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Introduction

Class of problems

Multibody systems with intermittent contacts, problems such as robotic

locomotion or manipulation.

Issues

• High dimensional systems

• Nonlinear dynamics

• Discontinuities due to intermittent contact forces

• Holonomic constraints (Index 3 DAE)
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Model

Planar humanoid robot model

Objective

We want to �nd a periodic walking behaviour in order to make the system

climb up the slope in an optimal way.
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Problem statement

Scheduled sequence of phases

TRANSITION
Single support phase

Only the right foot touches the ground

Double support phase

Both feet in contact with the ground
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Problem statement

Periodicity of motion

Initial state Final state

We are optimizing only half of a cycle!
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OCP formulation

Continuous time optimal control problem

min
x(·),u(·),T

∫ T
2

0

L(x(t), u(t))dt

subject to xred(0) = π1xred

(
T

2

)
periodicity constraints

F (x , ẋ , z , u) = 0 dynamics

fimpulsive(x+, x−,Ψ) = 0 impulsive equations in transition

h(x(t)) ≥ 0 path constraints

States and controls

x =

(
q
q̇

)
∈ R22 z =

(
q̈
FC

)
∈ R15 u = τ ∈ R8

1π is a permutation matrix
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OCP formulation

Discrete time optimal control problem

NLP

min
w

f (w)

s.t. g(w) = 0

h(w) ≥ 0

wmin ≤ w ≤ wmax

Constraints

• System dynamics, discretized using direct collocation (Lagrange

polynomial of order 2, collocation at Radau points)

• Continuity of the di�erential states on the time grid

• Impulsive dynamics equations at transition between di�erent phases

• No collision during single support phase

• Friction

• Periodicity on all the states, except for x
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Constraints

Multiphase dynamics...

t ∈ [0, tTRANS ]


ẋ = f (x , z)

gdyn(x , z , u) = 0

gS(x , z) = 0

t ∈ [tTRANS , tEND ]


ẋ = f (x , z)

gdyn(x , z , u) = 0

gD(x , z) = 0
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ẋ = f (x , z)

gdyn(x , z , u) = 0

FCL
= 0

pR(x) = 0

t ∈ [tTRANS , tEND ]


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Constraints

Multiphase dynamics...with invariants!

t ∈ [0, tTRANS ] t ∈ [tTRANS , tEND ]

pR (x(0)) = 0

ṗR (x(0)) = 0


ẋ = f (x , z)

FCL
= 0

p̈R(x) = 0

pR (x(tTRANS)) = 0

pL (x(tTRANS)) = 0

ṗR (x(tTRANS)) = 0

ṗL (x(tTRANS)) = 0


ẋ = f (x , z)

p̈R(x) = 0

p̈L(x) = 0

Transition
q+ = q−

M(q) (q̇+ − q̇−) = Impulse

JCR
(q)q̇+ = 0

JCL
(q)q̇+ = 0
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ẋ = f (x , z)

FCL
= 0

p̈R(x) = 0

pR (x(tTRANS)) = 0

pL (x(tTRANS)) = 0
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Constraints

Taking into account periodicity constraints
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
ẋ = f (x , z)

FCL
= 0

p̈R(x) = 0
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
ẋ = f (x , z)
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JCR
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Constraints
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q+ = q−

M(q) (q̇+ − q̇−) = Impulse

JCR
(q)q̇+ = 0

JCL
(q)q̇+ = 0

Periodicity constraints implicitly imply

pLy (x(0)) = pRy (x(tEND))

pRy (x(0)) = pLy (x(tEND))
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ẋ = f (x , z)

p̈R(x) = 0

p̈L(x) = 0

Transition
q+ = q−

M(q) (q̇+ − q̇−) = Impulse

JCR
(q)q̇+ = 0

Periodicity constraints implicitly imply

pLy (x(0)) = pRy (x(tEND))

pRy (x(0)) = pLy (x(tEND))
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Objective function

What do we optimize for?

• Minimize the positive work:

N∑
k=0

∑
i∈A

max (τi ,k q̇i ,k , 0) hk

Slack variables to deal with non-smooth objective:

N∑
k=0

∑
i∈A

si,khk

{
si,k ≥ 0

si,k ≥ τi,k q̇i,k

• Minimize control variations:

N−1∑
k=0

∑
i∈A

(τi ,k+1 − τi ,k)2

Silvia Manara Group Retreat, Freiburg, September 5, 2016 10 / 14



Objective function

What do we optimize for?

• Minimize the positive work:

N∑
k=0

∑
i∈A

max (τi ,k q̇i ,k , 0) hk

Slack variables to deal with non-smooth objective:

N∑
k=0

∑
i∈A

si,khk

{
si,k ≥ 0

si,k ≥ τi,k q̇i,k

• Minimize control variations:

N−1∑
k=0

∑
i∈A

(τi ,k+1 − τi ,k)2

Silvia Manara Group Retreat, Freiburg, September 5, 2016 10 / 14



Results

Horizontal walk
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Results

Climb
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Results

Steep climb
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Thank you!
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