

Model Predictive Control of Power Converters: Control algorithms and numerical optimization methods

Tobias Geyer ABB Corporate Research, ETH Zurich and Stellenbosch University 20. Feb. 2018

Model Predictive Control of Power Converters Classification

Direct control

Direct manipulation of switch position:

- Manipulated variable: $oldsymbol{u} \in \mathbb{Z}^{n_u}$

Control methods:

- Reference tracking (finite control set MPC): enumeration or sphere decoding
- Bounds (MPDxC): branch and bound
- Optimized pulse patterns: QP solver or algebraic manipulation

Indirect control

Indirect manipulation of switch position:

- Manipulated variable: $oldsymbol{v} \in \mathbb{R}^{n_u}$

Control methods:

 Reference tracking: linearization, QP solver or explicit solution

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Long-Horizon Direct MPC Case Study

NPC converter with LC filter and ind. machine:

Control objectives:

- Regulate **inverter** currents, **capacitor** voltages and **stator** currents along their references $y^* = [(i_i^*)^T \ (v_c^*)^T \ (i_s^*)^T]^T$ with $\alpha\beta$ -components
- Minimize the switching frequency

Assessment:

- Two coupled 3rd order systems
- Short horizons lead to **poor performance** (due to the undamped system resonance)
- Long horizons are mandatory

System resonance:

Bode magnitude plot:

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Long-Horizon Direct MPC Derivation of the Integer Program

- Consider the discrete-time linear time-invariant system with integer inputs
 - $m{x}(\ell+1) = m{A}m{x}(\ell) + m{B}m{u}(\ell)$ where $m{x} \in \mathbb{R}^{n_x}, \,m{u} \in \mathbb{Z}^{n_u}, \,m{y} \in \mathbb{R}^{n_y}$ $m{y}(\ell) = m{C}m{x}(\ell)$
- Consider the quadratic cost function

$$J = \sum_{\ell=k}^{k+N-1} || \boldsymbol{y}^*(\ell+1) - \boldsymbol{y}(\ell+1) ||_{\boldsymbol{Q}}^2 + \lambda_u || \Delta \boldsymbol{u}(\ell) ||_2^2$$

Tracking error
(deviation from reference)

$$|| \boldsymbol{y}^* - \boldsymbol{y} ||_{\boldsymbol{Q}}^2 = (\boldsymbol{y}^* - \boldsymbol{y})^T \boldsymbol{Q}(\boldsymbol{y}^* - \boldsymbol{y})$$

$$\Delta \boldsymbol{u}(\ell) = \boldsymbol{u}(\ell) - \boldsymbol{u}(\ell-1)$$

$$\lambda_u > 0$$

Controller

System

Consider the input constraints

$$oldsymbol{u}(\ell) \in oldsymbol{\mathcal{U}} \quad orall \ell = k, \dots, k + N - 1$$

 $||\Delta oldsymbol{u}(\ell)||_{\infty} \leq 1$
Example of an input set: $oldsymbol{\mathcal{U}} = \{-1, 0, 1\}^3$

Long-Horizon Direct MPC Optimization Problem

$$\begin{array}{ll} \underset{\boldsymbol{U}(k)}{\text{minimize}} & \sum_{\ell=k}^{k+N-1} || \boldsymbol{y}^*(\ell+1) - \boldsymbol{y}(\ell+1) ||_{\boldsymbol{Q}}^2 + \lambda_u || \Delta \boldsymbol{u}(\ell) ||_2^2 \\ \text{subject to} & \boldsymbol{x}(\ell+1) = \boldsymbol{A} \boldsymbol{x}(\ell) + \boldsymbol{B} \boldsymbol{u}(\ell) \\ & \boldsymbol{y}(\ell+1) = \boldsymbol{C} \boldsymbol{x}(\ell+1) \\ & \boldsymbol{\lambda} \boldsymbol{u}(\ell) = \boldsymbol{u}(\ell) - \boldsymbol{u}(\ell-1) \\ & \boldsymbol{u}(\ell) \in \boldsymbol{\mathcal{U}} \\ & || \Delta \boldsymbol{u}(\ell) ||_{\infty} \leq 1, \ \forall \ell = k, \dots, k+N-1 \end{array}$$

With

- The sequence of manipulated variables $U(k) = [u^T(k) \ u^T(k+1) \ \dots \ u^T(k+N-1)]^T$
- The sequence of reference values $\boldsymbol{Y}^*(k) = [\boldsymbol{y}^{*T}(k+1) \ \boldsymbol{y}^{*T}(k+2) \ \dots \ \boldsymbol{y}^{*T}(k+N)]^T$

The optimization problem is a function of

- The "parameters" $\boldsymbol{x}(k), \boldsymbol{u}(k-1), \boldsymbol{Y}^*(k)$
- The optimization variable $oldsymbol{U}(k)$

Long-Horizon Direct MPC Objective Function in Vector Form

The objective function in vector form:

 $J = J_1 + J_2 = ||Y^*(k) - \Gamma x(k) - \Upsilon U(k)||_{\tilde{Q}}^2 + \lambda_u ||SU(k) - Eu(k-1)||_2^2$

After some algebraic manipulations:

 $\boldsymbol{J} = \boldsymbol{U}^{T}(k)\boldsymbol{H}\boldsymbol{U}(k) + 2\boldsymbol{\Theta}^{T}(k)\boldsymbol{U}(k) + \boldsymbol{\theta}(k)$

- Where $\boldsymbol{H} = \boldsymbol{\Upsilon}^T \tilde{\boldsymbol{Q}} \boldsymbol{\Upsilon} + \lambda_u \boldsymbol{S}^T \boldsymbol{S}$ $\boldsymbol{H} \in \mathbb{R}^{3N \times 3N}$ is the Hessian matrix It is a function of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and λ_u It holds that $\boldsymbol{H} = \boldsymbol{H}^T, \boldsymbol{H} \succ 0$ for $\lambda_u > 0$
 - $\Theta(k) = -\Upsilon^T \widetilde{Q} (Y^*(k) \Gamma x(k)) \lambda_u S^T E u(k-1)$ $\Theta(k) \in \mathbb{R}^{3N}$ is a time-varying vector It is a function of x(k), u(k-1) and $Y^*(k)$

•
$$\theta(k) = ||\mathbf{Y}^*(k) - \mathbf{\Gamma}\mathbf{x}(k)||_{\tilde{\mathbf{Q}}}^2 + \lambda_u ||\mathbf{E}\mathbf{u}(k-1)||_2^2$$

 $\theta(k) \in \mathbb{R}$ is a time-varying scalar

Can we rewrite the problem to solve it more easily?

Long-Horizon Direct MPC Objective Function in Vector Form

Starting with

 $J = \boldsymbol{U}^T(k)\boldsymbol{H}\boldsymbol{U}(k) + 2\boldsymbol{\Theta}^T(k)\boldsymbol{U}(k) + \theta(k)$

• we "complete the squares"

$$J = \left(\mathbf{U}(k) + \mathbf{H}^{-1} \mathbf{\Theta}(k) \right)^T \mathbf{H} \left(\mathbf{U}(k) + \mathbf{H}^{-1} \mathbf{\Theta}(k) \right) - \underbrace{\mathbf{\Theta}^T(k) \mathbf{H}^{-1} \mathbf{\Theta}(k) + \theta(k)}_{\mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}(k) \mathbf{U}(k)}_{\mathbf{U}$$

- and write the obj. function in the quadratic form $J = \left(\boldsymbol{U}(k) - \boldsymbol{U}_{unc}(k) \right)^T \boldsymbol{H} \left(\boldsymbol{U}(k) - \boldsymbol{U}_{unc}(k) \right)$
- with the unconstrained solution $\boldsymbol{U}_{unc}(k) = -\boldsymbol{H}^{-1}\boldsymbol{\Theta}(k)$

Independent of U(k)

Real-valued vector A function of **x**(*k*), **u**(*k*-1) and **Y***(*k*)

- The Hessian **H** is symmetric and positive definite for $\lambda_u > 0$

=> A unique invertible and lower triangular matrix V exists which satisfies $V^T V = H$

- This leads to optimization problem

 $J = ||\boldsymbol{V}\boldsymbol{U}(k) - \boldsymbol{V}\boldsymbol{U}_{\text{unc}}(k)||_2^2$

Derivation of the Integer Program Reformulated Optimization Problem

 $\mathcal{U}^N = \{-1, 0, 1\}^{3N}$

$$\begin{aligned} \boldsymbol{U}_{\text{opt}}(k) &= \arg \min_{\boldsymbol{U}(k)} || \boldsymbol{V} \boldsymbol{U}(k) - \boldsymbol{V} \boldsymbol{U}_{\text{unc}}(k) ||_{2}^{2} \\ &\text{subject to } \boldsymbol{U}(k) \in \boldsymbol{\mathcal{U}}^{N} \\ || \Delta \boldsymbol{u}(\ell) ||_{\infty} \leq 1, \forall \ell = k, \dots, k + N - 1 \end{aligned}$$
Switching sequence (optimizer)
$$\boldsymbol{U}(k) &= [\boldsymbol{u}^{T}(k) \dots \boldsymbol{u}^{T}(k + N - 1)]^{T} \qquad \begin{array}{l} \text{Unconstrained solution} \\ \boldsymbol{U}_{\text{unc}}(k) &= -\boldsymbol{H}^{-1}\boldsymbol{\Theta}(k) \\ \text{Integer-valued vector} \\ \text{totage in the set of the set$$

The optimization problem amounts to finding the integer vector U(k) that minimizes the Euclidian distance to $U_{unc}(k)$ in the space spanned by V

V is the generator matrix (with $V^T V = H$)

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Solving the Integer Program Example: Optimization Problem with $\mathcal{U} \in \{-1, 0, 1\}^3$

Solving the Integer Program Example: Optimization Problem with $\mathcal{U} \in \{-1, 0, 1\}^3$

In the transformed coordinate system:

- The optimal solution has the minimal distance to the unconstrained solution
- The optimal solution lies within a sphere (centered at the unconstrained solution)

Modified **sphere decoder** => solve the integer optimization problem

Solving the Integer Program Sphere Decoder

Branch and bound algorithm

- Branching over the set of single-phase switch positions $\mathcal{U} = \{-1, 0, 1\}$ that meet the switching constraint $||\Delta u(\ell)||_{\infty} \leq 1$
- Bounding: consider solutions only within the sphere of radius $\rho(k)$: $||VU(k) - VU_{unc}(k)||_2 \le \rho(k)$

If the radius is exceeded => certificate has been found that the branch is suboptimal

• The sphere is tightened whenever a better solution is found

Example: search tree for $\mathcal{U}^N = \{-1, 0, 1\}^6$

Solving the Integer Program Sphere Decoder

Branch and bound algorithm

- Branching over the set of single-phase switch positions $\mathcal{U} = \{-1, 0, 1\}$ that meet the switching constraint $||\Delta u(\ell)||_{\infty} \leq 1$
- Bounding: consider solutions only within the sphere of radius $\rho(k)$: $||VU(k) - VU_{unc}(k)||_2 \le \rho(k)$

If the radius is exceeded => certificate has been found that the branch is suboptimal

 The sphere is tightened whenever a better solution is found Number of nodes explored for $\mathcal{U}^N = \{-1, 0, 1\}^{30}$

The optimal solution is found in 80% of the cases by exploring only **one** switching sequence => **tight sphere** / strong bounding

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Drive System with *LC* Filter Case Study

NPC converter with LC filter and ind. machine:

Control objectives:

- Regulate **inverter** currents, **capacitor** voltages and **stator** currents along their references $y^* = [(i_i^*)^T \ (v_c^*)^T \ (i_s^*)^T]^T$ with $\alpha\beta$ -components
- Minimize the switching frequency

Assessment:

- Two coupled 3rd order systems
- Short horizons lead to **poor performance** (due to the undamped system resonance)
- Long horizons are mandatory

System resonance:

Bode magnitude plot:

Drive System with *LC* Filter Control Problem Formulation

Drive System with *LC* Filter Control Problem Formulation

$$\begin{array}{ll} \textbf{Performance index:} \quad J = \sum_{\ell=k}^{k+N-1} \underbrace{||\boldsymbol{y}^*(\ell+1) - \boldsymbol{y}(\ell+1)||_{\boldsymbol{Q}}^2}_{\text{Tracking error}} + \underbrace{\lambda_u ||\Delta \boldsymbol{u}(\ell)||_2^2}_{\text{Penalty on switching effort}} \\ \boldsymbol{y} = [\boldsymbol{i}_i^T \ \boldsymbol{v}_c^T \ \boldsymbol{i}_s^T]^T \qquad \Delta \boldsymbol{u}(\ell) = \boldsymbol{u}(\ell) - \boldsymbol{u}(\ell-1) \end{array}$$

Model:

$$egin{aligned} oldsymbol{x}(\ell+1) &= oldsymbol{A}oldsymbol{x}(\ell) + oldsymbol{B}oldsymbol{u}(\ell) \ oldsymbol{y}(\ell) &= oldsymbol{C}oldsymbol{x}(\ell) \end{aligned}$$

with
$$oldsymbol{x} = [oldsymbol{i}_i^T ~oldsymbol{v}_c^T ~oldsymbol{i}_s^T ~oldsymbol{\psi}_r^T]^T \in \mathbb{R}^8$$
 $oldsymbol{u} \in \mathbb{Z}^3$

Input constraints:

$$\boldsymbol{u}(\ell) \in \{-1, 0, 1\}^3$$
$$||\boldsymbol{\Delta}\boldsymbol{u}(\ell)||_{\infty} \leq 1$$

The outputs are linear in the initial state vector $\mathbf{x}(k)$ and the sequence of manipulated variables (the switching sequence) $\mathbf{U}(k) = [\mathbf{u}^T(k) \ \mathbf{u}^T(k+1) \dots \mathbf{u}^T(k+N-1)]^T$

Drive System with *LC* Filter System Parameters and Current TDD

- MV induction **machine**: 3.3kV, 2MVA, 50Hz, $X_{\sigma} = 0.25$ pu
- **Filter**: $X_l = 0.117$ pu, $X_c = 0.336$ pu, $f_{res} = 304$ Hz
- Sampling **interval**: $T_s = 125 \mu s$

Long prediction horizons enable operation at switching frequencies f_{sw} below 50% of the resonance frequency f_{res}

Drive System with *LC* Filter Steady-State Operation

- Penalty matrix on output var.s Q = diag(1, 1, 5, 5, 150, 150)
- Penalty on switching $\lambda_u = 0.28$
- Sampling interval $T_s = 125 \,\mu s$
- Prediction horizon N = 15

Geyer, Karamanakos and Kennel: "On the benefit of long-horizon direct model predictive control for drives with LC filters", ECCE, USA, Sep. 2014

Drive System with *LC* Filter Torque Steps

- Penalty matrix on output var.s Q = diag(1, 1, 5, 5, 150, 150)
- Penalty on switching $\lambda_u = 0.28$
- Sampling interval $T_s = 125 \,\mu s$
- Prediction horizon N = 15

During transient, reduce penalty

from diag(1, 1, 5, 5, 150, 150)

- to diag(1, 1, 5, 5, 15, 15)
- \Rightarrow Almost no overshoot
- \Rightarrow Settling times of < 3ms
- \Rightarrow Constant switching frequency
- ⇒ Inversion of voltage (subject to switching constraint)

50

Drive System with *LC* Filter Torque Steps

- Penalty matrix on output var.s Q = diag(1, 1, 5, 5, 150, 150)
- Penalty on switching $\lambda_u = 0.28$
- Sampling interval $T_s = 125 \,\mu s$
- Prediction horizon N = 15

Slide 32 Seyel, Kall

20-Feb-2018

Geyer, Karamanakos and Kennel: "On the benefit of long-horizon direct model predictive control for drives with LC filters", ECCE, USA, Sep. 2014

Drive System with *LC* Filter Assessment

Advantages

- Sphere decoding exploits the problem structure => low computational burden
- Part of the problem is solved offline
 => generator matrix
- Simple controller design with one loop
 => active damping loop not required

Performance

- Long horizons reduce the current distortions by an order of magnitude
- Can operate at switching frequencies below the resonance frequency => f_{sw}=120 vs f_{res}=304 Hz
- MIMO approach
 - => excellent transient response (<3ms)

The power electronics community focuses almost exclusively on the horizon one case

=> sphere decoder enables long horizons

=> SD

Bode magnitude plot:

Drive System with *LC* Filter Assessment

Limitations

- The Hessian matrix must be time invariant
- Sphere decoding is restricted to linear systems with integer inputs
- Even-order harmonics limit the applicability to grid-side converters

Further reduction of the computation time

- Preprocessing
 - => well-conditioned generator matrix
- Allow for suboptimal solutions
 => impose upper bound on the solution time
- Project the unconstrained solution onto the convex hull

=> tight sphere during transients

Other extensions

- FPGA implementation
- Terminal weight
- State constraints (e.g. on currents)
- Voronoi diagrams
- Shaping of the harmonic spectrum

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Modular Multilevel Converter Topology

T. Geyer: MPC of PE: control and optimization 20-Feb-2018 | Slide 37

Modular Multilevel Converter Control Problem

- MMC:
 - Dc-link current i_{dc}
 - Internal currents: branch currents and circulating currents
 - Storage: energy per branch
- Output: load current i_{load}
- Actuator: number of modules inserted per branch

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

MPC of Modular Multilevel Converters State-Space Model

=> Linearized **continuous-time** model:

$$\begin{aligned} \frac{dx(t)}{dt} &= A_c(t_0)x(t) + B_c(t_0)u(t) + f_c(t_0)\\ y(t) &= C_c x(t) \end{aligned}$$

with state vector $\boldsymbol{x} = \begin{bmatrix} i_1 \dots i_4 & i_{dc} & v_1^{\Sigma} \dots v_6^{\Sigma} & v_{g\alpha} & v_{g\beta} \end{bmatrix}^T$ input vector $\boldsymbol{u} = \begin{bmatrix} \Delta n_1 \dots \Delta n_6 \end{bmatrix}^T$ Change in the insertion indices output vector $\boldsymbol{y} = \begin{bmatrix} i_\alpha & i_\beta & v_1^{\Sigma} \dots v_6^{\Sigma} \end{bmatrix}^T$

=> **Discrete-time** model:

MPC of Modular Multilevel Converters **Control Method**

20-Feb-2018

MPC of Modular Multilevel Converters **MPC** Formulation

System model:

Output reference tracking

Changes in insertion indices

Soft constraints

Hard constraints on insertion indices

Soft constraints on branch currents and dc-link current

Soft constraints on sums of capacitor voltages

T. Gever: MPC of PE: control and optimization Slide 43 20-Feb-2018

min $J_1+J_2+J_3$ subj. to model and constraints => **QP**

Cost function:

Model predictive current control of modular multilevel converters, ECCE, USA, Sep. 2014

MPC of Modular Multilevel Converters Solving the QP

- Prediction horizon $N_p=6$
- Manipulated variables: 6 N_p
- Slack variables: 12 N_p
- Problem formulation: MPT Toolbox 3.0
- QP solution: Gurobi

Dimension of QP: 108

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

MPC of Modular Multilevel Converter Grid Currents

Active power steps from 1 to 0 and back to 1pu

MPC of Modular Multilevel Converters Power Step from P=0 to 1pu

MPC of Modular Multilevel Converter Concluding Remarks

- MMC is MIMO control problem
- Soft and hard constraints can be imposed in MPC

=> allows for aggressive controller tuning

=> very fast response during transients

Receding horizon policy => robustness

- But: Optimization problem is time varying
 - $T_{\rm s} = 1/5000 = 200$ us is little time to solve the QP

MPC of Modular Multilevel Converter Concluding Remarks

- MPC scheme is applicable to any MMC setup (circuit parameters, phase configuration and number of modules)
- MPC outperforms most of the existing control approaches for the MMC, particularly during transients
- Operation of the converter within **safe operating limits** is ensured under all circumstances
- **Overshoots** in the capacitor voltages and branch currents are avoided
- Very low current THD of about 0.5%
- Low device **switching frequency** of less than 400Hz

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Assessment of the Control Methods Field / Voltage Oriented Control with SVM

Advantages:

- Very well understood and widely used
- Discrete and deterministic harmonic spectrum

Rotor field oriented control:

Disadvantages:

T. Gever: MPC of PE: control and optimization

20-Feb-2018

| Slide 62

Assessment of the Control Methods Direct Torque / Power Control

Advantages:

- Very robust
- Very fast dynamic response
- Few system parameters

Disadvantages:

- Significant harmonic distortions
- Non-deterministic harmonic spectrum
- Works poorly at very low pulse numbers
- Requires high sampling frequency
- (Deadlocks)

Direct torque control:

Assessment of the Control Methods Direct MPC with Bounds (MPDxC)

Advantages:

- Very fast dynamic response
- Robust
- Simple tuning (for MPDCC and MPDPC)

Disadvantages:

- Non-deterministic harmonic spectrum
- Requires high sampling frequency
- Conceptually difficult
- Deadlocks

Comment:

 Branch and bound enables the use of long prediction horizons

Model predictive direct torque control:

T. Geyer: MPC of PE: control and optimization 20-Feb-2018 | Slide 64

Assessment of the Control Methods Direct MPC with Reference Tracking

Advantages:

- Conceptually simple
- Very fast dynamic response
- Suitable for higher-order systems

Disadvantages:

- Non-deterministic harmonic spectrum
- Requires high sampling frequency
- Tuning difficult

Comment:

 Sphere decoding enables the use of long prediction horizons

Current control:

Assessment of the Control Methods MPC Based on Optimized Pulse Patterns (MP³C)

Advantages:

- Low harmonic distortions per switching effort
- Harmonic spectrum is discrete, deterministic and can be shaped
- Fast dynamic response (with pulse insertion)

Disadvantages:

- Inflexible (OPPs are precomputed): nonuniform voltage steps, unbalanced load, additional control objectives (such as control of NP potential)
- Conceptually difficult
- Computation of OPPs is time consuming for multilevel converter and high pulse numbers
- Switching frequency is integer multiple of the fundamental frequency

Model predictive pulse pattern control:

Assessment of the Control Methods Indirect MPC

Advantages:

- Well established / studied MPC framework
- Discrete and deterministic harmonic spectrum

Disadvantages:

Solving the QP in real time is challenging

Comments:

- Largely unexplored
- Suitable for "complex" systems and relatively high pulse numbers

Indirect MPC for MMC:

Model Predictive Control of Power Converters Outline

Long-horizon direct MPC

- Integer optimization problem
- Sphere decoding
- Case study

Indirect MPC

- Modular multilevel converter
- Controller formulation
- Simulation results

Assessment of control methods for power converters

Conclusions and outlook

Model Predictive Control of Power Converters Classification

Direct control

Direct manipulation of switch position:

- Manipulated variable: $oldsymbol{u} \in \mathbb{Z}^{n_u}$

Control methods:

- Reference tracking (finite control set MPC):
 enumeration or sphere decoding
- Bounds (MPDxC): branch and bound
- Optimized pulse patterns: QP solver or algebraic manipulation

Indirect control

Indirect manipulation of switch position:

- Manipulated variable: $oldsymbol{v} \in \mathbb{R}^{n_u}$

Control methods:

 Reference tracking: linearization, QP solver or explicit solution

Model Predictive Control of Power Converters Outlook

ABB

Model Predictive Control of Power Converters Vision

Develop new **control** methods that

- fully utilize the hardware capability and/or
- reduce the hardware requirement

of power electronic systems

Acknowledgements

ABB Corporate Research:

- Alf Isaksson
- Vedrana Spudic
- Peter Al Hokayem
- Andrea Rüetschi
- Frederick Kieferndorf
- Thomas Besselmann
- Mats Larsson
- Andrew Paice
- Aleksandar Paunovic
- Georgios Darivianakis

ABB Medium-Voltage Drives:

- Gerald Scheuer
- Georgios Papafotiou
- Nikolaos Oikonomou
- Wim van der Merwe
- Christian Stulz
- Christof Gutscher
- Eduardo Rohr
- Thomas Burtscher
- Andrey Kalygin
- Markus Schenkel

ABB Power Grid Interfaces:

- Michail Vasiladiotis
- Tobias Thurnherr

ETH Zurich, Switzerland:

Manfred Morari

Stellenbosch University, South Africa:

Toit Mouton

Tampere University, Finland:

Petros Karamanakos

University of Paderborn, Germany:

Daniel E. Quevedo

Univ. of Auckland, New Zealand:

Udaya Madawala

TU Munich, Germany:

Ralph Kennel

Univ. of Technology Sydney, Australia:

Ricardo P. Aguilera

MPC of High Power Electronics and Industrial Drives

Five main parts:

- Introduction: MPC, machines, semiconductors, topologies, MV inverters, requirements, CB-PWM, OPPs, field oriented control, direct torque control
- Direct MPC with reference tracking (FCS-MPC): predictive current control, predictive torque control, integer quadratic programming formulation, sphere decoding, performance evaluation for NPC inverter drive system without and with LC filter
- Direct MPC with bounds: model predictive direct torque control, extension methods, performance evaluation for 3L and 5L inverter drive systems, state-feedback control law, deadlocks, branch and bound methods, model predictive direct current control, model predictive direct power control
- MPC based on PWM: model predictive pulse pattern control, pulse insertion, performance evaluation for NPC inverter drive system, experimental results for 5L inverter drive system, MPC of an MMC using CB-PWM
- Summary and conclusions: performance comparison of direct MPC schemes, assessment, summary and discussion, outlook

Power and productivity for a better world[™]

