Distributed embedded optimization and applications on distributed sensing over water systems

Dang Doan

Syscop, IMTEK, University of Freiburg

Syscop retreat September 5th - 7th, 2016

Motivation

- Map of water control structures in Mekong Delta of Vietnam, 2009
 - Blue lines: rivers and canals
 - Connected squares: dikes
 - Round black dots: sluices
 - Red dots: major pumping stations
- Problems to address:
 - Lacking of sensing facilities
 - Burdensome investment cost for measuring water flow rates
 - Lacking of control strategies for water-related problems
- This regional water system is a potential application for distributed estimation and optimal control

Problem description

Solve convex problem with mixed quadratic and 1-norm cost:

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{y}} & & \frac{1}{2} \mathbf{x}^T H \mathbf{x} + g^T \mathbf{x} + \gamma \| \mathbf{y} \|_1 \\ & \text{s.t.} & & A_1 \mathbf{x} = b_1 \\ & & & A_2 \mathbf{x} \le b_2 \\ & & & \mathbf{y} = P \mathbf{x} - p \end{aligned}$$

with $\mathbf{x} = [x_1^T, \dots, x_M^T]^T$, separable Hessian $H = blkdiag(H_1, \dots, H_M)$ with H_i pos. def., $\gamma > 0$, and A_1, A_2, P have sparsity structure.

- Objective: design a distributed algorithm with fast convergence rate
- Key ideas:
 - Use accelerated proximal gradient (APG) algorithm (first order method)
 - Solve the dual problem
 - Distributing computations wrt. sparsity structure

Proximal gradient method

Solve unconstrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$$

- $g(\cdot)$ convex, differentiable
- h closed, convex, possible non-differentiable; with cheap **proximal mapping**: $\operatorname{prox}_h(x) \triangleq \arg\min_u(h(u) + \frac{1}{2}||u x||_2^2)$
- Iterative algorithm:

$$\mathbf{x}_{k+1} = \mathbf{prox}_{t_k h} (\mathbf{x}_k - t_k \nabla g(\mathbf{x}_k))$$

with step size $t_k > 0$, fixed or determined by line search.

• Intepretation: minimize a quadratic upper bound of the mixed objective function at the current iterate $y = \mathbf{x}_k$:

$$g(x) + h(x) \le f(y) + \nabla g(y)^{\dagger}(x - y) + \frac{L}{2}||x - y||_2 + h(x)$$

• Convergence rate when ∇g is Lipschitz continous: $\|\nabla g(x) - \nabla g(y)\|_2^2 \le L\|x - y\|_2, \forall x, y \text{ and step size } t_k = \frac{1}{L}$: need $O(\frac{1}{\epsilon})$ iterations for ϵ accuracy.

Accelerated proximal gradient method

• Iterative algorithm: start from $\mathbf{x}_0 \in \mathbf{dom}h$ and $\mathbf{y}_0 = \mathbf{x}_0$

$$\mathbf{x}_{k+1} = \mathbf{prox}_{t_k h} \left(\mathbf{y}_k - t_k \nabla g(\mathbf{y}_k) \right)$$

$$\mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \frac{k-1}{k+2} \left(\mathbf{x}_{k+1} - \mathbf{x}_k \right)$$

- Some properties:
 - Faster convergence than proximal gradient method
 - \bullet Compare to proximal gradient: need to store $\mathbf{y}_k,$ and one more simple matrix calculation
 - Convergence rate when ∇g is Lipschitz continous with constant L and $t_k = \frac{1}{L}$: need $O(\frac{1}{\sqrt{\epsilon}})$ iterations for ϵ accuracy.
 - Difficulty for application: this method only applies to unconstrained problems.

Applying APG to the dual problem

Primal problem:

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{y}} & & \frac{1}{2} \mathbf{x}^T H \mathbf{x} + g^T \mathbf{x} + \gamma \| \mathbf{y} \|_1 \\ & \text{s.t.} & & A_1 \mathbf{x} = b_1 & | & z_1 \\ & & & A_2 \mathbf{x} \leq b_2 & | & z_2 \\ & & & & \mathbf{y} = P \mathbf{x} - p & | & z_3 \end{aligned}$$

• Dual problem:

$$f(z) := \frac{1}{2} (A^T z + g)^T H^{-1} (A^T z + g) + B^T z$$

- with $z = [z_1^T, z_2^T, z_3^T]^T$
- $\nabla f(z) = \mathcal{A}H^{-1}(\mathcal{A}^Tz + g) + \mathcal{B}$, is Lipschitz continous with $L = \|\mathcal{A}H^{-1}\mathcal{A}^T\|_2$.
- Function $h(\cdot)$ in the APG method is indicator function $I_Z \triangleq z \in Z \Leftrightarrow z_2 \geq 0, |z_3| \leq \gamma * 1$, and $\mathbf{prox}_{I_Z}(z) = \arg\min_{u \in Z} \|u z\|_2^2 = \mathcal{P}_Z(z)$.

Applying APG to the dual problem

Iteration:

$$v^{k} = z^{k} + \frac{k-1}{k+2} (z^{k} - z^{k-1})$$
$$z^{k+1} = \mathcal{P}_{Z} \left(v^{k} - \frac{1}{L} \nabla f(v^{k}) \right)$$
$$\mathbf{x}^{k+1} = H^{-1} z^{k+1}$$

where \mathcal{P}_Z is the Euclidean projection onto the set Z. Thus, the new iterate, z^{k+1} , is the previous iterate plus a step in the negative gradient direction projected onto the feasible set.

Distributed dual accelerated proximal gradient

Table : Comparison for 100 random DMPC problems. DDAPG with different step size L is implemented in MATLAB while CPLEX and MOSEK are implemented in C.

Alg.	vars./constr.	tol.	# iters		exec (ms)	
			mean	max	mean	max
DDAPG (L)	4320/3231	0.005	69.8	160	253	609
DDAPG (L_1)	4320/3231	0.005	160	420	594	1532
DDAPG (L_F)	4320/3231	0.005	248	640	934	2444
MOSEK	4320/3231	-	-	-	1945	2674
CPLEX	4320/3231	0.005	-	-	1663	2832
DDAPG (L)	2160/1647	0.005	63.8	100	94	200
DDAPG (L_1)	2160/1647	0.005	75.8	180	115	368
DDAPG (L_F)	2160/1647	0.005	121	320	185	488
MOSEK	2160/1647	-	-	-	334	399
CPLEX	2160/1647	0.005	-	-	282	52212

Distributed dual accelerated proximal gradient

- Applicability and properties of DDAPG method:
 - Mixed convex quadratic and 1-norm costs
 - Linear constraints
 - Inversion of *H* is pre-calculated (invariant)
 - Fast convergence rate (among first-order methods), with a suboptimality of $O(\frac{1}{L^2})$
- Application of DDAPG on distributed MPC of a Hydro Power Valley:
 - Distributed MPC can handle the power reference tracking
 - Depending on the availability of the communication structure, distributed MPC achieve different sub-optimality
 - When the problem is sparse, distributed optimization is well suited and can outperform centralized optimization algorithms

Future research on distributed sensing over water systems

- Implement DDAPG method into embedded systems:
 - Mostly only need simple linear algebra operations
 - For prototyping: Linux-enabled box (BeagleBone, RPi, Udoo, Odroid...)
 - Promising to be implemented only with C code on non-OS microcontrollers
- Distributed sensing over water systems:
 - Modelling of the water system as a network of cooperative subsystems
 - Formulate the moving-horizon estimation problem over the water system
 - Implement DDAPG method for the MHE problem with the network of microcontrollers

Intended tasks in implementation - DISCUSSIONS

- Implement DDAPG solver on microcontrollers:
 - Develop with C code, on ARM / MIPS architecture
 - Construct basic linear algebra library (matrix addition, multiplication, assign, get sub-matrix)
 - Pre-condition for general starting optimization problems (may be implemented on PC)
 - Build communication procedure (choose transmission protocol, define frame of data, method of synchronization)
 - Power supply (battery, solar cell)
- Formulate the distributed MHE over water systems:
 - Modelling: from physical model, make mathematical model (discretization, reduction)
 - Identification: if detailed physical model not available, do system identification with low-order models
 - Need sensors for measurement of water levels, water flows
 - Formulate the MHE for estimating water flows on where the sensors are not available

Discussions...

Thank you for your attention and discussions!