Modelling and System Identification – Microexam 1

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg November 17, 2015, 8:15-9:15, Freiburg

Surname: Study:		Name:	Matriculation number:				
		Studiengang: Bachelor Master					
Please	e fill in your name above and	tick exactly one box for the	right answer of each question belo	w.			
1.	That is the probability density function (PDF) $p_X(x)$ for a normally distributed random variable X with mean -3 and standard eviation 3 ? The answer is $p_X(x) = \frac{1}{\sqrt{2\pi 9}} \dots$						
	(a) $e^{-\frac{(x+3)^2}{6}}$	(b) $e^{-\frac{(x+3)^2}{18}}$	(c) $e^{\frac{(x-3)^2}{18}}$				
2.	What does the term $\frac{1}{\sqrt{2\pi 9}}$ in $p_X(x)$ ensure?						
	(a) $\int_{-\infty}^{\infty} p(x) = 1$		(c) $p(x) \ge 0$	(d) Nothing			
3.	What is the PDF of a variable y with uniform distribution on the interval $[5,7]$? For $z \in [5,7]$ it has the value:						
	(a) $ p_z(y) = \frac{1}{2^2} $		(c) $p_y(z) = \frac{1}{\sqrt{2}}$				
4.	What is the PDF of an n -dimensional normally distributed variable Z with zero mean and covariance matrix $\Sigma \succ 0$? The answer is $p_Z(x) = \dots$						
	(a) $\frac{1}{\sqrt{(2\pi)^n \operatorname{trace}(\Sigma)}} e^{-\frac{1}{2}}$		(b) $\frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{-\frac{1}{2}x}$	$e^T \Sigma^{-1} x$			
		$\Sigma^{-1}x$	$(d) \qquad \frac{1}{\sqrt{2\pi \operatorname{trace}(\Sigma)}} e^{\frac{1}{2}x^T \Sigma}$	$\Sigma^{-1}x$			
5.	Regard a random variable $X \in \mathbb{R}^n$ with mean $\mu \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For a fixed $b \in \mathbb{R}^m$ and $D, A \in \mathbb{R}^{m \times n}$, regard another random variable Y defined by $Y = Ab + DX$. What is the covariance matrix of Y ?						
	(a) $D\Sigma D^T$	(b) $A^T \Sigma^{-1} A$	(c) $D^{-1}\Sigma(D^T)^{-1}$				
6.	Above in Question 5, what is the mean of the matrix valued random variable $Z = YY^T$?						
	(a) $(Ab + D\mu)(Ab + D\mu)^T + D\Sigma D^T$		(b) $(Ab + D\mu)(Ab + D\mu)$	(b) $(Ab + D\mu)(Ab + D\mu)^T$			
	(c) $\triangle Abb^TA^T + 2Ab\mu^TD^T + D\Sigma D^T$			(d) $D^T A^T A b + 2\mu^T D^T A b + b^T \Sigma D^T$			
7.	A scalar random variable has the variance w. What is its standard deviation?						
	(a) w		(c) w^2	(d) \sqrt{w}			
8.	an of the random variable $y = \lambda^2$?						
	(a) 0	(b) d	(c) \(d^2\)	(d) $\lambda + d$			
9.	Regard a random variable $X \in \mathbb{R}^n$ with zero mean and covariance matrix Σ . Given a vector $c \in \mathbb{R}^n$, what is the mean o $Z = c^T X X^T c$?						
	(a) \Box $\det(\Sigma)$	(b) $c^T \operatorname{trace}(\Sigma)c$	(c) $c^T \Sigma c$				
10.	What is the minimizer x^* of the convex function $f: \mathbb{R}_{++} \to \mathbb{R}$, $f(x) = -\log(x) + 5x$?						
	$(a) x^* = -5$	(b) $x^* = 1/5$	(c) $x^* = e^5 - 1$				

points on page: 10

11.	What is the minimizer x^* of the convex	$1 \beta > 0 ?$				
	(a) $x^* = \frac{\beta}{\alpha}$ (b)	$x^* = \frac{\beta}{4\alpha}$	(c) $x^* = \frac{\alpha}{\beta}$	$(d) \qquad x^* = \frac{2\beta}{\alpha}$		
12.	What is the minimizer of the function $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \ -b + D^T x\ _2^2$ (with D^T of rank n)? The answer is $x^* = \dots$					
	(a)	$(DD^T)^{-1}Db$	(c) $-(DD^T)^{-1}Db$	$(d) \boxed{ (D^T D)^{-1} D^T b}$		
13.	For a matrix $\Phi \in \mathbb{R}^{N \times d}$ with rank d , what is its pseudo-inverse Φ^+ ?					
	(a)	$(\Phi\Phi^T)^{-1}\Phi$	(c) $(\Phi^T \Phi)^{-1} \Phi^T$	$(d) (\Phi^T \Phi)^{-1} \Phi$		
14.	Given a sequence of numbers $y(1), \ldots, y(N)$, what is the minimizer θ^* of the function $f(\theta) = \sum_{k=1}^{N} (y(k) - 3\theta)^2$?					
	(a)	$\frac{\sum_{k=1}^{N} y(k)}{3N}$	(c) $ \frac{1}{9N} \sum_{k=1}^{N} y(k)^2 $	$(d) \qquad \frac{\sum_{k=1}^{N} y(k)}{9N}$		
15.	5. Given a prediction model $y(k) = \theta_2 x(k) + 2\theta_1 + \theta_3 x(k)^3 + \epsilon(k)$ with unknown parameter vector $\theta = (\theta_1, \theta_2, \theta_3)$ assuming i.i.d. noise $\epsilon(k)$ with zero mean, and given a sequence of N scalar input and output measurements $x(1), \ldots$ and $y(1), \ldots, y(N)$, we want to compute the linear least squares (LLS) estimate $\hat{\theta}_N$ by minimizing the function $\ y_N - \Phi_N \theta\ _2^2$. If $y_N = (y(1), \ldots, y(N))^T$, how do we need to choose the matrix $\Phi_N \in \mathbb{R}^{N \times 2}$?					
	$\begin{bmatrix} (a) & & & & \\ x(1) & 2 & x(1)^3 \\ \vdots & \vdots & \\ x(1) & 2 & x(N)^3 \end{bmatrix} \qquad \begin{bmatrix} (b) \\ \vdots \\ x(N) \end{bmatrix}$	$\begin{bmatrix} 1 & x(1)^3 \\ \vdots & & \\ 1 & x(N)^3 \end{bmatrix}$	$\begin{bmatrix} (c) & & & & \\ 1 & x(1) & x(1)^3 \\ \vdots & \vdots & & \\ 1 & x(N) & x(N)^3 \end{bmatrix}$	$\begin{bmatrix} (d) & & & & \\ 2 & x(1) & x(1)^3 \\ \vdots & \vdots & \\ 2 & x(N) & x(N)^3 \end{bmatrix}$		
16. Which of the following is NOT a name of a probability distribution?						
	(a) Uniform (b)	Gaussian	(c) Newton	(d) Laplace		
17.	Given a random variable X , where $X \sim \mathcal{U}[-1,1]$, regard the following X -dependent random variables Y . For one of th and Y are uncorrelated, which one?					
	(a) $y = \sin(x)$ (b)	$y = \cos(x)$	(c) $y = x^3$	$(d) \qquad y = e^x$		
18.	Given a set of measurements y_N following the model $y_N = \Phi_N \theta_0 + \epsilon$, where Φ_N is a regression matrix, θ_0 a vector with true parameter values and $\epsilon(k) \sim \mathcal{N}(0, \sigma_\epsilon^2)$ the noise contribution for $k = 1,, N$, we can compute the LLS estimator of the parameters θ as $\hat{\theta}_{LS}$. Defining the covariance of $\hat{\theta}_{LS}$ as $\Sigma_{\hat{\theta}}$, which of the following is NOT true?					
	(a) $\hat{\theta}_{LS}$ is a random variable		(b) $\hat{\theta}_{LS} \sim \mathcal{N}(\theta_0, \Sigma_{\hat{\theta}})$			
	$\begin{array}{ c c c }\hline (\mathbf{c}) & \Sigma_{\hat{\theta}} = \sigma_{\epsilon}^2(\Phi_N^{+^{\mathrm{T}}}\Phi_N^+) \\ \hline \end{array}$		(d) $\hat{\theta}_{LS} = \Phi_N^+ y_N$			
19.	In the case given in the previous question, if the measurements y_N come from a single experiment, which condition does the noise require in order to be able to compute an estimate of σ_{ϵ}^2 ?					
20.	Imagine that the condition asked in the previous exercise is not met. We know that the noise has zero mean and covar Σ_{ϵ_N} . What would be the covariance matrix $\Sigma_{\hat{\theta}}$ of the unweighted LLS estimate?					
	(a) $\sum_{\epsilon_N} \Phi_N^{+^{\mathrm{T}}} \Phi_N^+$		(b) $\sum_{\epsilon_N}^{-1} \Phi_N^{\mathrm{T}} \Phi_N$			
			$(d) \boxed{\qquad} \Phi_N^+ \Sigma_{\epsilon_N} \Phi_N^{+^{\mathrm{T}}}$			
				points on page: 10		