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Motivation

@ Map of water control structures in
Mekong Delta of Vietnam, 2009
Blue lines: rivers and canals
Connected squares: dikes
Round black dots: sluices
o Red dots: major pumping stations
@ Problems to address:
o Lacking of sensing facilities
o Burdensome investment cost for
measuring water flow rates
o Lacking of control strategies for
water-related problems

@ This regional water system is a
potential application for distributed
estimation and optimal control




Problem description

@ Solve convex problem with mixed quadratic and 1-norm cost:
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min - ox"Hx+g"x +v]lys
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with x = [x],--- , x|, separable Hessian H = blkdiag(Hs, - - - , Hu) with H;
pos. def., v > 0, and Ay, A, P have sparsity structure.
@ Objective: design a distributed algorithm with fast convergence rate
@ Key ideas:
o Use accelerated proximal gradient (APG) algorithm (first order method)

o Solve the dual problem
o Distributing computations wrt. sparsity structure



Proximal gradient method
@ Solve unconstrained problem:

min£(x) = g(x) + (x)

o g(-) convex, differentiable
@ hclosed, convex, possible non-differentiable; with cheap proximal mapping:
prox,(x) £ argminy(h(u) + 3 |lu — x||3)

@ lterative algorithm:

Xkr1 = ProX,, (Xx — tVg(Xk))
with step size fx > 0, fixed or determined by line search.

@ Intepretation: minimize a quadratic upper bound of the mixed objective
function at the current iterate 7y = Xg:
9(x) + h(x) < f(y) + Va(y) y) + 5lx = yll2 + h(x)

@ Convergence rate when Vg is Llpschltz continous:

IVg(x) — Va(y)|3 < L||x — yl|2, Vx, y and step size t = +: need O(2)
iterations for e accuracy.



Accelerated proximal gradient method

@ lterative algorithm: start from xo € domh and y, = xo

Xkt = ProX, , (Yx — %V9(Yx))
1

kT2 (X1 — Xk)

Yir1 = Xkt +

@ Some properties:
o Faster convergence than proximal gradient method
o Compare to proximal gradient: need to store y,, and one more simple matrix
calculation
e Convergence rate when Vg is Lipschitz continous with constant L and tx = {:
need O(ﬁ) iterations for € accuracy.
o Difficulty for application: this method only applies to unconstrained problems.



Applying APG to the dual problem

@ Primal problem:

. 1
min EXTHX +a"x+7lyll1
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s.t. Aix = by | Z
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@ Dual problem:

1
f(z) = E(ATZ +9)"H ' (ATz+9)+Bz

o withz=1[z],2],2]]"
o Vf(z) = AH (A" z + g) + B, is Lipschitz continous with L = || AH™' A"||..
e Function h(-) in the APG method is indicator function

lz2zcZ& 2>0,]z3) <vyx1,and

prox,,(z) = argminyez [|u — 2|5 = Pz(2).



Applying APG to the dual problem

lteration:
k—1
Vk +m(zk_zk—1)
=Pz (v - —Vf(v )>
— H1

where Py is the Euclidean projection onto the set Z. Thus, the new iterate, zK+'

is the previous iterate plus a step in the negative gradient direction projected onto
the feasible set.




Distributed dual accelerated proximal gradient

Table : Comparison for 100 random DMPC problems. DDAPG with different step size L is
implemented in MATLAB while CPLEX and MOSEK are implemented in C.

Alg. vars./constr. tol. 7 iters exec (ms)
mean | max | mean | max
DDAPG (L) 4320/3231 | 0.005 | 69.8 | 160 | 253 609
DDAPG (L) | 4320/3231 | 0.005 | 160 | 420 | 594 | 1532
DDAPG (Lg) | 4320/3231 | 0.005 | 248 | 640 | 934 | 2444
MOSEK 4320/3231 - - - 1945 | 2674
CPLEX 4320/3231 | 0.005 - - 1663 | 2832
DDAPG (L) 2160/1647 | 0.005 | 63.8 | 100 94 200
DDAPG (L) | 2160/1647 | 0.005 | 75.8 | 180 | 115 368
DDAPG (Lg) | 2160/1647 | 0.005 | 121 320 | 185 488
MOSEK 2160/1647 - - - 334 399




Distributed dual accelerated proximal gradient

@ Applicability and properties of DDAPG method:
@ Mixed convex quadratic and 1-norm costs
o Linear constraints
o Inversion of H is pre-calculated (invariant)
o Fast convergence rate (among first-order methods), with a suboptimality of
O(z)
@ Application of DDAPG on distributed MPC of a Hydro Power Valley:
o Distributed MPC can handle the power reference tracking
o Depending on the availability of the communication structure, distributed MPC
achieve different sub-optimality
o When the problem is sparse, distributed optimization is well suited and can
outperform centralized optimization algorithms



Future research on distributed sensing over water
systems

@ Implement DDAPG method into embedded systems:
@ Mostly only need simple linear algebra operations
o For prototyping: Linux-enabled box (BeagleBone, RPi, Udoo, Odroid...)
e Promising to be implemented only with C code on non-OS microcontrollers

@ Distributed sensing over water systems:

o Modelling of the water system as a network of cooperative subsystems

o Formulate the moving-horizon estimation problem over the water system

o Implement DDAPG method for the MHE problem with the network of
microcontrollers




Intended tasks in implementation - DISCUSSIONS

@ Implement DDAPG solver on microcontrollers:

o Develop with C code, on ARM / MIPS architecture

o Construct basic linear algebra library (matrix addition, multiplication, assign, get
sub-matrix)

o Pre-condition for general starting optimization problems (may be implemented
on PC)

o Build communication procedure (choose transmission protocol, define frame of
data, method of synchronization)

o Power supply (battery, solar cell)

@ Formulate the distributed MHE over water systems:

o Modelling: from physical model, make mathematical model (discretization,
reduction)

o Identification: if detailed physical model not available, do system identification
with low-order models

@ Need sensors for measurement of water levels, water flows

o Formulate the MHE for estimating water flows on where the sensors are not
available



Discussions...

Thank you for your attention and discussions!




