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Objectives of the Lecture

What is a Differential-Algebraic Equation (DAE), why they are used

DAEs in mechanical applications: why and how to build them

Introduction to Lagrange mechanics, and DAEs from Lagrange

Some first remarks on solving DAEs
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What is a DAE ?!?

Consider a differential equation:

F (ẋ,x,u) = 0
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F (ẋ,x,u) = 0

Definition: F is a DAE if ∂F
∂ẋ
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∂ẋ

is
rank deficient

Example
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Definition: F is a DAE if ∂F
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= 0

then

∂F

∂ẋ
=

[
−1 0
x2 0

]

and

det

(
∂F

∂ẋ

)

= 0

What is going on ?!? Solve the first equation for ẋ1, yields ẋ1 = x1 + 1, then we have:

F̃ (ẋ,x) =

[
x1 − ẋ1 + 1

(x1 + 1)x2 + 2

]

= 0
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F (ẋ,x,u) = 0

Definition: F is a DAE if ∂F
∂ẋ

is
rank deficient

Example

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0

then

∂F

∂ẋ
=

[
−1 0
x2 0

]

and

det

(
∂F

∂ẋ

)

= 0

What is going on ?!? Solve the first equation for ẋ1, yields ẋ1 = x1 + 1, then we have:

F̃ (ẋ,x) =

[
x1 − ẋ1 + 1

(x1 + 1)x2 + 2

]

= 0

The second equation is algebraic ! Observe that ẋ2 is not in F in the first place !

S. Gros Optimal Control with DAEs, lecture 10 22nd of January, 2016 4 / 23



Is it that simple ? A small DAE freak show
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Consider:
uẋ + x = 0

We have ∂F
∂ẋ

= u, then:

For u 6= 0, it is a simple
ODE, i.e.

ẋ = −
x

u

For u = 0, it is a purely
algebraic equation, i.e.

x = 0

This differential equation is an
ODE or a DAE depending on the

input !

The notion of DAE can be
”deceptive”. In these lectures, we
will focus on ”clear-cut” cases.
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Why do we use DAEs ?

Large systems made of many subsystems:

ODEs describe each subsystems independently

Algebraic relationships describe e.g. balance equations, flow, etc...

DAE model is easier to develop, maintain, modify
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Mechanical/Robotic systems:

DAE models can be much simpler than ODE models

Modelling procedure is often easier using DAEs

Often yields more ”natural” representations of the
system
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A brief taxonomy of DAEs

Fully-implicit DAE:

F (x, ẋ,u) = 0

with ∂F
∂ẋ

rank-deficient.
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F (ẋ,x, z,u) = 0

when some variables are clearly algebraic.

Linear fully implicit DAE:
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Fully-implicit DAE:

F (x, ẋ,u) = 0

with ∂F
∂ẋ

rank-deficient.

Useful to write in the form:

F (ẋ,x, z,u) = 0

when some variables are clearly algebraic.

Linear fully implicit DAE:

E ẋ = Ax+ Bu

with E rank-deficient.

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

Any fully implicit DAE can be transformed into a semi-explicit one. However, it is
not always wise to do so !! The transformation can turn a simple set of equation into a

very complex one !!

Most often one can make an explicit distinction between differential and algebraic
variables. Some DAEs can be ambiguous on that distinction though (c.f. ”DAE freak

show”)
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Some examples of DAEs - CSTR system

Isothermal CSTR:

A ⇌ B → C

has the model equation:

V̇ = Fa − F

ĊA =
Fa

V
(CA0 − CA)− R1

ĊB = −
Fa

V
CB + R1 − R2

ĊC = −
Fa

V
CC + R2

0 = CA −
CB

Keq

0 = R2 − k2CB

Variables:

Fa: feed rate of A

CA0 : feed concentration of A

R1,2: rates of the reactions

F : product withdrawal rate

CA,B,C : concentration of species

Note that:

F and Fa are inputs

V and CA,B,C are differential variables

R1,2 are algebraic variables
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Some examples of DAEs - 3D pendulum

Position given by p ∈ R
3, dynamics:

mp̈ = u−mge3

O

p

e1

e2

e3

u
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Force in the cable: direction given by −p, amplitude given by algebraic variable z ∈ R+
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holds at all time.
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3, dynamics:

mp̈ = u−mge3−zp

O

p

e1

e2

e3

u

Force in the cable: direction given by −p, amplitude given by algebraic variable z ∈ R+

Then z must be chosen such that:

c (p) = p
⊤
p− L

2 = 0

holds at all time.

Using v = ṗ, the DAE reads as:

ṗ = v

v̇ =
u

m
− ge3 −

z

m
p

0 = p
⊤
p− L

2

What kind of DAE is that ?!?

ẋ = F (x,u, z)

0 = G (x)

Semi-explicit with G independent of z ...
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Lagrange Mechanics - Key idea

Generalised coordinates:

A given q provides a ”snapshot” of the configuration of
the system, often simply ”positions”
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L
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q = {θ, x}

Note that q 6= states !! Often states are x =

[
q

q̇

]

Lagrange (1788) function:

L (q, q̇) = T (q, q̇)
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Lagrange Mechanics - Key idea

Generalised coordinates:

A given q provides a ”snapshot” of the configuration of
the system, often simply ”positions”

E.g. for the pendulum on a chart one can choose
q = {θ, x}

Note that q 6= states !! Often states are x =

[
q

q̇

]

Lagrange (1788) function:

L (q, q̇) = T (q, q̇)
︸ ︷︷ ︸

kinetic energy

− V (q)
︸ ︷︷ ︸

potential energy

then the integral action:

I =

∫ tf

t0

L (q, q̇) dt

is minimised by the systems (free) trajectory.

M

L

u
m

θ

x
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Lagrange Mechanics - A silly example

k

m

x
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Lagrange function:

L (q, q̇) = T (q, q̇)− V (q) =
1

2
mẋ

2 −
1

2
kx

2

The spring-mass trajectory minimises the integral action:

I =

∫ tf

t0

L (q, q̇) dt

From variational calculus, the free trajectories satisfy (Euler-Lagrange equation):

d

d

∂L

∂q̇
−

∂L

∂q
= 0
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Lagrange Mechanics - A silly example

Generalized coordinates q = x

Kinetic energy: T (q, q̇) =
1

2
mẋ

2

Potential energy: V (q) =
1

2
kx

2

k

m

x
Lagrange function:

L (q, q̇) = T (q, q̇)− V (q) =
1

2
mẋ

2 −
1

2
kx

2

The free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0
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Lagrange Mechanics - A silly example

Generalized coordinates q = x

Kinetic energy: T (q, q̇) =
1

2
mẋ

2

Potential energy: V (q) =
1

2
kx

2

k

m

x
Lagrange function:

L (q, q̇) = T (q, q̇)− V (q) =
1

2
mẋ

2 −
1

2
kx

2

The free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

We have:

∂L
∂q̇

= mẋ , ∂L
∂q

= −kx

d

d

∂L
∂q̇

= mẍ
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Lagrange Mechanics - A silly example

Generalized coordinates q = x

Kinetic energy: T (q, q̇) =
1

2
mẋ

2

Potential energy: V (q) =
1

2
kx

2

k

m

x
Lagrange function:

L (q, q̇) = T (q, q̇)− V (q) =
1

2
mẋ

2 −
1

2
kx

2

The free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

We have:

∂L
∂q̇

= mẋ , ∂L
∂q

= −kx

d

d

∂L
∂q̇

= mẍ

Yield the ODE:

mẍ + kx = 0
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Lagrange Mechanics - Example

Generalized coordinates q =

[
θ

x

]

Kinetic energy: T (q, q̇) =
1

2
(m +M) ẋ2 +

1

2
ML

2
θ̇
2 − LM θ̇ẋ sin θ

Potential energy: V (q) = MgL cos θ

Lagrange function: L (q, q̇) = T (q, q̇)− V (q)

From variational calculus, the free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

M

L

u
m

θ

x

Yields the free trajectory:
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Lagrange Mechanics - Example

Generalized coordinates q =

[
θ

x

]

Kinetic energy: T (q, q̇) =
1

2
(m +M) ẋ2 +

1

2
ML

2
θ̇
2 − LM θ̇ẋ sin θ

Potential energy: V (q) = MgL cos θ

Lagrange function: L (q, q̇) = T (q, q̇)− V (q)

From variational calculus, the free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

M

L

u
m

θ

x

Yields the free trajectory:

∂L
∂q̇

⊤
=

[
(M +m) ẋ −MLθ̇ sin(θ)

ML2θ̇ −MLẋ sin(θ)

]

, ∂L
∂q

⊤
=

[
0

MgL sin(θ)−MLθ̇ẋ cos(θ)

]

d

dt
∂L
∂q̇

⊤
=

[
−ML cos(θ)θ̇2 + ẍ(M +m)−MLθ̈ sin(θ),

−MLẍ sin(θ) +ML2θ̈ −MLθ̇ẋ cos(θ))

]
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Lagrange Mechanics - Example

Generalized coordinates q =

[
θ

x

]

Kinetic energy: T (q, q̇) =
1

2
(m +M) ẋ2 +

1

2
ML

2
θ̇
2 − LM θ̇ẋ sin θ

Potential energy: V (q) = MgL cos θ

Lagrange function: L (q, q̇) = T (q, q̇)− V (q)

From variational calculus, the free trajectories satisfy:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

M

L

u
m

θ

x

Yields the free trajectory:

[
M +m −ML sin(θ)

−ML sin(θ) ML2

] [
ẍ

θ̈

]

=

[
MLθ̇2 cos(θ)
MgL sin(θ)

]

Useful tip: the whole procedure can be easily coded in a CAS.
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Lagrange Mechanics - External Forces

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0
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Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

where Fg are the generalized forces
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Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

where Fg are the generalized forces, defined such that the virtual work condition:

δW
︸︷︷︸

work

= 〈Fg, δq〉

is satisfied for all compatible displacement δq.
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Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d
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∂q̇
−

∂L
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= Fg

where Fg are the generalized forces, defined such that the virtual work condition:

δW
︸︷︷︸

work

= 〈Fg, δq〉

is satisfied for all compatible displacement δq.

How to use that ?!? Suppose force Fi applied at point pi (q) ∈ R
3 in the system
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Lagrange Mechanics - External Forces

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

where Fg are the generalized forces, defined such that the virtual work condition:

δW
︸︷︷︸

work

= 〈Fg, δq〉

is satisfied for all compatible displacement δq.

How to use that ?!? Suppose force Fi applied at point pi (q) ∈ R
3 in the system

δW =
∑

i

F
⊤

i

∂pi

∂q
δq
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Lagrange Mechanics - External Forces

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
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where Fg are the generalized forces, defined such that the virtual work condition:

δW
︸︷︷︸

work

= 〈Fg, δq〉

is satisfied for all compatible displacement δq.

How to use that ?!? Suppose force Fi applied at point pi (q) ∈ R
3 in the system

δW =
∑

i

F
⊤

i

∂pi

∂q
δq = F

⊤

g δq, ∀δq
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Lagrange Mechanics - External Forces

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Define the Lagrange function: L (q, q̇, z) = T − V .

Then the free dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= 0

... and the forced dynamics are given by

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

where Fg are the generalized forces, defined such that the virtual work condition:

δW
︸︷︷︸

work

= 〈Fg, δq〉

is satisfied for all compatible displacement δq.

How to use that ?!? Suppose force Fi applied at point pi (q) ∈ R
3 in the system

δW =
∑

i

F
⊤

i

∂pi

∂q
δq = F

⊤

g δq, ∀δq then Fg =
∑

i

F
⊤

i

∂pi

∂q
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Constraints: c (q) = 0
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Constraints: c (q) = 0

Define the Lagrange function:

L (q, q̇, z) = T (q, q̇)− V (q)−z
⊤
c (q)
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Constraints: c (q) = 0

Define the Lagrange function:

L (q, q̇, z) = T (q, q̇)− V (q)−z
⊤
c (q)

Then the dynamics are given by:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Constraints: c (q) = 0

Define the Lagrange function:

L (q, q̇, z) = T (q, q̇)− V (q)−z
⊤
c (q)

Then the dynamics are given by:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0

The constraints enter the dynamics via:

∂L

∂q
=

∂T

∂q
−

∂V

∂q
− z

⊤ ∂c

∂q
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q, q̇)

Potential energy: V (q)

Constraints: c (q) = 0

Define the Lagrange function:

L (q, q̇, z) = T (q, q̇)− V (q)−z
⊤
c (q)

Then the dynamics are given by:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0

The constraints enter the dynamics via:

∂L

∂q
=

∂T

∂q
−

∂V

∂q
− z

⊤ ∂c

∂q

The ”force” keeping the system on
c (q) = 0 is in the space spanned by ∇qci
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3D pendulum in Lagrange Mechanics

Generalized coordinates: q ≡ p, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ

Potential energy: V (q) = mge
⊤

3 p

Constraints: c (q) =
1

2

(

p
⊤
p− L

2
)

O

p

e1

e2

e3

u
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3D pendulum in Lagrange Mechanics

Generalized coordinates: q ≡ p, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ

Potential energy: V (q) = mge
⊤

3 p

Constraints: c (q) =
1

2

(

p
⊤
p− L

2
)

O

p

e1

e2

e3

u

Lagrange function: L = 1
2
mṗ⊤ṗ−mge⊤

3 p− 1
2
z
(
p⊤p− L2

)
yields:

∂L

∂q̇
= mṗ

d

d

∂L

∂q̇
= mp̈

∂L

∂q
= −mge3 − zp
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3D pendulum in Lagrange Mechanics

Generalized coordinates: q ≡ p, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ

Potential energy: V (q) = mge
⊤

3 p

Constraints: c (q) =
1

2

(

p
⊤
p− L

2
)

O

p

e1

e2

e3

u

Lagrange function: L = 1
2
mṗ⊤ṗ−mge⊤

3 p− 1
2
z
(
p⊤p− L2

)
yields:

∂L

∂q̇
= mṗ

d

d

∂L

∂q̇
= mp̈

∂L

∂q
= −mge3 − zp

Using d
d

∂L
∂q̇

− ∂L
∂q

= u the dynamics read as

mp̈+mge3 + zp = u

1

2

(

p
⊤
p− L

2
)

= 0
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.
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L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Generalized coordinates q = {p, α1,2,3}, and:
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Generalized coordinates q = {p, α1,2,3}, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ+

1

2

3∑

k=1

Jα̇
2
k
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Generalized coordinates q = {p, α1,2,3}, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ+

1

2

3∑

k=1

Jα̇
2
k

Potential energy: V (q) = mgp3 +
1

2

3∑

k=1

Mgl sinαk
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Generalized coordinates q = {p, α1,2,3}, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ+

1

2

3∑

k=1

Jα̇
2
k

Potential energy: V (q) = mgp3 +
1

2

3∑

k=1

Mgl sinαk

Constraints: ck (q) =
∥
∥
∥p− p

R
k

∥
∥
∥

2

− L
2
, k = 1, 2, 3
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Delta robot in Lagrange Mechanics

L: length ”long” arms
l : length ”small” arms

d: distance center-motors

Position of the nacelle p ∈ R
3.

Position of the rods end point:

p
R
k =





cos γk − sin γk 0
sin γk cos γk 0
0 0 1









d + l cosαk

0
−l sinαk





where γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Generalized coordinates q = {p, α1,2,3}, and:

Kinetic energy: T (q, q̇) =
1

2
mṗ

⊤
ṗ+

1

2

3∑

k=1

Jα̇
2
k

Potential energy: V (q) = mgp3 +
1

2

3∑

k=1

Mgl sinαk

Constraints: ck (q) =
∥
∥
∥p− p

R
k

∥
∥
∥

2

− L
2
, k = 1, 2, 3

Lagrange function:

L =
1

2
mṗ

⊤
ṗ+

3∑

k=1

[
1

2
Jα̇

2
k −mgp3 −

1

2
ML sinαk + zk

(∥
∥
∥p− p

R
k

∥
∥
∥

2

− L
2

)]
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Outline

1 Introduction

2 Lagrange Mechanics in a Nutshell

3 A first view on approaching DAEs numerically
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Handling semi-explicit DAEs

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)
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Handling semi-explicit DAEs

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.
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0 = G (x, z,u)

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = F (x, ξ (x,u) ,u)
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Handling semi-explicit DAEs

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

E.g.
ẋ = u − x + z

0 = xz − 1

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = F (x, ξ (x,u) ,u)
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Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

E.g.
ẋ = u − x + z

0 = xz − 1

Algebraic equation can be solved as:

z =
1

x
≡ ξ (x,u)

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.
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Handling semi-explicit DAEs

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

E.g.
ẋ = u − x + z

0 = xz − 1

Algebraic equation can be solved as:

z =
1

x
≡ ξ (x,u)

such that we can write the ODE:

ẋ = u − x +
1

x

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = F (x, ξ (x,u) ,u)
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Handling semi-explicit DAEs

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

E.g.
ẋ = u − x + z

0 = xz − 1

Algebraic equation can be solved as:

z =
1

x
≡ ξ (x,u)

such that we can write the ODE:

ẋ = u − x +
1

x

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = F (x, ξ (x,u) ,u)

Why not always doing that ?

Function ξ may not exist explicitly or may have a very high symbolic complexity...

Implicit solutions for z implemented within a classical integration scheme can be
computationally inefficient...
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0 = xz − 1

Algebraic equation can be solved as:

z =
1

x
≡ ξ (x,u)

such that we can write the ODE:

ẋ = u − x +
1

x

Find solution:

z = ξ (x,u)

of G (x, z,u) = 0, i.e.

G (x, ξ (x,u) ,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = F (x, ξ (x,u) ,u)

Does ξ (x,u) necessarily exist ?!?
Only if ∇zG is full rank (Implicit

Function Theorem) !!
Why not always doing that ?

Function ξ may not exist explicitly or may have a very high symbolic complexity...

Implicit solutions for z implemented within a classical integration scheme can be
computationally inefficient...
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Example - 3D pendulum
Position given by p ∈ R

3, dynamics:

mp̈ = u−mge3−zp

O

p

e1

e2

e3

u

Force in the cable: direction given by −p, amplitude given by algebraic variable z

Algebraic variable z must be chosen such that:

c (p) = p
⊤
p− L

2 = 0

holds at all time.

Using v = ṗ, the DAE reads as:

ṗ = v

v̇ =
u

m
− ge3 −

z

m
p

0 = p
⊤
p− L

2

︸ ︷︷ ︸

G

with x =

[
p

v

]
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Does z = ξ (x,u) necessarily exist ?!? Only
if ∇zG is full rank !!

S. Gros Optimal Control with DAEs, lecture 10 22nd of January, 2016 20 / 23



Example - 3D pendulum
Position given by p ∈ R

3, dynamics:

mp̈ = u−mge3−zp

O

p

e1

e2

e3

u

Force in the cable: direction given by −p, amplitude given by algebraic variable z

Algebraic variable z must be chosen such that:

c (p) = p
⊤
p− L

2 = 0

holds at all time.

Using v = ṗ, the DAE reads as:

ṗ = v

v̇ =
u

m
− ge3 −

z

m
p

0 = p
⊤
p− L

2

︸ ︷︷ ︸

G

with x =

[
p

v

]

Does z = ξ (x,u) necessarily exist ?!? Only
if ∇zG is full rank !!

Semi-explicit DAE

ẋ = F (x,u, z)

0 = G (x)

with G independent of z !! Then
∇zG (x) = 0... not full rank !!
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Handling fully-implicit DAEs

Fully implicit DAE:

F (ẋ, z,x,u) = 0
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Handling fully-implicit DAEs

Fully implicit DAE:

F (ẋ, z,x,u) = 0

Find solution:

ẋ = ξ1 (x,u)

z = ξ2 (x,u)

of F (ẋ, z,x,u) = 0, i.e.

F (ξ1 (x,u) , ξ2 (x,u) ,x,u) = 0

holds for all x,u.
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Handling fully-implicit DAEs

Fully implicit DAE:

F (ẋ, z,x,u) = 0

E.g.
M (x)

[
ẋ

z

]

= f

with z ∈ R
m and x ∈ R

n.

Find solution:

ẋ = ξ1 (x,u)

z = ξ2 (x,u)

of F (ẋ, z,x,u) = 0, i.e.

F (ξ1 (x,u) , ξ2 (x,u) ,x,u) = 0

holds for all x,u.
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Handling fully-implicit DAEs

Fully implicit DAE:

F (ẋ, z,x,u) = 0

E.g.
M (x)

[
ẋ

z

]

= f

with z ∈ R
m and x ∈ R

n.
DAE can be solved as:

[
ẋ

z

]

= M (x)−1
f

Find solution:

ẋ = ξ1 (x,u)

z = ξ2 (x,u)

of F (ẋ, z,x,u) = 0, i.e.

F (ξ1 (x,u) , ξ2 (x,u) ,x,u) = 0

holds for all x,u.

Then one can write the ODE:

ẋ = ξ1 (x,u)

Symbolic inverse of M (x) can be very complex for n large

Can be inverted numerically ”on-the-fly” to generate ẋ (and z as a by-product),
and then use an ODE integrator.

Functions ξ1 and ξ2 exist only if ∇ẋ,zF is full rank !!
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F (ẋ, z,x,u) = 0

E.g.
M (x)

[
ẋ
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

BDF method (m-steps, size ∆t)

xk+1 = −
m∑

j=1

ajxk+1−j +∆tbmF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)

where aj and bm are given by the Butcher tableau.
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

BDF method (m-steps, size ∆t)

xk+1 = −
m∑

j=1

ajxk+1−j +∆tbmF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)

where aj and bm are given by the Butcher tableau.

Special case - Implicit Euler

xk+1 = xk +∆tF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

Special case - Implicit Euler

xk+1 = xk +∆tF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)

Residual:

r (xk+1, zk+1,xk ,u) =

[
xk+1 − xk −∆tF (xk+1, zk+1,u)

G (xk+1, zk+1,u)

]

= 0

to solve for xk+1, zk+1

S. Gros Optimal Control with DAEs, lecture 10 22nd of January, 2016 22 / 23



Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

Special case - Implicit Euler

xk+1 = xk +∆tF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)

Residual:

r (xk+1, zk+1,xk ,u) =

[
xk+1 − xk −∆tF (xk+1, zk+1,u)

G (xk+1, zk+1,u)

]

= 0

to solve for xk+1, zk+1 using Newton based on:

∇xk+1,zk+1r (xk+1, zk+1,xk ,u) =

[
I −∆t∇xk+1F ∇xk+1G

−∆t∇zk+1F ∇zk+1G

]
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

ẋ = F (x, z,u)

0 = G (x, z,u)

Special case - Implicit Euler

xk+1 = xk +∆tF (xk+1, zk+1,u)

0 = G (xk+1, zk+1,u)

Residual:

r (xk+1, zk+1,xk ,u) =

[
xk+1 − xk −∆tF (xk+1, zk+1,u)

G (xk+1, zk+1,u)

]

= 0

to solve for xk+1, zk+1 using Newton based on:

∇xk+1,zk+1r (xk+1, zk+1,xk ,u) =

[
I −∆t∇xk+1F ∇xk+1G

−∆t∇zk+1F ∇zk+1G

]

Note that this requires (among other things) ∇zk+1G to have a correct rank.
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DAEs are not ”just” ODEs with an algebraic extension

Fully-implicit linear DAE:

E ẋ = Ax+ Bu

with E = ∂F
∂ẋ

rank deficient. E.g.

E =





0 1 0
0 0 1
0 0 0



 , A = I , B =





0
0
1





reads as:

ẋ2 = x1

ẋ3 = x2

x3 = −u
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Fully-implicit linear DAE:

E ẋ = Ax+ Bu

S. Gros Optimal Control with DAEs, lecture 10 22nd of January, 2016 23 / 23



DAEs are not ”just” ODEs with an algebraic extension

Fully-implicit linear DAE:

E ẋ = Ax+ Bu

Solve using implicit Euler, step-size h at time t:

1

h
E (x+ − x(t)) = Ax+ + Bu+
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DAEs are not ”just” ODEs with an algebraic extension

Fully-implicit linear DAE:

E ẋ = Ax+ Bu

Solve using implicit Euler, step-size h at time t:

1

h
E (x+ − x(t)) = Ax+ + Bu+

The true solution satisfies:

E

[
1

h
(x (t + h)− x (t)) +

h

2
ẍ (ξ)

]

= Ax (t + h) + Bu (t + h)

for some ξ ∈ [t, t + h].
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E ẋ = Ax+ Bu

Solve using implicit Euler, step-size h at time t:

1

h
E (x+ − x(t)) = Ax+ + Bu+

The true solution satisfies:

E

[
1

h
(x (t + h)− x (t)) +

h

2
ẍ (ξ)

]

= Ax (t + h) + Bu (t + h)

for some ξ ∈ [t, t + h]. Integration error is:

eh = x (t + h)− x+ = − (E − Ah)−1

(
h2

2
ẍ (ξ)

)
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DAEs are not ”just” ODEs with an algebraic extension

Fully-implicit linear DAE:

E ẋ = Ax+ Bu

Solve using implicit Euler, step-size h at time t:

1

h
E (x+ − x(t)) = Ax+ + Bu+

The true solution satisfies:

E

[
1

h
(x (t + h)− x (t)) +

h

2
ẍ (ξ)

]

= Ax (t + h) + Bu (t + h)

for some ξ ∈ [t, t + h]. Integration error is:

eh = x (t + h)− x+ = − (E − Ah)−1

(
h2

2
ẍ (ξ)

)

E full rank (ODE), the error is of O
(
h2
)
(error for implicit Euler)
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DAEs are not ”just” ODEs with an algebraic extension

Fully-implicit linear DAE:

E ẋ = Ax+ Bu

Solve using implicit Euler, step-size h at time t:

1

h
E (x+ − x(t)) = Ax+ + Bu+

The true solution satisfies:

E

[
1

h
(x (t + h)− x (t)) +

h

2
ẍ (ξ)

]

= Ax (t + h) + Bu (t + h)

for some ξ ∈ [t, t + h]. Integration error is:

eh = x (t + h)− x+ = − (E − Ah)−1

(
h2

2
ẍ (ξ)

)

E full rank (ODE), the error is of O
(
h2
)
(error for implicit Euler)

E rank deficient, then E − Ah tends to a singular matrix for h → 0. The error can
be of order O (h) or even O (1) !!
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