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Motivation
Map of water control structures in
Mekong Delta of Vietnam, 2009

Blue lines: rivers and canals
Connected squares: dikes
Round black dots: sluices
Red dots: major pumping stations

Problems to address:
Lacking of sensing facilities
Burdensome investment cost for
measuring water flow rates
Lacking of control strategies for
water-related problems

This regional water system is a
potential application for distributed
estimation and optimal control
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Problem description
Solve convex problem with mixed quadratic and 1-norm cost:

min
x,y

1
2

xT Hx + gT x + γ‖y‖1

s.t. A1x = b1

A2x ≤ b2

y = Px− p

with x = [xT
1 , · · · , xT

M ]
T , separable Hessian H = blkdiag(H1, · · · ,HM) with Hi

pos. def., γ > 0, and A1,A2,P have sparsity structure.

Objective: design a distributed algorithm with fast convergence rate
Key ideas:

Use accelerated proximal gradient (APG) algorithm (first order method)
Solve the dual problem
Distributing computations wrt. sparsity structure
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Proximal gradient method
Solve unconstrained problem:

min
x

f (x) = g(x) + h(x)

g(·) convex, differentiable
h closed, convex, possible non-differentiable; with cheap proximal mapping:
proxh(x) , arg minu(h(u) + 1

2‖u − x‖2
2)

Iterative algorithm:

xk+1 = proxtk h (xk − tk∇g(xk))

with step size tk > 0, fixed or determined by line search.
Intepretation: minimize a quadratic upper bound of the mixed objective
function at the current iterate y = xk :
g(x) + h(x) ≤ f (y) +∇g(y)T (x − y) + L

2‖x − y‖2 + h(x)
Convergence rate when ∇g is Lipschitz continous:
‖∇g(x)−∇g(y)‖2

2 ≤ L‖x − y‖2,∀x , y and step size tk = 1
L : need O( 1

ε )
iterations for ε accuracy.
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Accelerated proximal gradient method

Iterative algorithm: start from x0 ∈ domh and y0 = x0

xk+1 = proxtk h (yk − tk∇g(yk))

yk+1 = xk+1 +
k − 1
k + 2

(xk+1 − xk)

Some properties:
Faster convergence than proximal gradient method
Compare to proximal gradient: need to store yk , and one more simple matrix
calculation
Convergence rate when ∇g is Lipschitz continous with constant L and tk = 1

L :
need O( 1√

ε
) iterations for ε accuracy.

Difficulty for application: this method only applies to unconstrained problems.
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Applying APG to the dual problem
Primal problem:

min
x,y

1
2

xT Hx + gT x + γ‖y‖1

s.t. A1x = b1 | z1

A2x ≤ b2 | z2

y = Px− p | z3

Dual problem:

f (z) :=
1
2
(AT z + g)T H−1(AT z + g) + BT z

with z = [zT
1 , z

T
2 , z

T
3 ]

T

∇f (z) = AH−1(AT z + g) + B, is Lipschitz continous with L = ‖AH−1AT‖2.
Function h(·) in the APG method is indicator function
IZ , z ∈ Z ⇔ z2 ≥ 0, |z3| ≤ γ ∗ 1, and
proxIZ

(z) = arg minu∈Z ‖u − z‖2
2 = PZ (z).
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Applying APG to the dual problem

Iteration:

vk = zk +
k − 1
k + 2

(zk − zk−1)

zk+1 = PZ

(
vk − 1

L
∇f (vk)

)
xk+1 = H−1zk+1

where PZ is the Euclidean projection onto the set Z . Thus, the new iterate, zk+1,
is the previous iterate plus a step in the negative gradient direction projected onto
the feasible set.
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Distributed dual accelerated proximal gradient

Table : Comparison for 100 random DMPC problems. DDAPG with different step size L is
implemented in MATLAB while CPLEX and MOSEK are implemented in C.

Alg. vars./constr. tol. # iters exec (ms)
mean max mean max

DDAPG (L) 4320/3231 0.005 69.8 160 253 609
DDAPG (L1) 4320/3231 0.005 160 420 594 1532
DDAPG (LF ) 4320/3231 0.005 248 640 934 2444

MOSEK 4320/3231 - - - 1945 2674
CPLEX 4320/3231 0.005 - - 1663 2832

DDAPG (L) 2160/1647 0.005 63.8 100 94 200
DDAPG (L1) 2160/1647 0.005 75.8 180 115 368
DDAPG (LF ) 2160/1647 0.005 121 320 185 488

MOSEK 2160/1647 - - - 334 399
CPLEX 2160/1647 0.005 - - 282 5228 / 12



Distributed dual accelerated proximal gradient

Applicability and properties of DDAPG method:
Mixed convex quadratic and 1-norm costs
Linear constraints
Inversion of H is pre-calculated (invariant)
Fast convergence rate (among first-order methods), with a suboptimality of
O( 1

k2 )

Application of DDAPG on distributed MPC of a Hydro Power Valley:
Distributed MPC can handle the power reference tracking
Depending on the availability of the communication structure, distributed MPC
achieve different sub-optimality
When the problem is sparse, distributed optimization is well suited and can
outperform centralized optimization algorithms
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Future research on distributed sensing over water
systems

Implement DDAPG method into embedded systems:
Mostly only need simple linear algebra operations
For prototyping: Linux-enabled box (BeagleBone, RPi, Udoo, Odroid...)
Promising to be implemented only with C code on non-OS microcontrollers

Distributed sensing over water systems:
Modelling of the water system as a network of cooperative subsystems
Formulate the moving-horizon estimation problem over the water system
Implement DDAPG method for the MHE problem with the network of
microcontrollers
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Intended tasks in implementation - DISCUSSIONS
Implement DDAPG solver on microcontrollers:

Develop with C code, on ARM / MIPS architecture
Construct basic linear algebra library (matrix addition, multiplication, assign, get
sub-matrix)
Pre-condition for general starting optimization problems (may be implemented
on PC)
Build communication procedure (choose transmission protocol, define frame of
data, method of synchronization)
Power supply (battery, solar cell)

Formulate the distributed MHE over water systems:
Modelling: from physical model, make mathematical model (discretization,
reduction)
Identification: if detailed physical model not available, do system identification
with low-order models
Need sensors for measurement of water levels, water flows
Formulate the MHE for estimating water flows on where the sensors are not
available
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Discussions...

Thank you for your attention and discussions!
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