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Control of Exothermic Batch Reactors

work with Peter Kühl (now BASF), H.G. Bock (Heidelberg) 
and A. Milewska, E. Molga (Warsaw)



Batch Reactor in Warsaw [Peter Kuehl, Aleksandra Milewska]

Esterification of 2-Butanol (B) by propionic anhydride (A): 
exothermic reaction, fed-batch reactor with cooling jacket 
Aim: complete conversion of B, avoid explosion!    
                                                Control: dosing rate of A 



Differential (Algebraic) Equation Model

(1)

(2)



Dynamic Optimization Problem for Batch Reactor

Constrained optimal control problem: 

Generic optimal control problem:

minimize remaining B 
subject to dosing rate and 
temperature constraints



Solution of Peter’s Batch Reactor Problem



Experimental Results for Batch Reactor

! Mettler-Toledo test reactor R1 

! batch time: 1 h 

! end volume: ca. 2 l



Experimental Results for Batch Reactor (Red)
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Peter and 
Aleksandra‘s work 
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Robust Optimization Framework [Ben-Tal & Nemirovski]

! Uncertain Nonlinear Program (NLP) with controls u, uncertain parameter p, and 
“states” x  (determined by model g(x,u,p) ) 

! Idea: let “adverse player” (nature) select p and x, define worst-case constraints and 
objective: 

! Formulate “Robust Counterpart” (bi-level problem): 

  Difficult to tackle numerically for general NLPs!



One Remedy: Linearization of Worst Case

! Approximate worst case by linearization [Nagy et. al ‘03, D., Bock, Kostina,’06]: 

! Analytical solution (using dual norm):



One of first papers proposing ODE linearization



Approximated Robust Counterpart 

! Can be formulated in two sparsity exploiting variants: 
A) Forward derivatives 
B) Adjoint derivatives 

…or in infinite dimensional setting: Lyapunov Differential Equations

Intelligent safety margins 
(influenced by controls)



A) Forward Derivative Robust Counterpart

! Best if more constraints than uncertain parameters



B) Adjoint Derivative Robust Counterpart [D. et al ’06]:: 

! Best if more uncertain parameters than constraints



Estimated Parameter Uncertainties for Test Reactor



Robust Optimization Result  and Experimental Test

Safety margin



Comparison Nominal and Robust Optimization

Different solution structure. Model plant 
mismatch and runaway risk considerably 
reduced. Complete conversion.
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Robust Counterpart for Noisy Dynamic Systems

Noisy dynamic systems suffer from “double curse of infinity”: 
! infinitely many uncertain parameters (noise w acting on dynamics) 
! infinitely many constraints (path constraints) 
What to do ? 

In linear approximation (and without controls), regard  

with constraints for all i and t: 

Assumption:  
function space bound                       on noise 



Easy Case: L2 Bounded Uncertainty [Houska & D. 2007]

! Assume L2 bound                                                     on uncertainty,  
 based on L2 scalar product 

! Note: for L2 Norm, reachable uncertainty sets are also ellipsoids! 

! Can easily show that  

 with P solution of Lyapunov Differential Equation 
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Power Kite Model (with B. Houska)

forces at kite 
(here: 500 m2) Control inputs: 

! line length 
! roll angle (as for toy kites) 
! lift coefficient (pitch angle)

ODE Model with 12 states and 3 controls

Includes cable elasticity



Solution of Periodic Optimization Problem

Maximize mean power production:

by varying line thickness, period duration, 
controls,       subject to periodicity and 
other constraints:

Cable length 1.3km,  thickness 7 cm



Periodic Orbit: 5 MW mean power production 



Problem: kite orbits unstable. What to do?
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Problem: kite orbits unstable. What to do?

Could we make system stable just by smart choice of open-loop controls?



Stability and Robustness Optimization (Houska, D. 2007)

Regard linearized propagation of noise:

Infinitely long time: covariance blows up, or 
becomes periodic 

THEOREM: If periodic Lyapunov solution exists 
(with                ), nonlinear system is stable.

Compute covariance matrix P by  
Lyapunov Equation:



Robust stability optimization problem (Houska & D.  2007) 

Allows us to robustly satisfy inequality constraints!



Orbit optimized for stability

We have generated a stable attractor!

Kite does not 
touch ground



Numerical Issues

Main Advantage: formulation avoids non-smoothness, can use 
advanced optimal control algorithms 

But: 

! 1st derivatives in problem: need 2nd derivatives for optimization 

! Need homotopy: first use „virtual feedback“, then shrink it 

! Can solve periodic Lyapunov equation (a large, but linear 
system) with periodic Schur decomposition (Varga 1997), 
implemented as CasADi function, CPU savings up to factor 
100 possible (PhD thesis Joris Gillis 2015) 



Robust Control of Control Race Cars (Greg Horn, Joris Gillis, 
Robin Verschueren)
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w

= 600

2 controls and 4 feedback
gains, i.e. n

u

= 204

solved in 40 seconds using
CasADi and IPOPT
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Summary: from Nominal to Robust Optimal Control

Nominal Optimal Control 
(prone to model-plant-mismatch)

Robust Open-Loop Optimal 
Control 

• finite dimensional:  
- forward (many outputs)  
- adjoint (many inputs) 

• infinite dimensional:            
Lyapunov Differential Equations, even 
allow periodic stability optimisation 

• can optimise feedback parameters
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Thank you !



Difficult Case: L-Infinity Bounded Uncertainty

! Assumption: 

! Example:



Worst Case Reachable States 



Uncertainty Tube for Pendulum
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Uncertainty Tube for Pendulum



Dual of Infinite Dimensional LP



Maximize dual function and transform further…



…and introduce Lyapunov Equations again!

THEOREM [Houska & D. 2010]: 

Note: worst case minimization problem, useful for robust counterpart!



Tight Outer Approximating Ellipsoids
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Tight Outer Approximating Ellipsoids


