbf{r} \left( \mathbf{w} 
ight)$$
  
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w}$ 

Newton-type method (Jacobian approx.)

$$\begin{aligned} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{aligned}$$

Yields the iteration 
$$k = 0, 1, ...$$
:  
 $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \nabla \mathbf{r} (\mathbf{w}_k)^{-\top} \mathbf{r} (\mathbf{w}_k)$ 

Yields the iteration k = 0, 1, ...:  $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - M_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

Theorem: assume

- Nonlinearity of  $\mathbf{r}$ :  $\left\| \boldsymbol{M}_{k}^{-1} \left( \nabla \mathbf{r}(\mathbf{w})^{\mathsf{T}} \nabla \mathbf{r}(\mathbf{w}^{*})^{\mathsf{T}} \right) \right\| \leq \omega \|\mathbf{w} \mathbf{w}^{*}\|$ , for  $\mathbf{w} \in [\mathbf{w}_{\mathbf{k}}, \mathbf{w}^{*}]$
- Jacobian approximation error:  $\left\| M_k^{-1} (\nabla \mathbf{r}(\mathbf{w}_k)^{\mathsf{T}} M_k) \right\| \leq \kappa_k < 1$
- Good initial guess  $\|\mathbf{w}_0 \mathbf{w}^*\| \leq \frac{2}{\omega} (1 \max{\{\kappa_k\}})$

Newton method:

Yields

 $\mathbf{w}_{k+1}$ 

$$abla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} = -\mathbf{r} \left( \mathbf{w} 
ight)$$
  
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w}$ 

Newton-type method (Jacobian approx.)

$$\begin{aligned} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{aligned}$$

the iteration 
$$k = 0, 1, ...$$
:  
 $\leftarrow \mathbf{w}_k - \nabla \mathbf{r} (\mathbf{w}_k)^{-\top} \mathbf{r} (\mathbf{w}_k)$ 

Yields the iteration k = 0, 1, ... $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \mathbf{M}_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

Theorem: assume

- Nonlinearity of  $\mathbf{r}$ :  $\left\| \boldsymbol{M}_{k}^{-1} \left( \nabla \mathbf{r}(\mathbf{w})^{\mathsf{T}} \nabla \mathbf{r}(\mathbf{w}^{*})^{\mathsf{T}} \right) \right\| \leq \omega \|\mathbf{w} \mathbf{w}^{*}\|$ , for  $\mathbf{w} \in [\mathbf{w}_k, \mathbf{w}^\star]$
- Jacobian approximation error:  $\left\| M_k^{-1} (\nabla \mathbf{r}(\mathbf{w}_k)^{\mathsf{T}} M_k) \right\| \leq \kappa_k < 1$
- Good initial guess  $\|\mathbf{w}_0 \mathbf{w}^*\| < \frac{2}{\kappa_k} (1 \max{\kappa_k})$

Then  $\mathbf{w}_k \to \mathbf{w}^*$  with the following linear-quadratic contraction in each iteration:

$$\|\mathbf{w}_{k+1} - \mathbf{w}^*\| \le \left(\frac{\kappa_k + \frac{\omega}{2}}{\|\mathbf{w}_k - \mathbf{w}^*\|}\right) \|\mathbf{w}_k - \mathbf{w}^*\|.$$

12 / 32

Newton method:

$$egin{aligned} \nabla \mathbf{r} \left( \mathbf{w} 
ight)^{ op} \mathbf{\Delta} \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} 
ight) \ \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Delta} \mathbf{w} \end{aligned}$$

Newton-type method (Jacobian approx.)

$$\begin{split} \mathbf{M} \Delta \mathbf{w} &= -\mathbf{r} \left( \mathbf{w} \right) \\ \mathbf{w} &\leftarrow \mathbf{w} + \Delta \mathbf{w} \end{split}$$

Yields the iteration 
$$k = 0, 1, ...$$
:  
 $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \nabla \mathbf{r} (\mathbf{w}_k)^{-\top} \mathbf{r} (\mathbf{w}_k)$ 

Yields the iteration k = 0, 1, ...:  $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - M_k^{-1} \mathbf{r}(\mathbf{w}_k)$ 

Theorem: assume

- Nonlinearity of  $\mathbf{r}$ :  $\left\| \boldsymbol{M}_{k}^{-1} \left( \nabla \mathbf{r}(\mathbf{w})^{\mathsf{T}} \nabla \mathbf{r}(\mathbf{w}^{*})^{\mathsf{T}} \right) \right\| \leq \omega \|\mathbf{w} \mathbf{w}^{*}\|$ , for  $\mathbf{w} \in [\mathbf{w}_{\mathbf{k}}, \mathbf{w}^{*}]$
- Jacobian approximation error:  $\left\| M_k^{-1} (\nabla \mathbf{r}(\mathbf{w}_k)^{\mathsf{T}} M_k) \right\| \leq \kappa_k < 1$
- Good initial guess  $\|\mathbf{w}_0 \mathbf{w}^*\| \leq \frac{2}{\omega} (1 \max{\{\kappa_k\}})$

Then  $\mathbf{w}_k \rightarrow \mathbf{w}^*$  with the following linear-quadratic contraction in each iteration:

$$\|\mathbf{w}_{k+1} - \mathbf{w}^*\| \leq \left(\kappa_k + \frac{\omega}{2} \|\mathbf{w}_k - \mathbf{w}^*\|\right) \|\mathbf{w}_k - \mathbf{w}^*\|.$$

What about reduced steps ? Slow convergence when t < 1 (damped phase). When full steps become feasible, fast convergence to the solution.

## Newton methods - Short Survival Guide

**Exact Newton method:** 

Newton-type method

$$egin{aligned} 
abla \mathbf{r}\left(\mathbf{w}
ight)^{ op} \Delta \mathbf{w} &= -\mathbf{r}\left(\mathbf{w}
ight) \ \mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w} \end{aligned}$$

$$egin{aligned} \mathsf{M} \Delta \mathbf{w} &= -\mathbf{r}\left(\mathbf{w}
ight) \ \mathbf{w} &\leftarrow \mathbf{w} + t \Delta \mathbf{w} \end{aligned}$$

## Newton methods - Short Survival Guide



• Exact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$ 

## Newton methods - Short Survival Guide



- Exact Newton direction △w improves r for a sufficiently small step size t ∈ ]0, 1]
  Inexact Newton direction △w improves r for a sufficiently small step size t ∈ ]0, 1]
  - <u>if</u> *M* > 0


- Exact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$
- Inexact Newton direction  $\Delta w$  improves  $\mathbf{r}$  for a sufficiently small step size  $t \in ]0, 1]$ if M > 0
- Exact full (t = 1) Newton steps converge quadratically if close enough to the solution



- Exact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$
- Inexact Newton direction  $\Delta w$  improves  $\mathbf{r}$  for a sufficiently small step size  $t \in ]0, 1]$ if M > 0
- Exact full (t = 1) Newton steps converge quadratically if close enough to the solution
- Inexact full (t = 1) Newton steps converge linearly if close enough to the solution and if the Jacobian approximation is "sufficiently good"



- Exact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$
- Inexact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$ if M > 0
- Exact full (t = 1) Newton steps converge quadratically if close enough to the solution
- Inexact full (t = 1) Newton steps converge linearly if close enough to the solution and if the Jacobian approximation is "sufficiently good"
- Newton iteration fails if  $\nabla \mathbf{r}$  becomes singular



- Exact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$
- Inexact Newton direction  $\Delta w$  improves r for a sufficiently small step size  $t \in [0, 1]$ if M > 0
- Exact full (t = 1) Newton steps converge quadratically if close enough to the solution
- Inexact full (t = 1) Newton steps converge linearly if close enough to the solution and if the Jacobian approximation is "sufficiently good"
- Newton iteration fails if  $\nabla \mathbf{r}$  becomes singular
- Newton methods with globalization converge in two phases: damped (slow) phase when reduced steps (t < 1) are needed, quadratic/linear when full steps are possible.

# Outline

1 KKT conditions - Quick Reminder

The Newton method

3 Newton on the KKT conditions

Sequential Quadratic Programmi

Hessian approximation

6 Maratos effect

▲ □ ▶ ▲ □ ▶ ▲ □

A vast majority of solvers try to find a KKT point  $\mathbf{w}, \mu, \lambda$  i.e.

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w},oldsymbol{\mu},oldsymbol{\lambda} ight)=0,oldsymbol{\mu}\geq0,$ |
| Complementarity Slackness: | $oldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1,$                                                       |

where  $\mathcal{L}=\Phi\left(\mathbf{w}
ight)+\boldsymbol{\lambda}^{ op}\mathbf{g}\left(\mathbf{w}
ight)+\boldsymbol{\mu}^{ op}\mathbf{h}\left(\mathbf{w}
ight)$ 

A vast majority of solvers try to find a KKT point  $\mathbf{w}, \mu, \lambda$  i.e.

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w},oldsymbol{\mu},oldsymbol{\lambda} ight)=0,oldsymbol{\mu}\geq0,$ |
| Complementarity Slackness: | $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1,$                                                     |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{ op} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}\right)$ 

Let's consider for now equality constrained problems, i.e. find  $\mathbf{w}, \boldsymbol{\lambda}$  s.t.:

$$egin{array}{lll} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},oldsymbol{\lambda})&=0\ \mathbf{g}(\mathbf{w})&=0 \end{array}$$

A vast majority of solvers try to find a KKT point  $\mathbf{w}, \mu, \lambda$  i.e.

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w},oldsymbol{\mu},oldsymbol{\lambda} ight)=0,oldsymbol{\mu}\geq0,$ |
| Complementarity Slackness: | $oldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1,$                                                       |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{ op} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}\right)$ 

Let's consider for now equality constrained problems, i.e. find  $\mathbf{w}, \boldsymbol{\lambda}$  s.t.:

$$egin{array}{lll} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},oldsymbol{\lambda})&=0\ \mathbf{g}(\mathbf{w})&=0 \end{array}$$

Idea: apply the Newton method on the KKT conditions, i.e.

Solve...

$$\mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right) = \left[ \begin{array}{c} \nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{array} \right] = \mathbf{0}$$

A vast majority of solvers try to find a KKT point  $\mathbf{w}, \boldsymbol{\mu}, \boldsymbol{\lambda}$  i.e.

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w},oldsymbol{\mu},oldsymbol{\lambda} ight)=0,oldsymbol{\mu}\geq0,$ |
| Complementarity Slackness: | $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1,$                                                     |

where  $\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{ op} \mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}\right)$ 

Let's consider for now equality constrained problems, i.e. find  $\mathbf{w}, \boldsymbol{\lambda}$  s.t.:

$$egin{array}{lll} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},oldsymbol{\lambda})&=0\ \mathbf{g}(\mathbf{w})&=0 \end{array}$$

Idea: apply the Newton method on the KKT conditions, i.e.

Solve... ... by iterating

$$\mathbf{r}\left(\mathbf{w}, \boldsymbol{\lambda}
ight) = \left[ egin{array}{c} 
abla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\
\mathbf{g}(\mathbf{w}) \end{array} 
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}} \left(\mathbf{w}, \boldsymbol{\lambda}
ight)^{\mathsf{T}} \left[ egin{array}{c} \Delta \mathbf{w} \\
\Delta \boldsymbol{\lambda} \end{array} 
ight] = -\mathbf{r}\left(\mathbf{w}, \boldsymbol{\lambda}
ight)$$

**KKT** conditions

**Newton direction** 

$$\mathbf{r}(\mathbf{w}, \boldsymbol{\lambda}) = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0}$$

$$abla \mathbf{r} \left( \mathbf{w}, oldsymbol{\lambda} 
ight)^{\mathsf{T}} \left[ egin{array}{c} \Delta \mathbf{w} \ \Delta oldsymbol{\lambda} \end{array} 
ight] = -\mathbf{r} \left( \mathbf{w}, oldsymbol{\lambda} 
ight)$$

3

イロト イポト イヨト イヨト

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right) = \begin{bmatrix} \nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0} \qquad \nabla \mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right)^{\mathsf{T}} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right)$$

Given by:

$$\begin{array}{rcl} \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} &+ \nabla_{\mathbf{w}, \boldsymbol{\lambda}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \boldsymbol{\lambda} &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\ \nabla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

イロト イポト イヨト イヨト

3

**KKT** conditions

**Newton direction** 

$$\mathbf{r}(\mathbf{w}, \boldsymbol{\lambda}) = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0} \qquad \nabla \mathbf{r}(\mathbf{w}, \boldsymbol{\lambda})^{\mathsf{T}} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\mathbf{r}(\mathbf{w}, \boldsymbol{\lambda})$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$\begin{array}{rcl} \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} &+ \nabla_{\mathbf{w}, \boldsymbol{\lambda}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \boldsymbol{\lambda} &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\ \nabla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

**KKT** conditions

**Newton direction** 

$$\mathbf{r}(\mathbf{w}, \boldsymbol{\lambda}) = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0} \qquad \nabla \mathbf{r}(\mathbf{w}, \boldsymbol{\lambda})^{\mathsf{T}} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\mathbf{r}(\mathbf{w}, \boldsymbol{\lambda})$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) \Delta oldsymbol{\lambda} &= -
abla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \ 
abla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda
ight) = \left[egin{array}{c} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\
\mathbf{g}(\mathbf{w}) \end{array}
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}}\left(\mathbf{w},\lambda
ight)^{\mathsf{T}}\left[egin{array}{c} \Delta\mathbf{w} \\
\Delta\lambda \end{array}
ight] = -\mathbf{r}\left(\mathbf{w},\lambda
ight)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$\begin{array}{rcl} \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} &+ \nabla \mathbf{g}(\mathbf{w}) \Delta \boldsymbol{\lambda} &= -\nabla \Phi(\mathbf{w}) - \nabla \mathbf{g}(\mathbf{w}) \boldsymbol{\lambda} \\ \nabla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda\right) = \begin{bmatrix} \nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0} \qquad \nabla \mathbf{r}\left(\mathbf{w},\lambda\right)^{\mathsf{T}} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \lambda \end{bmatrix} = -\mathbf{r}\left(\mathbf{w},\lambda\right)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$\begin{array}{rcl} \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} &+ \nabla \mathbf{g}(\mathbf{w}) \left(\boldsymbol{\lambda} + \Delta \boldsymbol{\lambda}\right) &= - \nabla \Phi(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= - \mathbf{g}(\mathbf{w}) \end{array}$$

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda
ight) = \left[egin{array}{c} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\
\mathbf{g}(\mathbf{w}) \end{array}
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}}\left(\mathbf{w},\lambda
ight)^{\mathsf{T}}\left[egin{array}{c} \Delta\mathbf{w} \\
\Delta\lambda \end{array}
ight] = -\mathbf{r}\left(\mathbf{w},\lambda
ight)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) (oldsymbol{\lambda} + \Delta oldsymbol{\lambda}) &= -
abla \Phi(\mathbf{w}) \ 
abla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

The Newton direction on the KKT conditions

$$\begin{bmatrix} \nabla_{\mathbf{w}}^{2} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda} + \Delta \boldsymbol{\lambda} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda
ight) = \left[egin{array}{c} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\
\mathbf{g}(\mathbf{w}) \end{array}
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}}\left(\mathbf{w},\lambda
ight)^{\mathsf{T}}\left[egin{array}{c} \Delta\mathbf{w} \\
\Delta\lambda \end{array}
ight] = -\mathbf{r}\left(\mathbf{w},\lambda
ight)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) (oldsymbol{\lambda} + \Delta oldsymbol{\lambda}) &= -
abla \Phi(\mathbf{w}) \ 
abla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

The Newton direction on the KKT conditions

$$\underbrace{ \begin{bmatrix} \boldsymbol{H}(\mathbf{w},\boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} }_{\mathbf{Q}(\mathbf{w})} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda} + \Delta \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

where  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$  is the Hessian of the problem.

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda
ight) = \left[egin{array}{c} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\
\mathbf{g}(\mathbf{w}) \end{array}
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}}\left(\mathbf{w},\lambda
ight)^{\mathsf{T}}\left[egin{array}{c} \Delta\mathbf{w} \\
\Delta\lambda \end{array}
ight] = -\mathbf{r}\left(\mathbf{w},\lambda
ight)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) (oldsymbol{\lambda} + \Delta oldsymbol{\lambda}) &= -
abla \Phi(\mathbf{w}) \ 
abla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

The Newton direction on the KKT conditions

$$\begin{bmatrix} \boldsymbol{H}(\mathbf{w},\boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Delta}\mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

where  $H(\mathbf{w}, \lambda) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda)$  is the Hessian of the problem. Note: update of the dual variable is  $\lambda^+ = \lambda + \Delta \lambda$ 

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right) = \begin{bmatrix} \nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} = \mathbf{0} \qquad \nabla \mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right)^{\mathsf{T}} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\mathbf{r}\left(\mathbf{w},\boldsymbol{\lambda}\right)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) (oldsymbol{\lambda} + \Delta oldsymbol{\lambda}) &= -
abla \Phi(\mathbf{w}) \ 
abla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

The Newton direction on the KKT conditions

$$\begin{bmatrix} \boldsymbol{H}(\mathbf{w},\boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

where  $H(\mathbf{w}, \lambda) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda)$  is the Hessian of the problem. Note: update of the dual variable is  $\lambda^+ = \lambda + \Delta \lambda$ 

•  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})$  is not needed for computing the Newton step

**KKT** conditions

**Newton direction** 

$$\mathbf{r}\left(\mathbf{w},\lambda
ight) = \left[egin{array}{c} 
abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\lambda) \\
\mathbf{g}(\mathbf{w}) \end{array}
ight] = \mathbf{0} \qquad \qquad 
abla_{\mathbf{r}}\left(\mathbf{w},\lambda
ight)^{\mathsf{T}}\left[egin{array}{c} \Delta\mathbf{w} \\
\Delta\lambda \end{array}
ight] = -\mathbf{r}\left(\mathbf{w},\lambda
ight)$$

Given by: using  $\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})=\nabla\Phi(\mathbf{w})+\nabla\mathbf{g}(\mathbf{w})\boldsymbol{\lambda}$ 

$$egin{array}{rcl} 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, oldsymbol{\lambda}) \Delta \mathbf{w} &+ 
abla \mathbf{g}(\mathbf{w}) (oldsymbol{\lambda} + \Delta oldsymbol{\lambda}) &= -
abla \Phi(\mathbf{w}) \ 
abla \mathbf{g}(\mathbf{w})^\mathsf{T} \Delta \mathbf{w} &= -\mathbf{g}(\mathbf{w}) \end{array}$$

The Newton direction on the KKT conditions

$$\begin{bmatrix} \mathbf{H}(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

where  $H(\mathbf{w}, \lambda) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda)$  is the Hessian of the problem. Note: update of the dual variable is  $\lambda^+ = \lambda + \Delta \lambda$ 

- $abla_{\mathbf{w}}\mathcal{L}(\mathbf{w},\boldsymbol{\lambda})$  is not needed for computing the Newton step
- The updated dual variables  $\lambda^+$  are readily provided !

S. Gros

Optimal Control with DAEs, lecture

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



< 47 ▶

э

-

Iterate:  

$$\begin{bmatrix} \mathbf{H} & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$$

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



A.

э

Iterate:  

$$\begin{bmatrix} \mathbf{H} & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \mathbf{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$$
with:  

$$\nabla \mathbf{g} (\mathbf{w}) = 2\mathbf{w} = \begin{bmatrix} 2\mathbf{w}_{1} \\ 2\mathbf{w}_{2} \end{bmatrix}$$

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



< 17 ▶

э

-

Iterate:  

$$\begin{bmatrix} \mathbf{H} & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \mathbf{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$$
with:  

$$\nabla g(\mathbf{w}) = 2\mathbf{w} = \begin{bmatrix} 2\mathbf{w}_{1} \\ 2\mathbf{w}_{2} \end{bmatrix}$$

$$\mathcal{L}(\mathbf{w}, \lambda) = \Phi(\mathbf{w}) + \lambda g(\mathbf{w})$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda) = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2\lambda \mathbf{w}$$

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



-

< 47 ▶

3

Iterate:  

$$\begin{bmatrix} H & \nabla g \\ \nabla g^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \Delta w \\ \lambda^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ g \end{bmatrix}$$
with:  

$$\nabla g (\mathbf{w}) = 2\mathbf{w} = \begin{bmatrix} 2w_{1} \\ 2w_{2} \end{bmatrix}$$

$$\mathcal{L} (\mathbf{w}, \lambda) = \Phi (\mathbf{w}) + \lambda g (\mathbf{w})$$

$$\nabla_{\mathbf{w}} \mathcal{L} (\mathbf{w}, \lambda) = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2\lambda \mathbf{w}$$

$$H (\mathbf{w}, \lambda) = \begin{bmatrix} 2+2\lambda & 1 \\ 1 & 4+2\lambda \end{bmatrix}$$

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



< 17 ▶

∃ ⊳

3

Iterate:  

$$\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$$
with:  

$$\nabla g(\mathbf{w}) = 2\mathbf{w} = \begin{bmatrix} 2\mathbf{w}_{1} \\ 2\mathbf{w}_{2} \end{bmatrix}$$

$$\mathcal{L}(\mathbf{w}, \lambda) = \Phi(\mathbf{w}) + \lambda g(\mathbf{w})$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda) = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2\lambda \mathbf{w}$$

$$H(\mathbf{w}, \lambda) = \begin{bmatrix} 2+2\lambda & 1 \\ 1 & 4+2\lambda \end{bmatrix}$$

$$\nabla \Phi(\mathbf{w}) = \begin{bmatrix} 2\mathbf{w}_{1} + \mathbf{w}_{2} + 1 \\ \mathbf{w}_{1} + 4\mathbf{w}_{2} \end{bmatrix}$$

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$ 



A.

э

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \geq \mathrm{tol}$  do Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

17 / 32

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$
$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \ge \mathrm{tol} \ \mathbf{do}$ Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



17 / 32

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \ge \mathrm{tol} \ \mathbf{do}$ Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



17 / 32

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \ge \mathrm{tol} \ \mathbf{do}$ Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



17 / 32

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \ge \mathrm{tol} \ \mathbf{do}$ Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



17 / 32

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 



Algorithm: Newton method **Input**: guess w,  $\lambda$ while  $\|\nabla \mathcal{L}\|$  or  $\|\mathbf{g}\| \ge \mathrm{tol} \ \mathbf{do}$ Compute  $H(\mathbf{w}, \boldsymbol{\lambda}), \nabla \mathbf{g}(\mathbf{w}), \nabla \Phi(\mathbf{w}), \mathbf{g}(\mathbf{w})$ Compute Newton direction  $\begin{bmatrix} H & \nabla \mathbf{g} \\ \nabla \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi \\ \mathbf{g} \end{bmatrix}$  $\Delta \lambda = \lambda^+ - \lambda$ Compute Newton step,  $t \in [0, 1]$  $\mathbf{w} \leftarrow \mathbf{w} + t \Delta \mathbf{w}, \quad \boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + t \Delta \boldsymbol{\lambda}$ return w,  $\lambda$ 

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  
s.t.  $g(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0$   
Guess  $\lambda = 0$ , step  $t = 1$ 

Your initial guess matters !!

### The Newton direction of the KKT conditions

$$\underbrace{ \begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} }_{\mathbf{Q}(\mathbf{w})} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

KKT matrix (symmetric indefinite)

э

#### The Newton direction of the KKT conditions

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$
KKT matrix (symmetric indefinite)

#### The KKT matrix is invertible if

3

### The Newton direction of the KKT conditions

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{\mathsf{+}} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$
KKT matrix (symmetric indefinite)

#### The KKT matrix is invertible if

•  $\nabla \mathbf{g}(\mathbf{w})$  is full column rank (LICQ)

3

- 4 周 ト 4 日 ト 4 日 ト

#### The Newton direction of the KKT conditions

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$
KKT matrix (symmetric indefinite)

#### The KKT matrix is invertible if

- $\nabla \mathbf{g}(\mathbf{w})$  is full column rank (LICQ)
- $\forall \mathbf{d} \neq \mathbf{0}$ , such that  $\nabla \mathbf{g}(\mathbf{w})^{\top} \mathbf{d} = \mathbf{0}$

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}) \mathbf{d} > 0$$
 (SOSC)

э

・ 同 ト ・ ヨ ト ・ ヨ ト

### The Newton direction of the KKT conditions

$$\underbrace{ \begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} }_{\mathsf{KKT matrix} (symmetric indefinite)} \underbrace{ \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix} }_{\mathsf{g}(\mathbf{w})}$$

#### The KKT matrix is invertible if

- $\nabla \mathbf{g}(\mathbf{w})$  is full column rank (LICQ)
- $\forall \mathbf{d} \neq \mathbf{0}$ , such that  $\nabla \mathbf{g}(\mathbf{w})^{\top} \mathbf{d} = \mathbf{0}$

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}) \mathbf{d} > 0$$
 (SOSC)

If  $(w, \lambda)$  is LICQ & SOSC, then the KKT matrix is invertible in a neighborhood of  $(w, \lambda)$ 

#### The Newton direction of the KKT conditions

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{\mathsf{+}} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$
KKT matrix (symmetric indefinite)

#### The KKT matrix is invertible if

- $\nabla \mathbf{g}(\mathbf{w})$  is full column rank (LICQ)
- $\forall \mathbf{d} \neq \mathbf{0}$ , such that  $\nabla \mathbf{g}(\mathbf{w})^{\top} \mathbf{d} = \mathbf{0}$

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}) \mathbf{d} > 0$$
 (SOSC)

If  $(\mathbf{w}, \lambda)$  is LICQ & SOSC, then the KKT matrix is invertible in a neighborhood of  $(\mathbf{w}, \lambda)$ 

If LICQ & SOSC hold at the solution, then the Newton iteration is well defined in its neighborhood

S. Gros

Optimal Control with DAEs, lecture !

17<sup>th</sup> of February, 2016 18 / 32

### The Newton direction of the KKT conditions

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$
KKT matrix (symmetric indefinite)

#### The KKT matrix is invertible if

- $\nabla \mathbf{g}(\mathbf{w})$  is full column rank (LICQ)
- $\forall \mathbf{d} \neq \mathbf{0}$ , such that  $\nabla \mathbf{g}(\mathbf{w})^{\top} \mathbf{d} = \mathbf{0}$

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}) \mathbf{d} > 0$$
 (SOSC)

In practice, when the solution fails LICQ/SOSC, it is common to observe the solver struggling numerically, as the KKT matrix becomes increasingly ill-conditioned !!

If  $(w, \lambda)$  is LICQ & SOSC, then the KKT matrix is invertible in a neighborhood of  $(w, \lambda)$ 

If LICQ & SOSC hold at the solution, then the Newton iteration is well defined in its neighborhood

18 / 32

Problem:

The Newton direction is given by

| min  | $\Phi(\mathbf{w})$                   |
|------|--------------------------------------|
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

| [ H(w, .                        | $\boldsymbol{\lambda}$ ) $\nabla \mathbf{g}(\mathbf{w})$ | ) ] [ <b>∆w</b> ]            | _ [ | ∇Φ(w) ] |
|---------------------------------|----------------------------------------------------------|------------------------------|-----|---------|
| $\nabla \mathbf{g}(\mathbf{w})$ | <sup>r</sup> ) <sup>T</sup> 0                            | $\left[ \lambda^{+} \right]$ | [   | g(w)    |

17<sup>th</sup> of February, 2016 19 / 32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Problem:

The Newton direction is given by

| min  | $\Phi(\mathbf{w})$                   |
|------|--------------------------------------|
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{\mathsf{+}} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

The Newton direction is also given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
  
s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

17<sup>th</sup> of February, 2016

19 / 32

Problem:

The Newton direction is given by

| min  | $\Phi(\mathbf{w})$                   |
|------|--------------------------------------|
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{\mathsf{+}} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

The Newton direction is also given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

Dual variables  $\lambda^+$  given by the dual variables of the QP, i.e.  $\lambda^+ = \lambda_{\text{QP}}$ 

Problem:

The Newton direction is given by

| min  | $\Phi(\mathbf{w})$                   |
|------|--------------------------------------|
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = - \begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

The Newton direction is also given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} + \nabla \Phi (\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
s.t.  $\mathbf{g} (\mathbf{w}) + \nabla \mathbf{g} (\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

Dual variables  $\lambda^+$  given by the dual variables of the QP, i.e.  $\lambda^+ = \lambda_{\text{QP}}$ 

 $\ensuremath{\textit{Proof:}}$  the KKT conditions of the QP are equivalent to the system providing the Newton direction

Problem:

The Newton direction is given by

| min  | $\Phi(\mathbf{w})$                   |
|------|--------------------------------------|
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{\mathsf{+}} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

The Newton direction is also given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

Dual variables  $\lambda^+$  given by the dual variables of the QP, i.e.  $\lambda^+ = \lambda_{\text{QP}}$ 

*Proof: the KKT conditions of the QP are equivalent to the system providing the Newton direction* 

The Newton direction is given by solving a quadratic models of the original problem !!

# Outline

1 KKT conditions - Quick Reminder

The Newton method

Newton on the KKT condition

# 4 Sequential Quadratic Programming

Hessian approximation

### 6 Maratos effect

# What about inequality constraints ?

Find the "primal-dual" variables  $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}$  such that:

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}, oldsymbol{\mu}, oldsymbol{\lambda} ight)=0,  oldsymbol{\mu}\geq0,$ |
| Complementarity Slackness: | $oldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i=1,$                                                             |

A 🕨 🔸

### What about inequality constraints ?

Find the "primal-dual" variables  $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}$  such that:

| Primal Feasibility:        | $\mathbf{g}(\mathbf{w}) = 0,  \mathbf{h}(\mathbf{w}) \leq 0,$                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}(\mathbf{w}, \boldsymbol{\mu}, \boldsymbol{\lambda})=0,  \boldsymbol{\mu}\geq 0,$ |
| Complementarity Slackness: | $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1,$                                                      |



17<sup>th</sup> of February, 2016

### What about inequality constraints ?

Find the "primal-dual" variables  $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}$  such that:

| Primal Feasibility:        | $\mathbf{g}\left(\mathbf{w} ight)=0,\mathbf{h}\left(\mathbf{w} ight)\leq0,$                                         |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Dual Feasibility:          | $ abla_{\mathbf{w}}\mathcal{L}\left(\mathbf{w}, oldsymbol{\mu}, oldsymbol{\lambda} ight)=0,  oldsymbol{\mu}\geq 0,$ |
| Complementarity Slackness: | $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0,  i = 1, \dots$                                                    |



Manifold generated by the Complementary Slackness condition is not smooth, Newton can not be used !!

 $17^{\mathrm{th}}$  of February, 2016

| NLP  |                                      |
|------|--------------------------------------|
| min  | $\Phi(\mathbf{w})$                   |
| s.t. | $\mathbf{g}\left(\mathbf{w} ight)=0$ |

The Newton direction is given by

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

э
#### Quadratic model interpretation



The Newton direction is given by

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

with 
$$H(\mathbf{w},oldsymbol{\lambda})=
abla_{\mathbf{w}}^2\mathcal{L}(\mathbf{w},oldsymbol{\lambda})$$

The Newton direction is given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
  
s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

#### Quadratic model interpretation



The Newton direction is given by

$$\begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}) & \nabla \mathbf{g}(\mathbf{w}) \\ \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \boldsymbol{\lambda}^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}) \end{bmatrix}$$

with 
$$H(\mathbf{w},oldsymbol{\lambda})=
abla_{\mathbf{w}}^2\mathcal{L}(\mathbf{w},oldsymbol{\lambda})$$

The Newton direction is given by the Quadratic Program (QP):

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \lambda) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w}$$
  
s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = 0$ 

Dual variables  $\lambda^+$  given by the dual variables of the QP, i.e.  $\lambda^+ = \lambda_{QP}$ 

< ロト < 同ト < ヨト < ヨト

## Quadratic interpretation for inequality constraints

| Problem: |                                            |
|----------|--------------------------------------------|
| min<br>w | $\Phi(\mathbf{w})$                         |
| s.t.     | $\mathbf{g}\left(\mathbf{w} ight)=0$       |
| s.t.     | $\mathbf{h}\left(\mathbf{w}\right) \leq 0$ |

Image: A matrix

э

#### Quadratic interpretation for inequality constraints

| Problem: |                                         |
|----------|-----------------------------------------|
| min      | $\Phi(\mathbf{w})$                      |
| s.t.     | $\mathbf{g}\left(\mathbf{w} ight)=0$    |
| s.t.     | $\mathbf{h}\left(\mathbf{w} ight)\leq0$ |

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

Image: A math a math

## Quadratic interpretation for inequality constraints

| Problem: |                                          |
|----------|------------------------------------------|
| min      | $\Phi(\mathbf{w})$                       |
| s.t.     | $\mathbf{g}\left(\mathbf{w}\right) = 0$  |
| s.t.     | $\mathbf{h}\left(\mathbf{w}\right)\leq0$ |

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = 
abla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

Dual variables  $\lambda^+$  and  $\mu^+$  given by the dual variables of the QP, i.e.  $\lambda^+ = \lambda_{\rm QP}, \quad \mu^+ = \mu_{\rm OP}$ 

## SQP Algorithm

Algorithm: SQP with line-search

**Input**: guess w,  $\lambda$ ,  $\mu$ while  $\|\nabla \mathcal{L}\|_{\infty}$  or  $\|\mathbf{g}\|_{\infty}$  or  $\max(0, \mathbf{h}_i) \geq \text{tol } \mathbf{do}$ Compute g, h,  $\nabla \Phi(\mathbf{w})$ ,  $\nabla \mathbf{g}(\mathbf{w})$ ,  $\nabla \mathbf{h}(\mathbf{w})$ ,  $H(\mathbf{w}, \boldsymbol{\mu}, \boldsymbol{\lambda})$ Compute Newton direction by solving the QP  $\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w}$ s.t.  $\mathbf{g}(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} = \mathbf{0}$  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\mathsf{T}} \Delta \mathbf{w} < 0$ Select step size t to ensure progress (c.f. globalization / line-search) Take primal step:  $\mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w}$ Take dual step:  $oldsymbol{\lambda} \leftarrow (1-t)oldsymbol{\lambda} + toldsymbol{\lambda}_{QP}, \qquad oldsymbol{\mu} \leftarrow (1-t)oldsymbol{\mu} + toldsymbol{\mu}_{QP}$ return w,  $\lambda$ ,  $\mu$ 

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq \mathbf{0} \end{split}$$

Hessian:

$$H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^{2} \left( \boldsymbol{\mu}^{\top} \mathbf{h}(\mathbf{w}) \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$ 



QP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq \mathbf{0} \end{split}$$

Hessian:

$$H\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(\boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ 17<sup>th</sup> of February, 2016

#### Linearized constraints



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP:  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ 1 s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

#### Hessian:

$$\mathcal{H}\left(\mathbf{w}, oldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(oldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

#### Contours of QP cost



$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^\top \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^2 \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^2 \left( \boldsymbol{\mu}^\top \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^\top \Delta \mathbf{w} \leq 0 \end{aligned}$$

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ●  $17^{\mathrm{th}}$  of February, 2016



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP:  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ 1 s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

#### Hessian:

$$\mathcal{H}\left(\mathbf{w}, oldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(oldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$H\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(\boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

s.t. 
$$\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq 0$$

 $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ 

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ● 17<sup>th</sup> of February, 2016

#### Linearized constraints



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP:  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ ŀ s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

Hessian:

$$\mathcal{H}\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(\boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

#### **Contours of QP cost**



$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^{2} \left( \boldsymbol{\mu}^{\top} \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq 0 \end{aligned}$$

# Step with t = 1

NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \left\| \mathbf{w} - \mathbf{w}_0 \right\|_Q^2 \\ \text{s.t.} & \mathbf{h} \left( \mathbf{w} \right) \leq \mathbf{0} \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^\top \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^2 \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^2 \left( \boldsymbol{\mu}^\top \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^\top \Delta \mathbf{w} \leq 0 \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ 17<sup>th</sup> of February, 2016

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$H\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(\boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

s.t. 
$$\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq 0$$

 $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ 

17<sup>th</sup> of February, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

#### Linearized constraints



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP:  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ ŀ s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

Hessian:

$$\mathcal{H}\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left( \boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight) 
ight)$$

#### Contours of QP cost



$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \left\| \mathbf{w} - \mathbf{w}_0 \right\|_Q^2 \\ \text{s.t.} & \mathbf{h} \left( \mathbf{w} \right) \leq \mathbf{0} \end{split}$$



$$\begin{array}{ll} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^\top \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^2 \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^2 \left( \boldsymbol{\mu}^\top \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^\top \Delta \mathbf{w} \leq 0 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ 17<sup>th</sup> of February, 2016

## Step with t = 1

NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \left\| \mathbf{w} - \mathbf{w}_0 \right\|_Q^2 \\ \text{s.t.} & \mathbf{h}\left( \mathbf{w} \right) \leq \mathbf{0} \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \mu) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} & H(\mathbf{w}, \mu) = \nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^{2} \left( \mu^{\top} \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq 0 \end{aligned}$$

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq \mathbf{0} \end{split}$$

Hessian:

$$H\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(\boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ●

#### Linearized constraints



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP: Hessian:  $H\left(\mathbf{w}, oldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(oldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで 17<sup>th</sup> of February, 2016

#### **Contours of QP cost**



$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^\top \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^2 \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^2 \left( \boldsymbol{\mu}^\top \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^\top \Delta \mathbf{w} \leq 0 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ 17<sup>th</sup> of February, 2016

 $\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$ s.t.  $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$ 

NLP:



 $17^{\mathrm{th}}$  of February, 2016

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$H\left(\mathbf{w}, \boldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left( \boldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight) 
ight)$$

s.t. 
$$\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq 0$$

 $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ 

 $17^{
m th}$  of February, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

#### Linearized constraints



NLP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$

QP: Hessian:  $H\left(\mathbf{w}, oldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(oldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$  $\min_{\mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w}$ s.t.  $\mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} < 0$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで 17<sup>th</sup> of February, 2016

#### Contours of QP cost



$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2 \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq \mathbf{0} \end{split}$$



$$\begin{aligned} \mathbf{QP}: & \mathbf{Hessian:} \\ \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^\top H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^\top \Delta \mathbf{w} & H(\mathbf{w}, \boldsymbol{\mu}) = \nabla_{\mathbf{w}}^2 \Phi(\mathbf{w}) + \nabla_{\mathbf{w}}^2 \left( \boldsymbol{\mu}^\top \mathbf{h}(\mathbf{w}) \right) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^\top \Delta \mathbf{w} \leq 0 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ 17<sup>th</sup> of February, 2016

 $\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$ s.t.  $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$ 

NLP:



 $17^{\mathrm{th}}$  of February, 2016

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

NLP:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_Q^2$$
s.t.  $\mathbf{h}(\mathbf{w}) \leq 0$ 



QP:

$$\begin{split} \min_{\mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\top} H(\mathbf{w}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})^{\top} \Delta \mathbf{w} \leq \mathbf{0} \end{split}$$

Hessian:

$$H\left(\mathbf{w}, oldsymbol{\mu}
ight) = 
abla_{\mathbf{w}}^{2} \Phi\left(\mathbf{w}
ight) + 
abla_{\mathbf{w}}^{2} \left(oldsymbol{\mu}^{ op} \mathbf{h}\left(\mathbf{w}
ight)
ight)$$

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ●  $17^{\mathrm{th}}$  of February, 2016



17<sup>th</sup> of February, 2016

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

イロト イポト イヨト イヨト

- 3

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

#### • SQP inherits the convergence properties of the Newton method

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = 
abla_{\mathbf{w}}^2 \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

- SQP inherits the convergence properties of the Newton method
- What happens if SOSC fails during the iterations ? I.e. for an iterate  $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$ :

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \mathbf{d} \neq \mathbf{0}$$

for some  $\mathbf{d} \neq \mathbf{0}$  being a critical feasible direction ?

The Newton direction is given by the Quadratic Program (QP):

$$\begin{split} \min_{\Delta \mathbf{w}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H(\mathbf{w}, \lambda, \mu) \Delta \mathbf{w} + \nabla \Phi \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \\ \text{s.t.} & \mathbf{g} \left( \mathbf{w} \right) + \nabla \mathbf{g} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} = 0 \\ & \mathbf{h} \left( \mathbf{w} \right) + \nabla \mathbf{h} \left( \mathbf{w} \right)^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{split}$$

with  $H(\mathbf{w}, \boldsymbol{\lambda}) = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda})$ 

- SQP inherits the convergence properties of the Newton method
- What happens if SOSC fails during the iterations ? I.e. for an iterate  $\mathbf{w}, \lambda, \mu$ :

$$\mathbf{d}^{\top} H(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \mathbf{d} \neq \mathbf{0}$$

for some  $d \neq 0$  being a critical feasible direction ? QP unbounded !! Heuristics are used in SQP methods to modify  $H(\mathbf{w}, \lambda, \mu)$  and recover an adequate curvature in the QP cost (regularization).

## Outline

1 KKT conditions - Quick Reminder

The Newton method

Newton on the KKT conditions

Sequential Quadratic Programmin

5 Hessian approximation

#### Maratos effect

(日) (ヨ) (ヨ)

#### Newton-type Methods - Gauss-Newton Hessian approximation

Cost function of the type  $\Phi(\mathbf{w}) = rac{1}{2} \|\mathbf{R}(\mathbf{w})\|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbf{R}^m$ 

Gauss-Newton Hessian approximation

Observe that  $\nabla^2_{\mathbf{w}} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^\top + \sum_{i=1}^m \nabla^2 \mathbf{R}_i(\mathbf{w}) \mathbf{R}_i(\mathbf{w})$ 

#### Newton-type Methods - Gauss-Newton Hessian approximation

Cost function of the type 
$$\Phi(\mathbf{w}) = rac{1}{2} \|\mathbf{R}(\mathbf{w})\|^2$$
, with  $\mathbf{R}(\mathbf{w}) \in \mathbb{R}^m$ 

Gauss-Newton Hessian approximation

Observe that  

$$\nabla^2_{\mathbf{w}} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^\top + \sum_{i=1}^m \nabla^2 \mathbf{R}_i(\mathbf{w}) \mathbf{R}_i(\mathbf{w})$$
Gauss-Newton method proposes to use:  

$$B_i = \nabla \mathbf{R}(\mathbf{w}_i) \nabla \mathbf{R}(\mathbf{w}_i)^\top + \alpha_i I$$

S. Gros
Cost function of the type  $\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{R}(\mathbf{w})\|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbb{R}^m$ 

Gauss-Newton Hessian approximation

Observe that  

$$\nabla^2_{\mathbf{w}} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^\top + \sum_{i=1}^m \nabla^2 \mathbf{R}_i(\mathbf{w}) \mathbf{R}_i(\mathbf{w})$$
Gauss-Newton method proposes to use: 
$$B_k = \nabla \mathbf{R}(\mathbf{w}_k) \nabla \mathbf{R}(\mathbf{w}_k)^\top + \alpha_k I$$

 $B_k$  is a good approximation if:

Cost function of the type  $\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{R}(\mathbf{w})\|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbb{R}^m$ 

Gauss-Newton Hessian approximation

bserve that  

$$\nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$$

Gauss-Newton method proposes to use  $B_k$  is a good approximation if:

$$= B_k = \nabla \mathbf{R}(\mathbf{w}_k) \nabla \mathbf{R}(\mathbf{w}_k)^{\mathsf{T}} + \alpha_k I$$

- constraints are close to linear <u>or</u>
- $\Phi(\mathbf{w}^{\star}) \approx 0$  (implies  $\lambda, \mu \approx 0$ )

Cost function of the type  $\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{R}(\mathbf{w})\|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbb{R}^m$ 

Gauss-Newton Hessian approximation

Observe that  

$$\nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$$
Gauss-Newton method proposes to use: 
$$B_{k} = \nabla \mathbf{R}(\mathbf{w}_{k}) \nabla \mathbf{R}(\mathbf{w}_{k})^{\top} + \alpha_{k} I$$

• constraints are close to linear or

 $B_k$  is a good approximation if:

• 
$$\Phi(\mathbf{w}^{\star}) \approx 0$$
 (implies  $\lambda, \mu \approx 0$ ) and

Cost function of the type  $\Phi(\mathbf{w}) = rac{1}{2} \| \mathbf{R}(\mathbf{w}) \|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbf{R}^m$ 

Gauss-Newton Hessian approximation

Observe that  

$$\nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$$

and

Gauss-Newton method proposes to use:  $B_k = \nabla \mathbf{R}(\mathbf{w}_k) \nabla \mathbf{R}(\mathbf{w}_k)^{\mathsf{T}} + \alpha_k \mathbf{I}$ B<sub>k</sub> is a good approximation if:

• constraints are close to linear <u>or</u>

• 
$$\Phi(\mathbf{w}^{\star}) pprox 0$$
 (implies  $oldsymbol{\lambda}, \ oldsymbol{\mu} pprox 0$ )

• all  $\nabla^2 \mathbf{R}_i(\mathbf{w})$  are small ( $\mathbf{R}$  close to linear), <u>or</u>

• all 
$$\mathbf{R}_i(\mathbf{w})$$
 are small, i.e.  $\Phi(\mathbf{w}^{\star}) \approx 0$ 

Cost function of the type  $\Phi(\mathbf{w})=\frac{1}{2}\|\mathbf{R}(\mathbf{w})\|^2$  , with  $\mathbf{R}(\mathbf{w})\in {\rm I\!R}^m$ 

Gauss-Newton Hessian approximation

between that  

$$\nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$$
where Neutron method process to use  $\mathbf{R}_{i} = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$ 

and

Gauss-Newton method proposes to use:  $B_{k} = \nabla \mathbf{R}(\mathbf{w}_{k}) \nabla \mathbf{R}(\mathbf{w}_{k})' + \alpha_{k} I$ *B<sub>k</sub>* is a good approximation if:

0

• constraints are close to linear <u>or</u>

• 
$$\Phi(\mathbf{w}^{\star})pprox 0$$
 (implies  $oldsymbol{\lambda},\,oldsymbol{\mu}pprox 0)$ 

• all  $\nabla^2 \mathbf{R}_i(\mathbf{w})$  are small ( $\mathbf{R}$  close to linear), <u>or</u>

• all 
$$\mathbf{R}_i(\mathbf{w})$$
 are small, i.e.  $\Phi(\mathbf{w}^\star) pprox 0$ 

Typical application to tracking & fitting problems:  $\mathbf{R}(\mathbf{w}) = \mathbf{y}(\mathbf{w}) - ar{\mathbf{y}}$ 

Cost function of the type  $\Phi(\mathbf{w}) = rac{1}{2} \| \mathbf{R}(\mathbf{w}) \|^2$ , with  $\mathbf{R}(\mathbf{w}) \in \mathbb{R}^m$ 

Gauss-Newton Hessian approximation

bserve that  

$$\nabla_{\mathbf{w}}^{2} \Phi(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \left( \nabla \mathbf{R}(\mathbf{w}) \mathbf{R}(\mathbf{w}) \right) = \nabla \mathbf{R}(\mathbf{w}) \nabla \mathbf{R}(\mathbf{w})^{\top} + \sum_{i=1}^{m} \nabla^{2} \mathbf{R}_{i}(\mathbf{w}) \mathbf{R}_{i}(\mathbf{w})$$

and

Gauss-Newton method proposes to use:  $B_k = \nabla \mathbf{R}(\mathbf{w}_k) \nabla \mathbf{R}(\mathbf{w}_k)^{\mathsf{T}} + \alpha_k \mathbf{I}$ B<sub>k</sub> is a good approximation if:

• constraints are close to linear <u>or</u>

• 
$$\Phi(\mathbf{w}^{\star})pprox 0$$
 (implies  $oldsymbol{\lambda},\,oldsymbol{\mu}pprox 0)$ 

• all  $\nabla^2 \mathbf{R}_i(\mathbf{w})$  are small ( $\mathbf{R}$  close to linear), <u>or</u>

• all 
$$\mathbf{R}_i(\mathbf{w})$$
 are small, i.e.  $\Phi(\mathbf{w}^\star) pprox 0$ 

Typical application to tracking & fitting problems:  $\mathbf{R}(\mathbf{w}) = \mathbf{y}(\mathbf{w}) - ar{\mathbf{y}}$ 

# Convergence

- If  $\Phi(\mathbf{w}_k) \rightarrow 0$  then  $\kappa_k \rightarrow 0$
- Can get superlinear convergence...

Compute numerical derivative of  $H(\mathbf{w})$  in an efficient (iterative) way

# BFGS

#### Define

$$\mathbf{s}_k = \mathbf{w}_{k+1} - \mathbf{w}_k$$
  
 $\mathbf{y}_k = \nabla \mathcal{L}(\mathbf{w}_{k+1}) - \nabla \mathcal{L}(\mathbf{w}_k)$ 

Idea: Update  $B_k \rightarrow B_{k+1}$  such that  $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$  (secant condition)

Compute numerical derivative of  $H(\mathbf{w})$  in an efficient (iterative) way

| BFGS                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Define $\mathbf{s}_k = \mathbf{w}_{k+1} - \mathbf{w}_k$                                                                                                                         |
| $\mathbf{y}_k \;\;=\;\;  abla \mathcal{L}(\mathbf{w}_{k+1}) -  abla \mathcal{L}(\mathbf{w}_k)$                                                                                  |
| Idea: Update $B_k 	o B_{k+1}$ such that $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$ (secant condition)                                                                                 |
| BFGS formula: $B_{k+1} = B_k - \frac{B_k \mathbf{s} \mathbf{s}^{T} B_k}{\mathbf{s}^{T} B_k \mathbf{s}} + \frac{\mathbf{y} \mathbf{y}^{T}}{\mathbf{s}^{T} \mathbf{y}},  B_0 = I$ |
|                                                                                                                                                                                 |

イロト イポト イヨト イヨト

Compute numerical derivative of  $H(\mathbf{w})$  in an efficient (iterative) way

# BFGS

Define

$$\begin{aligned} \mathbf{s}_k &= \mathbf{w}_{k+1} - \mathbf{w}_k \\ \mathbf{y}_k &= \nabla \mathcal{L}(\mathbf{w}_{k+1}) - \nabla \mathcal{L}(\mathbf{w}_k) \end{aligned}$$

Idea: Update  $B_k \rightarrow B_{k+1}$  such that  $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$  (secant condition)

BFGS formula: 
$$B_{k+1} = B_k - \frac{B_k \mathbf{ss}^\mathsf{T} B_k}{\mathbf{s}^\mathsf{T} B_k \mathbf{s}} + \frac{\mathbf{yy}^\mathsf{T}}{\mathbf{s}^\mathsf{T} \mathbf{y}}, \quad B_0 = I$$

See "Powell's trick" to make sure that  $B_{k+1} > 0$ 

Compute numerical derivative of  $H(\mathbf{w})$  in an efficient (iterative) way

# BFGS

#### Define

$$\begin{aligned} \mathbf{s}_k &= \mathbf{w}_{k+1} - \mathbf{w}_k \\ \mathbf{y}_k &= \nabla \mathcal{L}(\mathbf{w}_{k+1}) - \nabla \mathcal{L}(\mathbf{w}_k) \end{aligned}$$

Idea: Update  $B_k \rightarrow B_{k+1}$  such that  $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$  (secant condition)

BFGS formula: 
$$B_{k+1} = B_k - \frac{B_k \mathbf{s} \mathbf{s}^{\mathsf{T}} B_k}{\mathbf{s}^{\mathsf{T}} B_k \mathbf{s}} + \frac{\mathbf{y} \mathbf{y}^{\mathsf{T}}}{\mathbf{s}^{\mathsf{T}} \mathbf{y}}, \quad B_0 = I$$

See "Powell's trick" to make sure that  $B_{k+1} > 0$ 

# Convergence

- It can be shown that  $B_k o H(\mathbf{w})$ , then  $\kappa_k o 0$
- Can get superlinear convergence...

< ロ > < 同 > < 回 > < 回 >

# Outline

1 KKT conditions - Quick Reminder

The Newton method

Newton on the KKT conditions

Sequential Quadratic Programmin

Hessian approximation

6 Maratos effect

(日本) (日本) (日本)

# Maratos effect - Some NLPs can yield "creeping" convergence



# Maratos effect - Some NLPs can yield "creeping" convergence



What is going on ?!? This is a case of the Maratos effect, can happen with nonlinear constraints...

31 / 32

# Maratos effect

Consider the NLP :

$$\min_{u,v} \quad \Phi = 3v^2 - 2u$$
  
s.t. 
$$g = u - v^2 = 0$$

Optimum:  $\mathbf{w}^* = \begin{bmatrix} 0 & 0 \end{bmatrix}$ .

Consider the iterate:

$$\mathbf{w}_k = \begin{bmatrix} a^2 & a \end{bmatrix}$$

The Newton step is:

$$\Delta \mathbf{w}_k = -\begin{bmatrix} 2a^2 & a \end{bmatrix}$$

for  $\lambda = 2...$ 



- 31

# Maratos effect

Consider the NLP :

$$\min_{u,v} \Phi = 3v^2 - 2u$$
  
s.t.  $g = u - v^2 = 0$ 

Optimum:  $\mathbf{w}^* = \begin{bmatrix} 0 & 0 \end{bmatrix}$ .

Consider the iterate:

$$\mathbf{w}_k = \begin{bmatrix} a^2 & a \end{bmatrix}$$

The Newton step is:

$$\Delta \mathbf{w}_k = -\begin{bmatrix} 2a^2 & a \end{bmatrix}$$

for  $\lambda = 2...$ 

The full Newton step:  $\mathbf{w}_{k+1} = \mathbf{w}_k + \Delta \mathbf{w}_k$ is much closer to  $\mathbf{w}^*$  than  $\mathbf{w}_k$ .



- 3

# Maratos effect

Consider the NLP :

$$\min_{u,v} \quad \Phi = 3v^2 - 2u$$
  
s.t. 
$$g = u - v^2 = 0$$

Optimum:  $\mathbf{w}^* = \begin{bmatrix} 0 & 0 \end{bmatrix}$ .

Consider the iterate:

$$\mathbf{w}_k = \begin{bmatrix} a^2 & a \end{bmatrix}$$

The Newton step is:

$$\Delta \mathbf{w}_k = -\begin{bmatrix} 2a^2 & a \end{bmatrix}$$

for  $\lambda = 2...$ 

The full Newton step:  $\mathbf{w}_{k+1} = \mathbf{w}_k + \Delta \mathbf{w}_k$ is much closer to  $\mathbf{w}^*$  than  $\mathbf{w}_k$ .



$$\begin{array}{l} \text{But:} \\ \Phi(\mathbf{w}_{k+1}) > \Phi(\mathbf{w}_k) \\ |g(\mathbf{w}_{k+1})| > |g(\mathbf{w}_k)| \end{array}$$

イロト 人間ト イヨト イヨト

No penalty function can accept  $\Delta \mathbf{w}_k$  !!