Robustness and Stability Optimization

Moritz Diehl Systems Control and Optimization Laboratory Department of Microsystems Engineering & Department of Mathematics University of Freiburg, Germany

> based on joint work with Boris Houska (ShanghaiTech), Peter Kühl (BASF), Joris Gillis (KU Leuven) and Greg Horn

- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- (L-Infinity bounded uncertainty)
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

Control of Exothermic Batch Reactors

work with *Peter Kühl* (now BASF), H.G. Bock (Heidelberg) and *A. Milewska*, E. Molga (Warsaw)

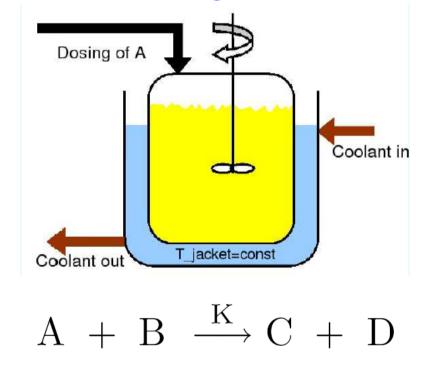
WARSAW UNIVERSITY OF TECHNOLOGY

Batch Reactor in Warsaw [Peter Kuehl, Aleksandra Milewska]

Esterification of 2-Butanol (B) by propionic anhydride (A): exothermic reaction, fed-batch reactor with cooling jacket

Aim: complete conversion of B, avoid explosion!

Control: dosing rate of A



Differential (Algebraic) Equation Model

$$\dot{n}_{A} = u - rV$$

$$\dot{n}_{B} = -rV$$

$$\dot{n}_{C} = rV$$

$$(C_{p,I} + C_{p})\dot{T}_{R} = rHV - q_{dil} - U\Omega(T_{R} - T_{J})$$

$$-\alpha(T_{R} - T_{a}) - ucp_{A}(T_{R} - T_{d}),$$

$$(C_{p,I} + C_{p})\dot{T}_{R} = rHV - q_{dil} - U\Omega(T_{R} - T_{J})$$

$$\rho_{i} = 1000 M_{i} \left(P_{i} Q_{i}^{\left(1 - \left(\frac{T_{R}}{T_{c,i}}\right)^{G}\right)} \right)^{-1}, \quad i = A, B, C, D$$

$$cp_{i} = a_{i} + b_{i}T_{R} + c_{i}T_{R}^{2} + d_{i}T_{R}^{3}, \quad i = A, B, C, D$$

$$C_{p} = \sum_{i=A,B,C,D} cp_{i}n_{i}$$

$$C_{p,I} = C_{p,I1} + \frac{C_{p,I2} - C_{p,I1}}{V_{2} - V_{1}}(V - V_{1})$$

$$V = 1000 \left(\frac{n_{A}M_{A}}{\rho_{A}} + \frac{n_{B}M_{B}}{\rho_{B}} + \frac{n_{C}M_{C}}{\rho_{C}} + \frac{n_{C}M_{D}}{\rho_{D}} \right)$$

$$\Omega = \Omega_{\min} + 4 \frac{V - V_{\min}}{1000d}$$

(2)

1

Dynamic Optimization Problem for Batch Reactor

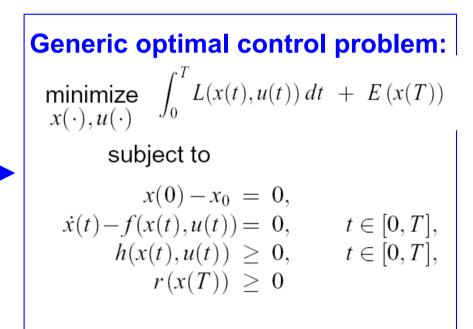
Constrained optimal control problem:

$$\min_{u} \int_{0}^{t_{f}} n_{B}(\tau)^{2} d\tau$$
subject to (1), (2)
 $0 \text{ mol/s} \leq u(t) \leq 0.005 \text{ mol/s}$
 $\int_{t_{0}=0}^{t_{f}} u(\tau) d\tau = 6.89396 \text{ mol}$
 $T_{R}(t) \leq 343.15 \text{ K}$
 $S(t) \leq 363.15 \text{ K}$,

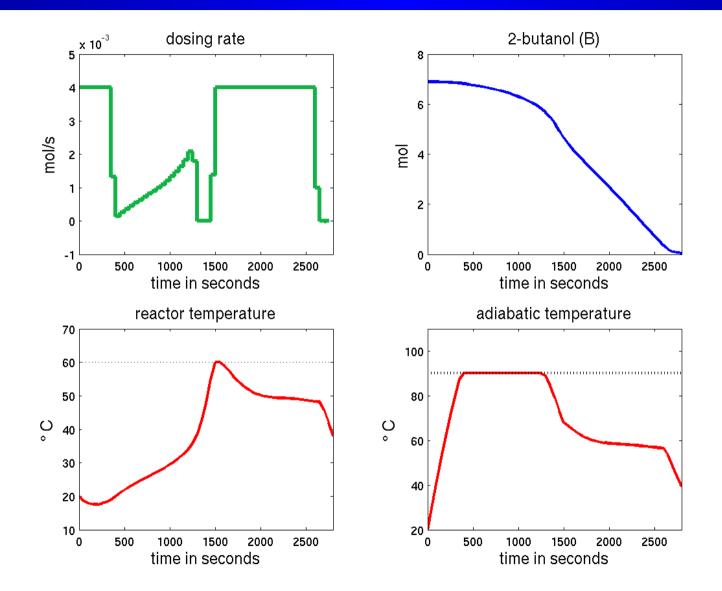
$$S(t) = T_R(t) + \min(n_A, n_B) \frac{H_A}{\rho c_p V}$$

minimize remaining B

subject to dosing rate and temperature constraints



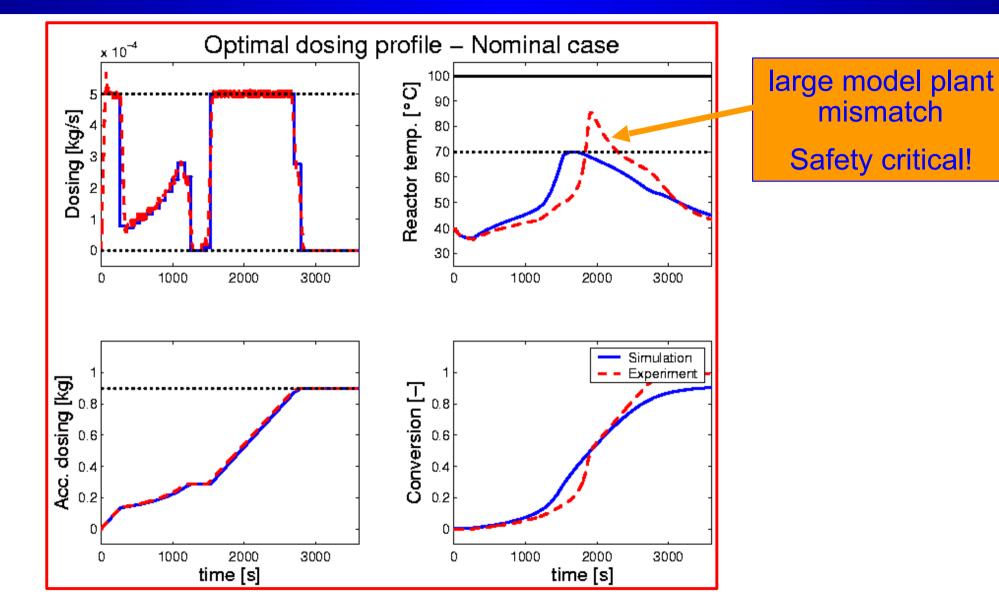
Solution of Peter's Batch Reactor Problem



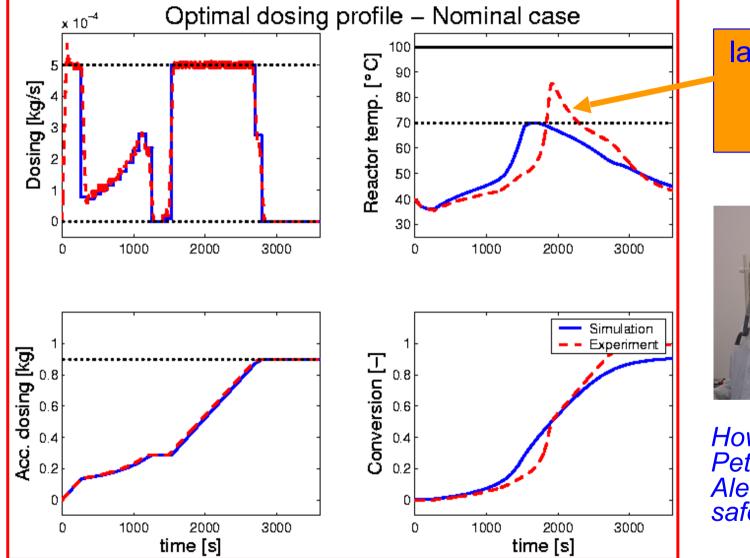
Experimental Results for Batch Reactor

- Mettler-Toledo test reactor R1
- batch time: 1 h
- end volume: ca. 2 l

Experimental Results for Batch Reactor (Red)



Experimental Results for Batch Reactor (Red)



large model plant mismatch Safety critical!

How can we make Peter 's and Aleksandra's work safer?

- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- L-Infinity bounded uncertainty
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

Robust Optimization Framework [Ben-Tal & Nemirovski]

 Uncertain Nonlinear Program (NLP) with controls *u*, uncertain parameter *p*, and "states" *x* (determined by model *g*(*x*,*u*,*p*))

min	$f_{\alpha}(\mathbf{x}, \mathbf{y})$	e t	$\int f_i(x,u) \le 0$	for	$i=1,\ldots,n_f,$
$x \in \mathbb{R}^{n_x}, u \in \mathbb{R}^{n_u}$	$J_0(x, u)$	5.1.	$\begin{cases} f_i(x, u) \le 0\\ g_j(x, u, p) = 0 \end{cases}$	for	$j=1,\ldots,n_x.$

Idea: let "adverse player" (nature) select p and x, define worst-case constraints and objective:

$$\phi_i(u) := \max_{x \in \mathbb{R}^{n_x}, p \in \mathbb{R}^{n_p}} f_i(x, u) \text{ s.t. } \begin{cases} g(x, u, p) = 0, \\ \|p - \bar{p}\| \le 1. \end{cases}$$

Formulate "Robust Counterpart" (bi-level problem):

	(RC)	min u∈ℝ ^{nu}	$\phi_0(u)$	s.t.	$\phi_i(u) \leq 0$	for	$i=1,\ldots,n_f.$
--	------	--------------------------	-------------	------	--------------------	-----	-------------------

Difficult to tackle numerically for general NLPs!

One Remedy: Linearization of Worst Case

• Approximate worst case by linearization [Nagy et. al '03, D., Bock, Kostina,'06]:

$$\begin{split} \tilde{\phi}_i(u) &:= \max_{\substack{\Delta x \in \mathbb{R}^{n_x}, \Delta p \in \mathbb{R}^{n_p} \\ \text{s.t.}}} & f_i(\bar{x}, u) + \frac{\partial f_i}{\partial x}(\bar{x}, u) \Delta x, \\ \text{s.t.} & \frac{\partial g}{\partial x}(\bar{x}, u, \bar{p}) \Delta x + \frac{\partial g}{\partial p}(\bar{x}, u, \bar{p}) \Delta p = 0, \\ & \|\Delta p\| \le 1. \end{split}$$

• Analytical solution (using dual norm):

$$\tilde{\phi}_i(u) = f_i(\bar{x}, u) + \left\| -\left(\frac{\partial g}{\partial p}(\bar{x}, u, \bar{p})\right)^T \left(\frac{\partial g}{\partial x}(\bar{x}, u, \bar{p})\right)^{-T} \left(\frac{\partial f_i}{\partial x}(\bar{x}, u)\right)^T \right\|_*$$

One of first papers proposing ODE linearization

Robust Nonlinear Model Predictive Control of Batch Processes

Zoltan K. Nagy

Dept. of Chemical Engineering, "Babes-Bolyai" University of Cluj, 3400, Cluj-Napoca, Romania

Richard D. Braatz

Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Approximated Robust Counterpart

$$\min_{u \in \mathbb{R}^{n_u, \bar{x}} \in \mathbb{R}^{n_x}} f_0(\bar{x}, u) + \left\| \begin{pmatrix} \frac{\partial g}{\partial p} \end{pmatrix}^T \begin{pmatrix} \frac{\partial g}{\partial x} \end{pmatrix}^{-T} \begin{pmatrix} \frac{\partial f_0}{\partial x} \end{pmatrix}^T \right\|_*$$
(ARC) s.t. $f_i(\bar{x}, u) + \left\| \begin{pmatrix} \frac{\partial g}{\partial p} \end{pmatrix}^T \begin{pmatrix} \frac{\partial g}{\partial x} \end{pmatrix}^{-T} \begin{pmatrix} \frac{\partial f_i}{\partial x} \end{pmatrix}^T \right\|_* \le 0$
Intelligent safety margins (influenced by controls) $i = 1, \dots, n_f,$
and $g(\bar{x}, u, \bar{p}) = 0.$

Can be formulated in two sparsity exploiting variants:

A) Forward derivatives

B) Adjoint derivatives

...or in infinite dimensional setting: Lyapunov Differential Equations

$$\begin{split} \min_{\substack{u \in \mathbb{R}^{n_u}, x \in \mathbb{R}^{n_x}, D \in \mathbb{R}^{n_x \times n_p}} & f_0(x, u) + \left\| D^T \left(\frac{\partial f_0}{\partial x}(x, u) \right)^T \right\|_* \\ \text{(ARC-D)} & \text{s.t.} \quad f_i(x, u) + \left\| D^T \left(\frac{\partial f_i}{\partial x}(x, u) \right)^T \right\|_* \leq 0, \\ & i = 1, \dots \\ & g(x, u, \bar{p}) = 0, \\ \text{and} & \frac{\partial g}{\partial x}(x, u, \bar{p}) D + \frac{\partial g}{\partial p}(x, u, \bar{p}) = 0. \end{split}$$

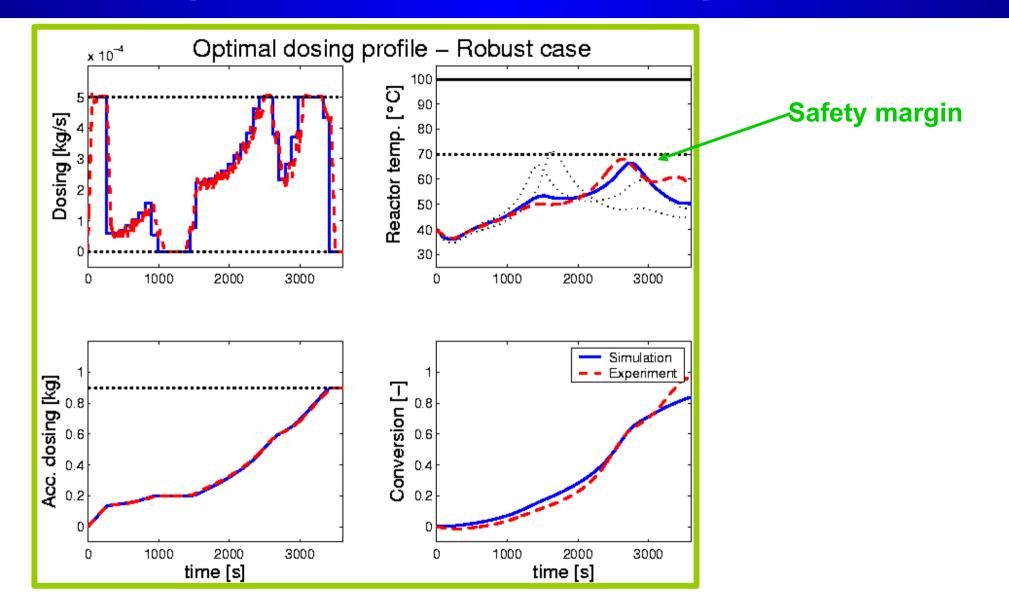
• Best if **more constraints** than uncertain parameters

$$\begin{split} \min_{\substack{u \in \mathbb{R}^{n_u}, x \in \mathbb{R}^{n_x}, \Lambda \in \mathbb{R}^{n_x \times (1+n_f)}} & f_0(x, u) + \left\| \left(\frac{\partial g}{\partial p}(x, u, p) \right)^T \lambda_0 \right\|_* \\ \text{(ARC-A)} & \text{s.t.} & f_i(x, u) + \left\| \left(\frac{\partial g}{\partial p}(x, u, p) \right)^T \lambda_i \right\|_* \leq 0 \\ & i = 1, \dots \\ & g(x, u, \bar{p}) = 0, \\ \text{and} & \left(\frac{\partial g}{\partial x}(x, u, \bar{p}) \right)^T \Lambda + \left(\frac{\partial f}{\partial x}(x, u) \right)^T = 0. \end{split}$$

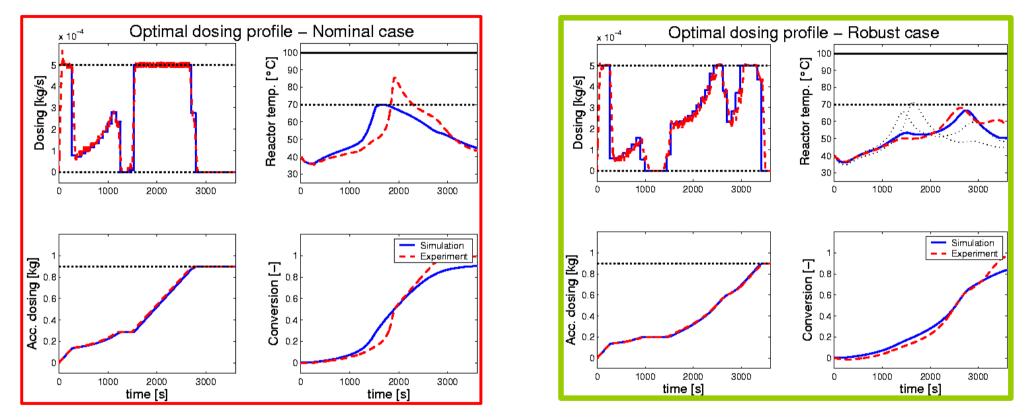
• Best if **more uncertain parameters** than constraints

	Standard deviation
T _{jacket}	0.3 K
m _{catalyst}	0.5g (~10%)
U _A	10.0 W/(m ² K) (~10 %)
U _{offset}	5.0 10 ⁻⁵ kg/s (~10 % of upper bound)

Robust Optimization Result and Experimental Test

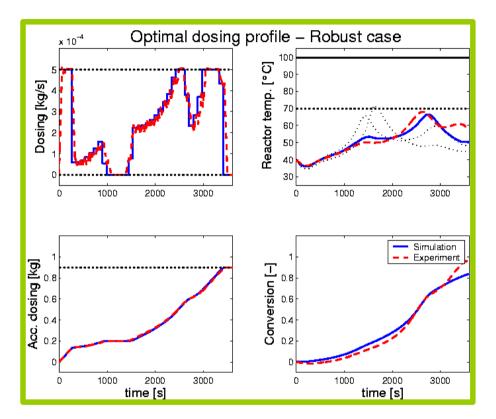


Comparison Nominal and Robust Optimization



Different solution structure. Model plant mismatch and runaway risk considerably reduced. Complete conversion.

Comparison Nominal and Robust Optimization



Different solution structure. Model plant mismatch and runaway risk considerably reduced. Complete conversion.

- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- L-Infinity bounded uncertainty
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

Robust Counterpart for Noisy Dynamic Systems

Noisy dynamic systems suffer from "double curse of infinity":

- infinitely many uncertain parameters (noise *w* acting on dynamics)
- infinitely many constraints (path constraints)What to do ?

In linear approximation (and without controls), regard

$$\begin{aligned} \dot{x}(t) &= A(t)x(t) + B(t)w(t) \\ y(t) &= C(t)x(t) \\ x(0) &= B_0 w_0 \\ y_i(t) &\leq 1 \end{aligned}$$

with constraints for all *i* and *t*:

Assumption: function space bound $\|\boldsymbol{\omega}\|_W \leq 1$ on noise $\boldsymbol{\omega} := (w_0, w(\cdot))$

Easy Case: L2 Bounded Uncertainty [Houska & D. 2007]

• Assume L2 bound $\mathscr{B} := \{ \omega \in L_2 \mid \|\omega\|_W \le 1 \}$ on uncertainty, based on L2 scalar product $\langle \omega_1 \mid \omega_2 \rangle_W := w_{0,1}^T w_{0,2} + \int_0^T w_1(\tau)^T w_2(\tau) d\tau$ $\|\omega_1\|_W := \sqrt{\langle \omega_1, \omega_1 \rangle_W}$

- Note: for L2 Norm, reachable uncertainty sets are also ellipsoids!
- Can easily show that $\max_{\omega \in \mathscr{B}} y_i(t) = \sqrt{C_i(t)P(t)C_i(t)^T}$,

with *P* solution of Lyapunov Differential Equation

$$\dot{P}(t) = A(t)P(t) + P(t)A(t)^{T} + B(t)B(t)^{T}$$

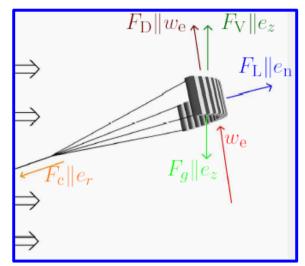
 $P(0) = B_{0}B_{0}^{T}$

- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- (L-Infinity bounded uncertainty omitted)
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- (L-Infinity bounded uncertainty omitted)
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

Power Kite Model (with B. Houska)

Includes cable elasticity



ODE Model with 12 states and 3 controls

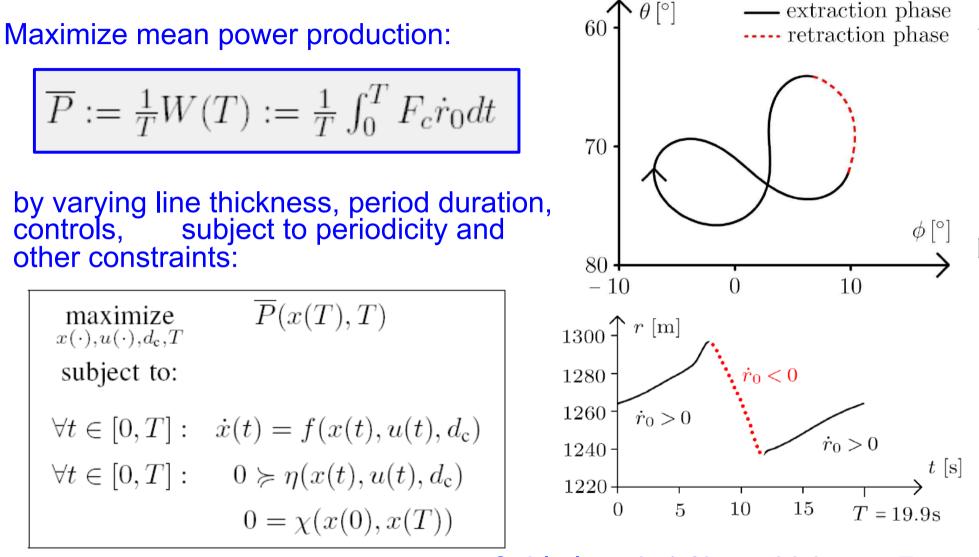
Differential states: x := (r₀, r, φ, θ, ṙ₀, ṙ, φ̇, θ̇, n, Ψ, C_L, W)^T
Controls: u := (r̈₀, Ψ̇, C_L)^T

forces at kite (here: 500 m²)

Control inputs:

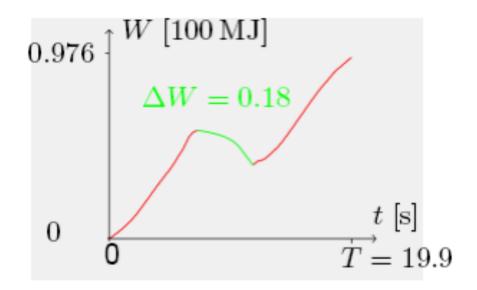
- line length
- roll angle (as for toy kites)
- Ift coefficient (pitch angle)

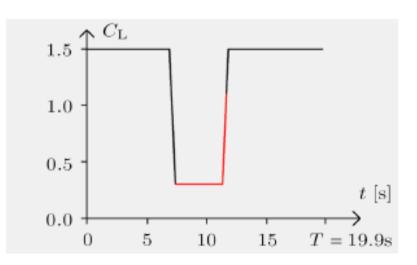
Solution of Periodic Optimization Problem



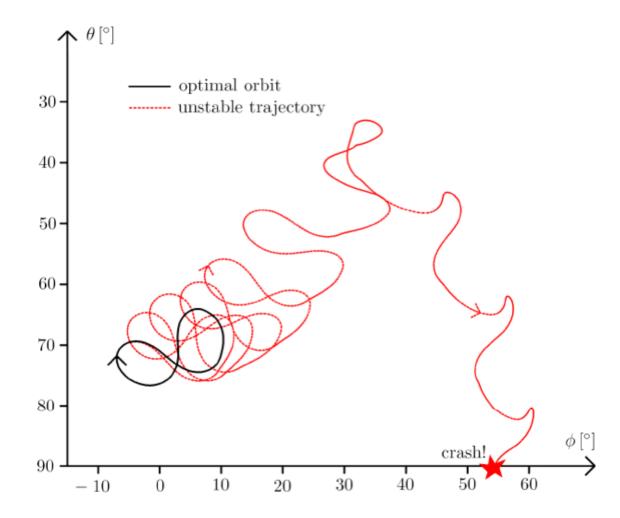
Cable length 1.3km, thickness 7 cm

Periodic Orbit: 5 MW mean power production



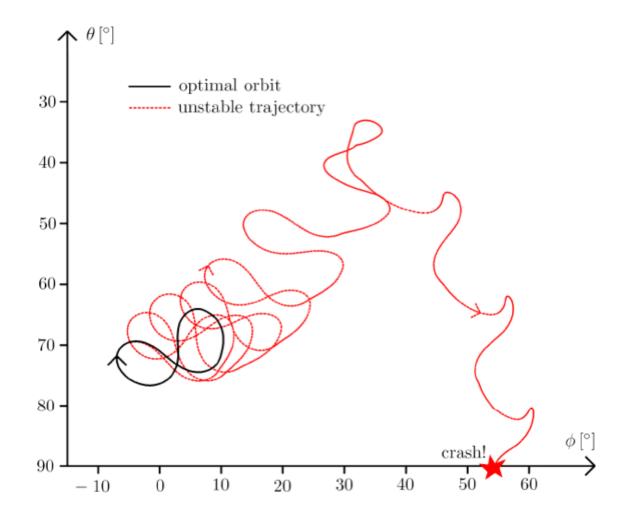


Problem: kite orbits unstable. What to do?



- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- L-Infinity bounded uncertainty
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

Problem: kite orbits unstable. What to do?

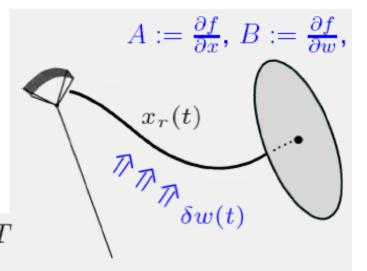


Could we make system stable just by smart choice of **open-loop** controls?

Regard linearized propagation of noise:

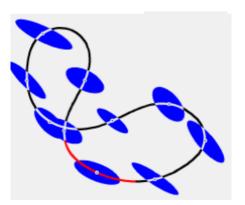
 $\dot{\delta x}(t) = A(t)\delta x(t) + B(t)\delta w(t)$

Compute covariance matrix P by Lyapunov Equation: $\dot{P}(t) = A(t)P(t) + P(t)A(t)^T + B(t)B(t)^T$



Infinitely long time: covariance blows up, or becomes periodic

$$P(0) = P(T)$$



THEOREM: If periodic Lyapunov solution exists (with $P(0) \succ 0$), nonlinear system is stable.

$$\underset{x_{r}(\cdot), P(\cdot), u(\cdot), p, T}{\text{minimize}} J[x_{r}(\cdot), P(\cdot), u(\cdot), p, T]$$
subject to:

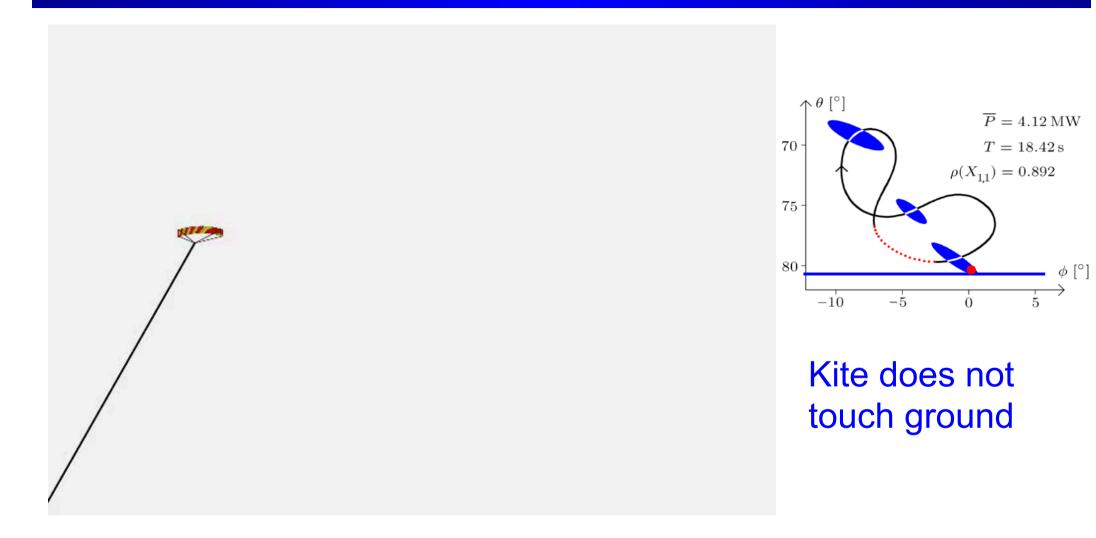
$$\dot{x}_{r}(t) = f(x_{r}(t), u(t), p, 0) \\ x_{r}(0) = x_{r}(T) \end{pmatrix} \begin{vmatrix} \dot{P}(t) = A(t)P(t) + P(t)A(t)^{T} \\ +B(t)B(t)^{T} \\ P(0) = P(T) \end{vmatrix}$$

$$0 \ge h_{i}(x_{r}(t), u(t), p) + \gamma \sqrt{c_{i}(t)P(t)c_{i}(t)^{T}}$$

$$for all t \in [0, T], i \in \{1, ..., n_{h}\}, A := \frac{\partial f}{\partial x}, B := \frac{\partial f}{\partial w}, c_{i} := \frac{\partial h_{i}}{\partial x}$$

Allows us to robustly satisfy inequality constraints!

Orbit optimized for stability



We have **generated** a stable attractor!

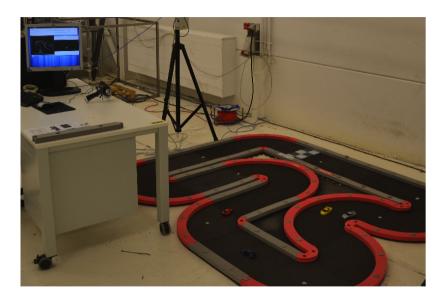
Main Advantage: formulation avoids non-smoothness, can use advanced optimal control algorithms

But:

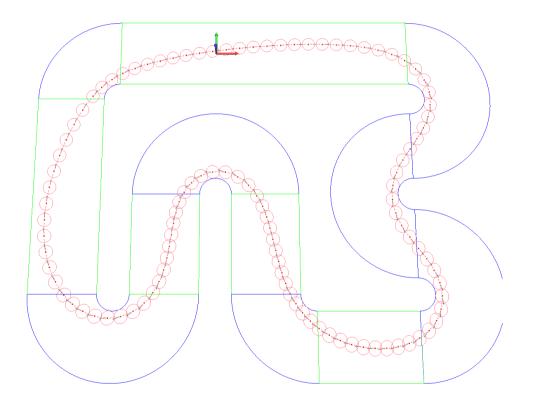
- 1st derivatives in problem: need 2nd derivatives for optimization
- Need homotopy: first use "virtual feedback", then shrink it $\dot{P}(t) = (A(t) \sigma I) P(t) + P(t) (A(t) \sigma I)^T + B(t) B(t)^T$

 Can solve periodic Lyapunov equation (a large, but linear system) with periodic Schur decomposition (Varga 1997), implemented as CasADi function, CPU savings up to factor 100 possible (PhD thesis Joris Gillis 2015)

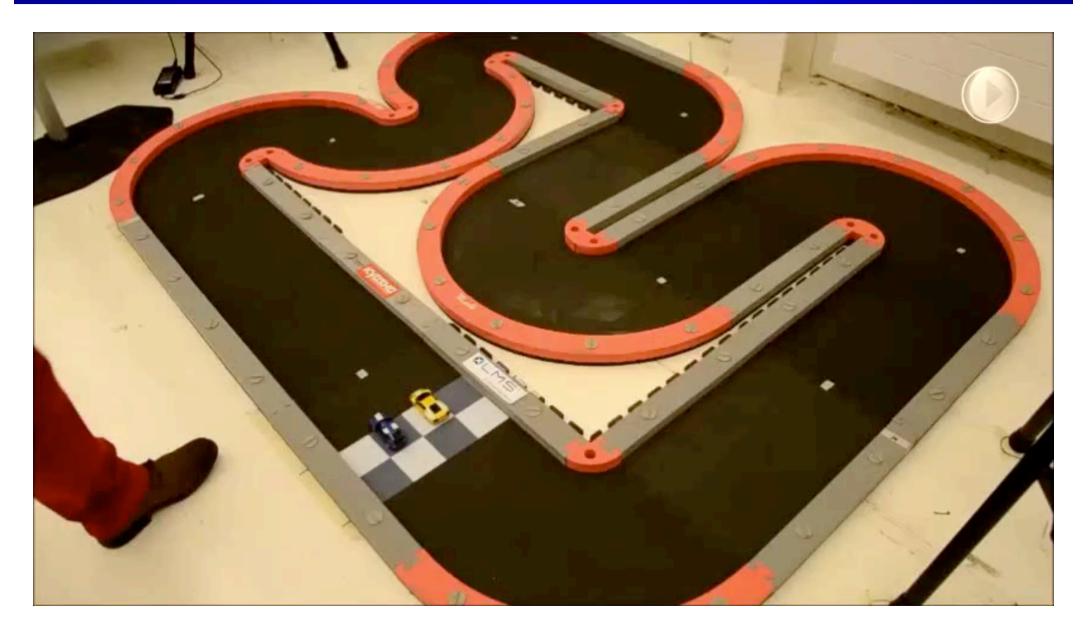
Robust Control of Control Race Cars (Greg Horn, Joris Gillis, Robin Verschueren)



- 6 states, i.e. $n_x = 6$
- 100 time steps, i.e. N = 100
- 6 disturbances, i.e. $n_w = 600$
- 2 controls and 4 feedback gains, i.e. $n_u = 204$
- solved in 40 seconds using CasADi and IPOPT

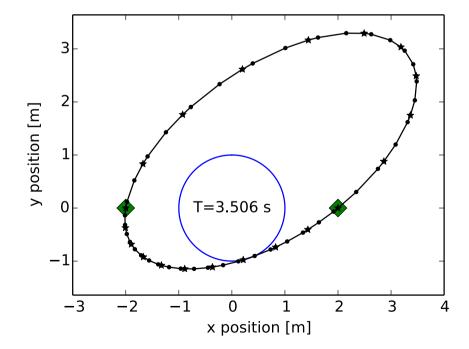


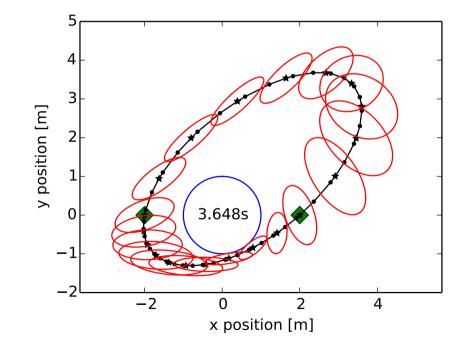
Robust Control of Control Race Cars (Greg Horn, Joris Gillis, Robin Verschueren)



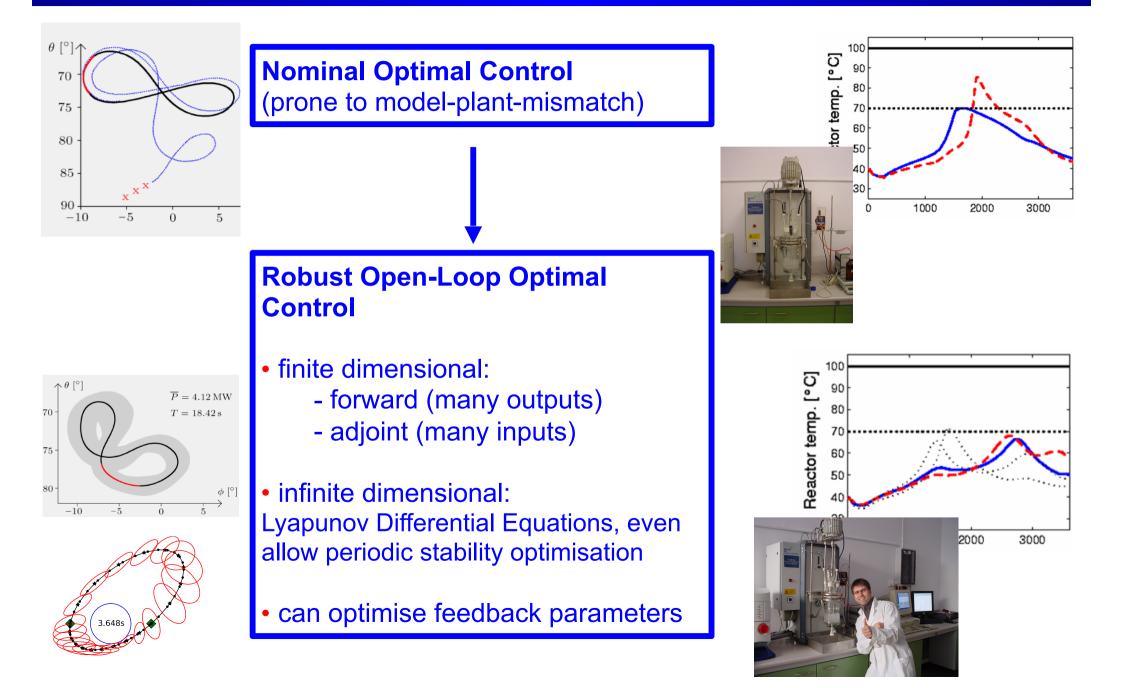
Quadcopter flight around obstacle (Joris Gillis)

Nominal Solution





Summary: from Nominal to Robust Optimal Control



- Motivating Example: Control of Batch Reactors
- Robustification by Linearization
- Lyapunov Differential Equations
- (L-Infinity bounded uncertainty omitted)
- Periodic Orbits for Power Generating Kites
- Open-Loop Stability Optimization

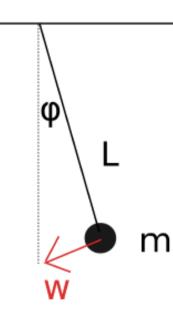
Thank you !

Difficult Case: L-Infinity Bounded Uncertainty

• Assumption:

 $\dot{x}(t) = A(t)x(t) + B(t)w(t)$ with x(0) = 0Uncertainty satisfies $||w(t)||_{\infty} \le 1$ for all $t \in [0, T]$

• Example:



Linearized Pendulum:

$$\begin{aligned} \dot{\varphi}(t) &= \omega(t) \\ \dot{\omega}(t) &= -\frac{g}{L}\varphi(t) + \frac{w(t)}{mL^2} \end{aligned}$$

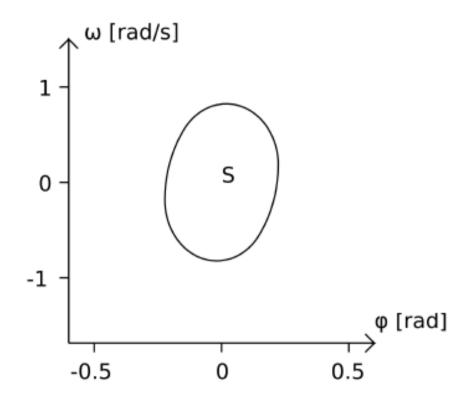
The torque *w* is unknown.

The Uncertainty Tube:

• Pick a time $t \in [0, T]$.

• Define
$$S(t) := \begin{cases} x(t) \in \mathbb{R}^{n_x} & \forall \tau \in [0,T]: \\ \dot{x}(\tau) = A(\tau)x(\tau) + B(\tau)w(\tau) \\ x(0) = 0 \\ \|w(\tau)\|_{\infty} \leq 1 \end{cases}$$

- S(t) = set of reachable states at time t.
- S(t) is convex.



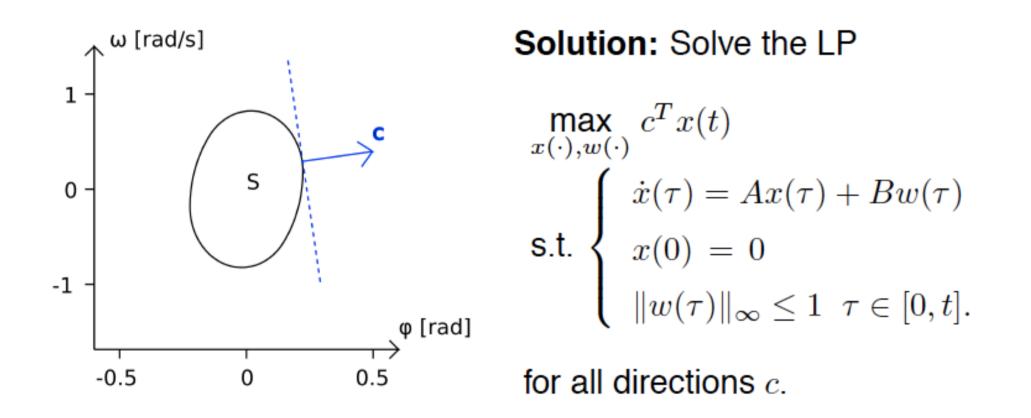
Example:

The set S(t) for the linearized pendulum.

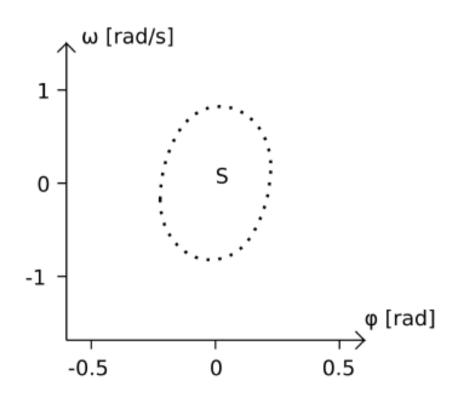
t [S]	<i>L</i> [m]	$g [m/s^2]$	<i>m</i> [kg]
1.2	1	9.81	1

Question: How can we compute the set S(t) ?

Uncertainty Tube for Pendulum



Question: How can we compute the set S(t) ?



CPU-time:

- Solve 100 LP's.
- Need approximately 1s for computing S(t).

Problem: Computing S(t) exactly takes very long if $n_x \gg 2$.

Dual of Infinite Dimensional LP

• Consider the Linear Program for a given c:

$$V(t) := \max_{\substack{x(\cdot), w(\cdot) \\ \text{s.t. } \dot{x}(\tau) = A(\tau)x(\tau) + B(\tau)w(\tau) \\ x(0) = 0 \qquad \|w(\tau)\|_{\infty}^2 \le 1$$

Reformulation step 1:

$$\begin{split} V(t) &= \max_{w(\cdot)} \int_0^t c^T H_t(\tau) w(\tau) \mathrm{d}\tau \quad \text{s.t.} \quad \|w_i(\tau)\|^2 \le 1 \\ &= \inf_{\lambda(\cdot)>0} \max_{w(\cdot)} \int_0^t \left[c^T H_t(\tau) w(\tau) - \sum_i \lambda_i(\tau) \left(w_i(\tau)^2 - 1 \right) \right] \mathrm{d}\tau \end{split}$$

Maximize dual function and transform further...

Reformulation step 2:

$$V(t) = \inf_{\Lambda(\cdot) \succ 0} \int_0^t \frac{c^T H_t(\tau) \Lambda(\tau)^{-1} H_t(\tau)^T c}{4} \,\mathrm{d}\tau + \int_0^t \mathrm{Tr}\left[\Lambda(\tau)\right] \,\mathrm{d}\tau \;.$$

with

$$\Lambda(\tau) := \operatorname{diag}(\lambda(\tau)) \in \mathbb{D}_{++}^{n_w}$$

Main idea: use a variable transformation of the form

$$\forall \tau \in [0, t]: R(\tau) := \frac{1}{\kappa} \Lambda(\tau) \exp\left(\int_{\tau}^{t} \frac{\operatorname{Tr}\left[\Lambda(\tau')\right]}{\kappa - \int_{\tau'}^{t} \operatorname{Tr}\left[\Lambda(s)\right] \, \mathrm{d}s} \, \mathrm{d}\tau'\right)$$

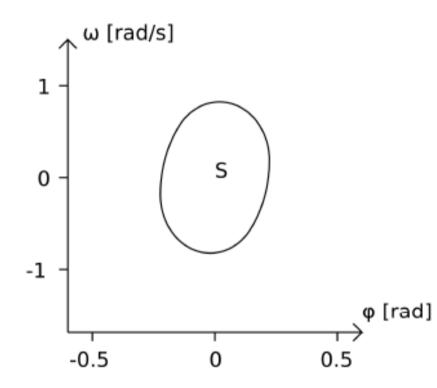
with $\kappa > \int_0^t \operatorname{Tr} \left[\Lambda(s) \right] ds$ being a sufficiently large constant.

...and introduce Lyapunov Equations again!

THEOREM [Houska & D. 2010]:

The function V can equivalently be expressed as

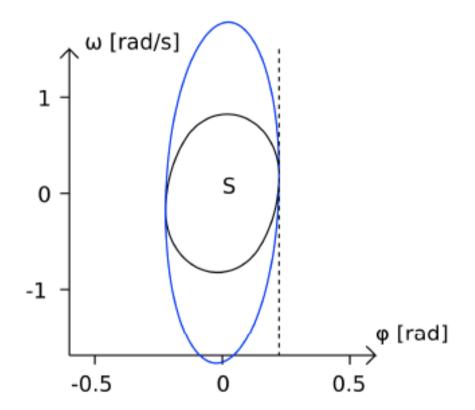
Note: worst case minimization problem, useful for robust counterpart!



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t) .$$

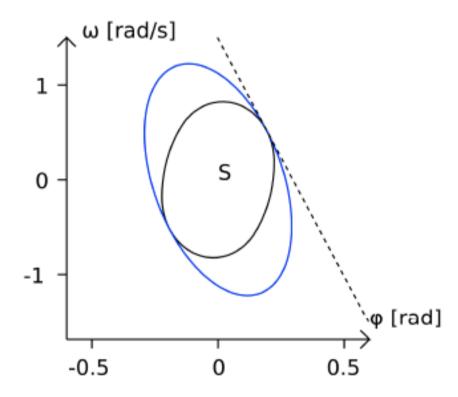
$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t) .$$

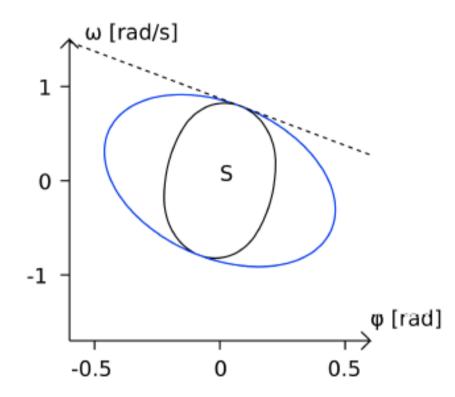
$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t)$$
.

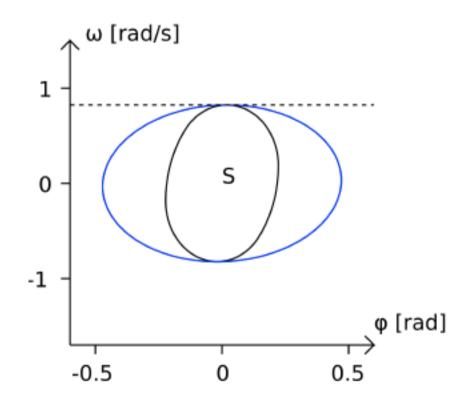
$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t) .$$

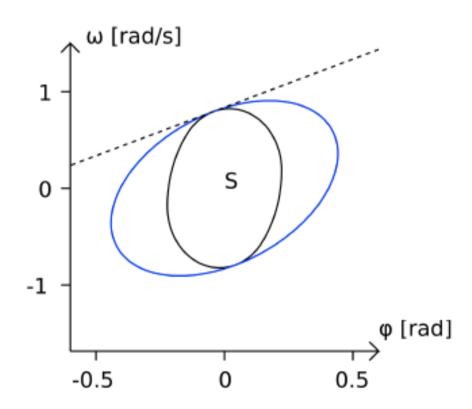
$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t) .$$

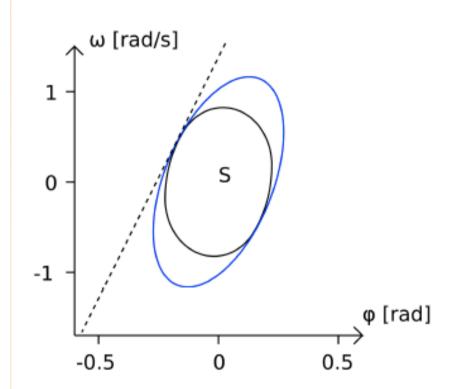
$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

$$Q(t) := (1 - \theta(t)) P(t) .$$

$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\}$$



 Solve the above problem for any direction c and set

 $Q(t) := (1 - \theta(t)) P(t)$.

Then we have

$$S(t) \subseteq \left\{ Q(t)^{\frac{1}{2}} v \mid v^T v \leq 1 \right\} \,.$$

Summary: The above theorem yields ellipsoidal outer-approximations of the set of reachable states, which are exact in a given direction c.