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Exercises for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2016

Exercise 8: Recursive Least Squares
(to be returned on Jan 10th, 2017, 10:00 or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Robin Verschueren, Rachel Leuthold, Tobias Schöls, Mara Vaihinger

In this exercise you will implement a Recursive Least Squares (RLS) estimator and a forward simulation
of a robot.
For the the MATLAB exercises, create a MATLAB script called main.m with your code, possibly calling
other functions/scripts. From running this script, all the necessary results and plots should be clearly
visible. Compress all the files/functions/scripts necessary to run your code in a .zip file and send it to
msi.syscop@gmail.com. Please state your name and the names of your team members in the e-mail.

Exercise Tasks

We will apply the Recursive Least Squares (RLS) algorithm to position data of a 2-DOF moving in the
X − Y plane, measured with a sampling time of 0.0159 s. The movement of the robot depends on the
angular velocities of the left and the right wheel ωL and ωR, as well as on their radii RL and RR. Differing
radii influence the behaviour of the robot.
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The system can be described by a state space model with three internal states. The state vector x =
[x y β]> contains the position of the robot in theX−Y plane and the deviation β from its initial orientation.
The system can be controlled by the angular velocities of the wheels: u = [ωL ωR]>. The output of the
system is the position of the robot: y = [x y]>. The model follows as

ẋ =

 v · cos β

v · sin β
ωLRL−ωRRR
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)
(1)

with L being the length of the axis between the two wheels and velocity v given by v = ωL·RL+ωR·RR

2
.

1. Recursive Least Squares applied to position data (6 points)

It is your task to implement the RLS algorithm in MATLAB and to tune it with the appropriate
”forgetting factors”. As you can see, the model for the position of the robot is nonlinear. To keep it
simple, in task (1) we approximate the position data by a fourth order polynomial. The position data
for this exercise can be downloaded from the course website. You can assume that the noise on the
X and Y measurements is independent. The experiment starts at t = 0 s.
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(a) Fit a 4-th order polynomial through the data using ordinary Least Squares Hint: you need one
estimator for each coordinate. Plot the data and the fit both in the X −Y plane and separately.
Does the fit seem reasonable? Why do you think that is? (1 points)

(b) Implement the RLS algorithm as described in the script to estimate 4-th order polynomials to
fit the data. Do not use forgetting factors yet. Plot the result against the data. Compare the LS
estimator from a) with the RLS estimator after processing N measurements. Please give an
explanation for your observations. (2 points)

(c) Add forgetting factors to your algorithm. Tune them to obtain 1) a smoother curve and 2) a less
smooth curve. Did you arrive to the same results for both forgetting factors? Plot the results
on the same plot as the previous question. (1 point)

(d) Plot the ”one step ahead prediction” at each point (i.e. extrapolate your polynomial fit to the
next time step), along with the 1−σ confidence ellipsoid around this point, and the data. First,
think about how to compute the covariance Σp on the position, if you know the covariance
of the estimator Σθ. Do the confidence ellipsoids grow bigger or smaller as you take more
measurements? Hint: use the fact that for a random variable γ = Aθ, where A is a matrix,
cov(γ) = Acov(θ)AT . (2 points)

2. Forward simulation of a robot’s position (5 points)

In this task you will simulate the position of the two-wheel-robot using the state space model.

(a) Given the state space model and the system state x = [x y β]>, implement a function
[xdot] = robot_ode(t,x,u,param) which evaluates the right-hand side of the ODE
ẋ = f(x, u, param), with param = [RL, RR, L]. Use the following parameters: RL = 0.2 m,
RR = 0.2 m and L = 0.6 m. (1 point)

(b) Implement a function [x_next] = euler_step(deltaT,x0,u,@ode,param)which
performs one integration step for a general ODE ẋ = f(x, u, param) starting at x0, with input
u, parameters param and an integration interval ∆T . (1 point)

(c) Use the implemented function [x_next] = euler_step(deltaT,x0,u,@ode,param)
to build a function [x_sim] = sim_euler(t,x0,u,param)which simulates the robot’s
behaviour given a set of inputs u. Starting at x0 = [0 0 0]>, and using param = [0.2 0.2 0.6]>

and u, simulate the system and plot the simulated path of the robot. (1 point)

(d) Repeat step (b) and (c) for a Runge-Kutta integrator of order 4 instead of Euler: Implement a
function [x_next] = rk4_step(deltaT,x0,u,@ode,param) which performs one
integration step for a general ODE and a function [x_sim] = sim_rk4(t,x0,u,param)
which simulates the robot’s position. Have a look at the script on page 58 to find more infor-
mation on the Runge-Kutta integrator. Plot the simulated path of the robot into the same plot
as in (c). Do you see any difference? (2 points)

This sheet gives in total 11 points
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