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Chapter 1

Introduction

1.1 Motivation and lecture overview

See slides: (click here for slides: https://tinyurl.com/yb8xskhn)

1.2 Energy content of the wind

How much power is in the wind?

Consider a cylindrical volume of air flowing through a “window” of
area, A[m2], with length, L[m] and air velocity, V [m s−1]. The mass of
the air in this volume, m, can be found by m = ρ ·L ·A with density of
air, ρ, taken to be 1.2 kg/m3.

Kinetic energy in the volume of air is found by E = 1
2mv

2 = 1
2 ·ρLA·v

2.

Power, P [W], is given by P = E
t with t[s] being the time it takes to

move the volume through the window (as shown in figure 1.1), given
by t = L

V . Thus:

P =
1
2ρLAV

2

L/V
=

1

2
ρAV 3 (1.1)

Note: P has a cubic relationship with wind velocity, V .
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Figure 1.1 Power flowing through the window

Power density is “power per cross-sectional area” and given by

P

A
=

1

2
ρV 3 (1.2)

SI-Unit of this expression is

kg

s3
= (kg · m

s2
)︸ ︷︷ ︸

N

·( 1

m · s
) = (N ·m)︸ ︷︷ ︸

J

·( 1

m2 · s
) = (

J

s
)︸︷︷︸

W

·( 1

m2
) =

W

m2

For V = 10 m/s we get:

P

A
=

1

2
· 1.2 · 103 W

m2
= 600

W

m2
(1.3)

At V = 20 m/s, a good strong wind, we have P
A = 4.8 kW m−2.

Compare this with the average European’s power need of 5 kW:

2 m2 of cross-sectional area in very strong wind, or 16 m2 of area

in good wind (of V = 10 m s−1) or 128 m2 of area in weak wind (of
V = 5 m s−1), contain about 5 kW. (Not all of this can be harvested,
due to the so called“Betz-Limit”, which we will derive & discuss in
chapter 3).
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Strong winds constitute a fairly concentrated form of sustainable energy
of a similar power density as solar power. Note that the cross-sectional
area, A (shown in figure 1.2), of wind turbines is given by the whole
disc over which the rotor blades sweep.

Figure 1.2 Rotor Blades

Thus, wind turbines can harvest from the entire area with relatively
little blade area; this is the real reason why wind power is comparably
cheap and competitive.

For example:

Figure 1.3

Refering to figure 1.3:
V = 20 m/s; Power density = 4.8 kW/m2

R = 35 m, A = πR2 = 3850 m2

P = 4.8× 103 · 3850 W = 18.5 GW,
a large amount of energy is stored in wind.
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1.3 Power density and blade area

Let us try to estimate how much power can be captured by a given blade
area, AB [m2]. We regard only the outer part of a rotor blade (close
to the wing-tips) which moves with a speed, VB , in cross-wind direction.

Figure 1.4

Note that the inner part of the
blade moves slower, but they
are not our focus for now.

We simplify further by assuming that the blade-tip moves straight (not
a circular path), the motion of the blade tip can now be compared to
a sailing boat moving “half-wind” or “cross-wind.” And it can be de-
picted from the top view as shown by figure 1.5:

Figure 1.5

The effective wind
−→
VE is given by

−→
VE =

−→
V −

−→
VB and therefore:

−→
VE =

[
V
0

]
−
[

0
VB

]
=

[
V
−VB

]
(1.4)

The magnitude of the effective wind is given by:

|
−→
VE | =

√
V 2
B + V 2 := VE (1.5)
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To determine the forces on the “wing” (we use this word now for the
blade-tip of area AB), we need one basic fact from aerodynamics: the
force on a body in a moving fluid is proportional to the dynamic pressure
1
2ρ · V

2
E and the area AB . The force can be decomposed into “lift” and

“drag”, where lift is perpendicular to the wind velocity vector and drag
is aligned with the velocity.

Lift and Drag

With lift-coefficient CL and drag-coefficient CD we have:

FL =
1

2
CL · ρABV 2

E (1.6)

FD =
1

2
CD · ρABV 2

E (1.7)

CL & CD depend upon:

• Angle of attack (orientation)

• Reymolds number (ratio of inertial forces to viscous forces)

Good wings have small drag and high lift, e.g. CL = 1.5 and CD = 0.05.

The lift-over-drag ratio CL
CD

has a nice interpretation for sailplanes: it

determines how far a sailplane can go, depending on the initial altitude
(see figure 1.6). CL

CD
is therefore also called “gliding number”.

Figure 1.6 For a sailplane, distance travelled = CL
CD
· altitude
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For our rotor-blade we get the following picture (figure 1.7):

Figure 1.7

For rotation of the wind turbine, we are first only interested in the force
component in the direction of motion of the wing, F ‖, as its product
with VB gives the mechanical power production:

PB = F ‖ · VB (1.8)

With F ‖ = F
‖
L + F

‖
D = FL · V

VE
− FD · VBVE , where F

‖
L and F

‖
D are

components of lift and drag which are parallel to the blade movement
direction, bringing them all together gives:

PB =
1

2
ρAB · V 2

E · VB ·
1

VE
(CL · V − CD · VB) (1.9)

To simplify further, we introduce the tip speed ratio λ = VB
V , such

that VB = λV and VE =
√

1 + λ2 ·V =
√

1 + 1
λ2 ·λV. So the expression

further simplifies to:

PB =
1

2
ρAB · V 3 λ2

√
1 +

1

λ2
(CL − CD · λ)︸ ︷︷ ︸
:= ζ (Power Harvesting Factor)

(1.10)

Note that at λ = CL
CD

, no power is generated. (CLCD is the maximum
possible speed of the wing-tips if the generator is switched off, which
means there is no torque.)
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A typical value for λ is λ = 7 . And if CL = 1.5 and CD = 0.05, we
can calculate the power harvesting factor:

ζ = λ2

√
1 +

1

λ2
(CL − CDλ) ≈ 49 · 1 · (1.5− 0.05× 7) ≈ 57 (1.11)

(For λ = 20 we would even get ζ ≈ 400 · 0.5 = 200.)

This is a remarkably high number. ζ shows how many times more
power a blade area can harvest compared to the energy in the wind
which would pass through the “window” of the same size as the blade
area. Compared to the energy in the air for ζ = 50 and V = 10 m/s,
we thus get a power density of P

AB
= 50 · 600 W

m2 = 30 kW
m2 .

As the inner parts of the blade move slower, their λ is smaller and
therefore also their harvesting factors. This is one major reason why
blades become thicker toward the center, as shown by figure 1.8:

Figure 1.8
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1.4 Components of a modern wind turbine

With its five joints (yaw, rotor, 3×pitch), a wind turbine can be re-
garded a gigantic robot-arm, comparable to the six-joint robot arms in
car manufacturing. However, it is an“energy-harvesting robot.”

For an illustration of the components of a modern wind turbine, refer
to figures 1.9, 1.10 and 1.11.

Figure 1.9 Wind turbine components.
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Figure 1.10 Rotor details

Figure 1.11 Rotor inner details
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1.5 Blade & airfoil nomenclature

Figure 1.12 Airfoil

Note: Chordwise direction is along the chord line. Spanwise direction
is orthogonal, along the radial direction of the turbine.

Surface area of a blade element, dA, by definition, is chord (c(r)) ×
span (dr) (see figure 1.13), therefore whole blade area, A can be found
by:

A =

R∫
0

c(r) dr (1.12)

Figure 1.13 Surface Blade
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Chapter 2

The Wind Resource

2.1 Origins

• Air heated up (by the sun, direct or indirect).

• Air density drops.

• Air rises and creates low pressure region.

• Other air fills the gap: “wind”.

Heat capacity of land is not as high as water. During the a sunny day,
air over land is heated up as the temperature of the ground rises quickly
and rises up. The temperature of water rises slowly and warm air is
cooled by the ocean and sinks back down. Refer to figure 2.1

During the night, the opposite happens, where air over land is cooled
down and air over water is heated. Refer to figure 2.2
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Figure 2.1 Sunny day at coast

Figure 2.2 Clear night at coast
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2.2 Global patterns

Figure 2.3 Air moves within troposphere (5-15 km altitude). Three big
“cells” per hemisphere.

Note 1: The Ferrel cell is indirectly driven by the Hadley cell and the
Polar cell.

Note 2: Distance along the surface of the Earth between the North
Pole and the equator is about 10 000 km. Where as the thickness of
troposphere is only 5-15 km.

Figure 2.4 Due to the Coriolis force, winds get diverted to the right hand
side on the northern hemisphere (relative to the direction of travel).
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Figure 2.5 Strong wind shear in Atmospheric Boundary Layer (ABL),
magnitude and direction change with altitude. Ground friction is sig-
nificant.
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2.3 Mechanics of wind

Four main influences:

a) Pressure difference

b) Coriolis force

c) Centrifugal force

d) Friction

a) Pressure gradient

Regard a cylinder with length L and area A:

Figure 2.6

 Volume : L ·A

Mass : ρ · L ·A = m

Figure 2.7

Pressure varies in space and
time: P (x, t)

P (x, t) unit: Pascal [Pa]
= 1 N/m2

(1 millibar = 1 hectopascal
= 100 Pa)

Standard atmosphere
pressure (sea level):

101.325 kPa
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Hence, pressure gradient causes net force on the airmass,F = (Force on
the left side)−(Force on the right side):

F = A · P (x0)−A · P (x0 + L) (2.1a)

≈ A · P (x0)−A · P (x0)−A · ∂P
∂x
· L (2.1b)

= −A∂P
∂x

(x0) · L (2.1c)

Acceleration a due to pressure gradient:

a =
F

m
=
−A∂P

∂x (x0) · L
ρ · L ·A

=
−∂Pdx (x0)

ρ
(m/s2) (2.2)

b) Coriolis force (Due to rotation of Earth)

Consider a point on the surface of Earth, in Freiburg. This point is
moving towards the east. Consider another point near the North Pole,
it is also moving to the east, but because it is closer to the rotational
axis of the Earth, it is moving slower to the east compared to Freiburg.

Now imagine wind moving from the North Pole towards the south. As
it moves further south, the ground is moving faster and faster towards
the east, causing the ground to “slide” away from wind. When viewed
from the perspective of the ground, it appears that the wind is bending
or accelerating to the right, see figure 2.8. This is called the Corio-
lis Effect. This right-ward acceleration applies to wind blowing in all
horizontal directions. However, in the Southern Hemisphere, the wind
would accelerate to the left instead.

The Coriolis effect can be regarded as either a virtual force or an accel-
eration:

F = 2 ·m · ω0 · VGEO (2.3)

a = 2 · ω0 · VGEO (2.4)

(VGEO is the geostrophic wind velocity.)

The Coriolis effect depends on latitude φ, which means there is no
Coriolis force on the equatior. So we have:
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a = 2 · ω0 · sinφ · VGEO =
−∂P∂x
ρ

(2.5)

VGEO = 1
2ρ·ω0sinφ

(−∂P∂x ) (2.6)

Figure 2.8 As viewed from above the North Pole, with the Earth ro-
tation, ω0, an air current travelling to the south would curve to the
right.

Effect of pressure gradient and Coriolis force:

Geostrophic wind is a balance of pressure gradient and the Coriolis
effect. In a simple case of straight isobars, as shown in Figure 2.9,
while the pressure gradient pushes the wind upwards, the Coriolis force
pushes the wind downwards. The result is the wind travels in parallel
to the isobars, where the accelerations due to pressure gradient and
Coriolis effect are balanced:

pressure gradient︷ ︸︸ ︷
−∂P∂x
ρ

= 2 sinφ · ω0 · VGEO︸ ︷︷ ︸
Coriolis effect

(2.7)
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Figure 2.9 Geostrophic wind flows parallel to isobars.

Note: “Geostrophic Wind”, VGEO, is proportional to pressure gradient
but parallel to isobars!

Weather Maps:

Figure 2.10

c) Centrifugal acceleration

Geostrophic wind considers the pressure gradient and Coriolis force,
however when isobars are curved, which is almost always the case, there
is a third force which effects the wind, the centrifugal force, which we
all know arises from travelling in a circular path.

A refinement of Geostrophic wind, VGEO, is the Gradient wind, VG.

Figure 2.11 shows a situation where there is a circular isobar and wind
is travelling along the isobar.
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Figure 2.11

a = VG
2

R = ω2R = ω2R2

R

R = Radius of curvature of isobar

VG = Gradient wind
(speed of wind along isobar)

Note: VG 6= VGEO

but still parallel to isobars.
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Hence, an extra centrifugal term is added:

a =
−∂P∂x
ρ

=

Coriolis︷ ︸︸ ︷
2 sinφ · ω0 · VG +

Centrifugal︷︸︸︷
V 2
G

R
(2.8a)

V 2
G + (2R ω0sinφ) · VG +

−∂P∂x ·R
ρ

= 0 (2.8b)

VG = −Rω0sinφ±

√
R2ω2

0sin
2φ−

∂P
∂x ·R
ρ

(2.8c)

Note: VG < VGEO

To assess relevance of centrifugal force, compare Coriolis 2sinφ · ω0VG

with centrifugal
V 2
G

R , we can compute the ratio between the two:

Coriolis

Centrufugal
=

2ω0sinφ ·R
VG

(2.9)

Therefore, if:
φ = 50→ sinφ ≈ 0.75

VG ≈ 50 km/h

R ≈ 500 km


Coriolis

Centrufugal ≈
2·0.75·2π·500km

24·50km

≈ 3.9 (important)

d) Friction

Friction is complex and depends on surface properties, but it generally
slows down the air (only in the ABL). This also decreases coriolis &
centrifugal forces. Therefore, very low altitude winds tend more to-
wards the direction of negative pressure gradients.
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At the earth’s surface, the wind speed is zero.

Figure 2.12

Wind shear is often described by a logarithmic profile:

Figure 2.13

V0 = speed at altitude Z = Z0,
Zr = “Roughness length”
(a few millimeters for flat ground).

V (z) =
V0 · log( ZZr )

log(Z0

Zr
)

(2.10)
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2.4 Stable and unstable atmospheric
stratification

Figure 2.14

A rising piece of air becomes relatively hotter so it rises, rising air ex-
pands and therefore gets cooler. The “dry adiabatic lapse rate” is about
1 ◦C/100 m, i.e. rising air cools down 1 ◦C per 100 m rise in altitude. If
the ambient air gets cooler slower than 1 ◦C/100 m, it means that the
atmosphere is stable. If it gets cooler faster, it is unstable.

The standard atmospheric lapse rate is 0.66 ◦C/100 m. This corre-

sponds to a stable stratification. Even more stable is an “inversion”
(if air becomes hotter with height).

Generally, wind shear is stronger for stable conditions, because less
mixing between layers occur. Thus, less momentum is transferred at
strong winds, mixing less to neutral conditions (i.e. atmospheric lapse
rate equals adiabatic lapse rate).
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2.5 Statistics of wind

At a given site, wind speed and direction vary with time. If only speed
is regarded, one can plot time series data similar to the following figure
2.15. One can compute e.g. mean U and variance σ2

u with the hourly
average wind speed over a year:

Figure 2.15 Hourly averages over one year

Figure 2.16 Histogram

Different distributions can be used to describe P (U), the probability
density function of wind speeds (PDF), and compute F (U), the cumu-
lative distribution function (CDF).

∞∫
0

P (U) dU = 1 (2.11)
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F (U) =

U∫
0

P (U) dU (2.12)

P (U) = F (U)′ (2.13)

Example of different distributions:

(a) Gaussian (Normal) Distribution

Figure 2.17

P (U) =
1√

2πσ2
u

exp (−
(
U − U

)2
2σ2

u

) (2.14)

(b) Weibull Distribution

Wind velocity most commonly has a Weibull distribution, with
“scale parameter” c and “shape parameter” k,

F (U) = 1− exp

(
−
(
U

c

)k)
(2.15)

P (U) = F (U)′ =

(
k

c

)(
U

c

)k−1

exp

(
−
(
U

c

)k)
(2.16)
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One can show that U and σ2
u can be computed from c & k using the

“Gamma Function” as follows:

Γ(x) :=

∞∫
0

e−t tx−1dt (2.17)

(Γ(n) = (n− 1)!, Γ(1) = 1, Γ(2) = 1, . . . )

U = c · Γ(1 +
1

k
) (2.18)

σ2
u = c2 Γ

(
1 +

2

k

)
− c2

(
Γ

(
1 +

1

k

))2

(2.19a)

=

∞∫
0

U2P (U)dU − U2
(2.19b)

=

∞∫
0

(U − U)2P (U)dU (2.19c)

Figure 2.18 Gamma Function Figure 2.19 Given turbine (fixed area)
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(c) Rayleigh Distribution

A special case of Weibull distribution is the Rayleigh distribution with

k = 2. Here, Γ(1 + 1
2 ) =

√
π
4 , i.e. c = U√

π
4

.

F (U) = 1− exp

(
−
(
U

c

)2
)

(2.20)

P (U) =
2

c2
U · exp

(
−
(
U

c

)2
)

(2.21)

Note: Rayleigh distribution corresponds to vector magnitude of 2-dimensional
Gaussian distribution.
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Question: What is the average power per year?

Given power curve and wind speed distribution:

Figure 2.20

Answer:
Therefore the average power per year:

Paverage =
∞∫
0

P (U)PPC(U) dU
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2.6 Spectral properties of wind

Autocorrelation & Power Spectral Density

Figure 2.21

If a Fourier series is taken, the power spectral density S(f) is obtained.
It often looks as follows:

Figure 2.22 Density S(f) (Fourier Transform)

Turbulence happens at time scales below 10 sampling time. Turbulence

Intensity is defined as σu
U

, where U is mean over 10 minutes and σu is

standard deviation of e.g. 1 second sample.

U =
1

N

N∑
i=1

Ui (2.22)

σ2
u =

1

(N − 1)

N∑
i=1

(Ui − U)2 (2.23)
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Another interesting quality is autocorrelation:

It is a method of finding repeating patterns, such as periodic wind
patterns. In the case of wind, it is looking for dependence of wind on
the conditions of the previous instance in time. An autocorrelation
function, R(r∆t), can be found:

R(r∆t) =
1

σ2(N − r)

N−r∑
i=1

(Ui − U)(Ui+r − U), (2.24)

where ∆t is sampling time, r is lag number and r∆t is lag time.

Figure 2.23

Figure 2.23 shows that wind is strongly autocorrelated at very short
lag times and not so strongly at longer lag times. This is as expected
because we expect wind one second ago to have a big influence on the
current wind, while not so much for the wind from a day ago.

For a more detailed explanation of autocorrelation:
https://tinyurl.com/ybyrsbaj

Integral length scale: L = U · T ≈ size of turbulent interruption

Note: Fourier transform of autocorrelation equals (up to factors) to
P.S.D. (power spectral density).
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Chapter 3

Aerodynamics of Wind
Turbines

3.1 Wakes

Like a boat passing through water, and disturbing the water, leaving a
wake, a wind turbine disturbs the flow of wind blowing across it.

See slides: (click here for slides: https://tinyurl.com/yd4s434j)
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3.2 Actuator disc model and the Betz’ limit
(momentum theory)

The wind is slower approaching, at and after the wind turbine. Figure
3.1 is a side view of a wind turbine. A streamtube is defined as a tube
whose boundaries are parallel to the fluid velocity of the wind passing
through the turbine:

Figure 3.1

First guess (not achievable): Pair = 1
2ρAu

3
0, Pair is the power in the air

that would flow through the actuator disc if the actuator disc weren’t
actually there.

Figure 3.2 Axial wind velocity slows down as it approaches the turbine
and is slowed down further as it passed through.

−→ u(−∞) = u0, u(0) = u1 = u2, u(∞) = u3

Note: We assume there is no interaction of streamtube with outside.
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Figure 3.3 Pressure is built up as the wind approaches the wind turbine,
and drops after passing the turbine.

• Mass flow through turbine:

ṁ = ρ ·A · u1 [
kg

s
=

kg

m3
·m2 · m

s
] (3.1)

(Assume impressible air → ρ is constant)

• Thrust of turbine (force against wind):

Change of the pressure over area:

T = A(P2 − P1) (3.2)

Or equivalently, use the change of momentum:

T = ṁ(u0 − u3) (3.3)

• Power extraction:

P = T · u1 (3.4)

Or equivalently, by changing of kinetic energy:

P = ṁ(
1

2
u0

2 − 1

2
u3

2) (3.5)

Given u1 = u2, P3 = P0, u0 and P0, what is the remaining un-
known u1, u2, P1 and P2?

First we have the thrust equation:

T = A(P2 − P1) = ṁ(u0 − u3) (3.6)

35



And then from Bernoulli equation, without energy extraction we get:
P + 1

2ρu
2 = constant. Therefore wind flowing through the disc:

P0 + 1
2ρu0

2 = P1 + 1
2ρu1

2 (3.7)

After passing the disc (note, energy is lost at the disc):

P2 + 1
2ρu1

2 = P0 + 1
2ρu3

2 (3.8)

Eliminate P1 & P2 from eq. 3.6 via eq. 3.7 & eq. 3.8:

P1 = P0 +
1

2
ρ(u0

2 − u1
2) (3.9)

P2 = P0 +
1

2
ρ(u3

2 − u1
2) (3.10)

P1 − P2 =
1

2
ρ(u0

2 − u3
2) (3.11)

With eq. 3.6:

T = A(P2 − P1) (3.12a)

@A
1

2 Aρ
XXXXX(u0 − u3) (u0 + u3) =ZZρA u1 ·XXXXX(u0 − u3) (3.12b)

⇒ 1

2
(u0 + u3) = u1 (3.12c)

Induction Factor: a ∈ [0, 1
2 ]

u1 = (1− a)u0

With eq. 3.12c:

u3 = (1− 2a)u0

Figure 3.4
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Now we can compute power & thrust as function of a:

P = ρ · u1 ·A · (
1

2
u2

0 −
1

2
u2

3) (3.13a)

=
1

2
· ρ · u3

0 ·A · (1− a)(1− (1− 2a)2) (3.13b)

=
1

2
ρ A u3

0 · 4a (1− a)2︸ ︷︷ ︸
CP(a) Power Coefficient

(3.13c)

T = ṁ(u0 − u3) (3.14a)

= ρ · u1 ·A (u0 − u3) (3.14b)

=
1

2
· ρ ·A · u2

0 · 2 · (1− a)(1− (1− 2a)) (3.14c)

=
1

2
ρ A u2

0 · 4a (1− a)︸ ︷︷ ︸
CT(a) Thrust Coefficient

(3.14d)

⇒ CP(a) = (1− a)CT(a) (3.15)
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Maximize power extraction:

Figure 3.5

Since dCP

da = 2(1 − a) · 4a + (1 − a)2 · 4 = 0 ⇔ 2a = 1 − a ⇔ a∗ = 1
3 ,

where a∗ is the optimal induction factor, we get:

CP(a∗) = (2
3 )2 · 4 · 1

3 = 16
27 ≈ 0.59 (Betz’ limit)

Figure 3.6

Because CT(a) = 4a(1− a), CT(a∗∗) = 4 · 1
2 · (1−

1
2 ) = 1.
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3.3 Wake rotation & rotor disc theory

Figure 3.7

Tip speed: R · Ω

Speed at r < R: r · Ω

Ω = 2π
T (T : period of rotation)

Air is deflected in the tangential direction by the blade. Tangential
induction depends on r. V1,the tangential induced velocity is found us-

ing: V1 = r · Ω · a′ , where a′ is the tangential induction factor. Figure
3.8 shows that with an initial tangential velocity of zero, the tangential

velocity downwind is V3 = r · Ω · (2a′) , where the change of the tan-

gential momentum = m · (V3 − 0).

Figure 3.8
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To compute V3(r) with given a, Ω, R and U∞, regard an infinitesimal
annulus of area dA:

Figure 3.9

dA = 2π · r · dr (3.16)

R∫
0

2π · r · dr = πR2 (3.17)

The infinitesimal power extracted:

dP =
1

2
ρ · U3

∞ · dA · CP(a) (3.18)

To harvest this power via rotary motion with the angular velocity Ω,
we need a tangential force dF. Thus:

dP = dF · r · Ω (3.19)

Because F = ṁ∆V due to the momentum change (ṁ = ρ·A·U∞(1−a)),

dF = ρ · dA · U∞ · (1− a)(V3 − 0) (3.20)

From eq. 3.18, 3.19 and 3.20 we get:

1

2 Aρ U
3
∞ ·HHdA · CP(a) = r · Ω · Aρ ·HHdA · U∞(1− a) · V3 (3.21a)

1

2
U2
∞CP(a) = r · Ω · (1− a) · V3 (3.21b)

⇒ V3 =
2U2
∞ · a · (1− a)

r · Ω
(3.22)

Since a′(r) = V3(r)
2·r·Ω , we know the tangential induction factor:

a′(r) =
U2
∞ · a(1− a)

r2 · Ω2
(3.23)

which means V3 ∝ 1
r (for a = constant). And with the local speed ratio

λr = µλ = µRΩ
U∞

= rΩ
U∞

, where µ = r
R , we also have:

a′(r) =
a(1− a)

λ2
r

(3.24)

We conclude that the wake rotates more if the turbine moves relatively
slower (low λ) and higher λ leads to less wake rotation.
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3.4 Blade element/ momentum (BEM) the-
ory

Regard the annuli independent from each other like rotor discs (see
figure 3.11), and assume that aerodynamic lift & drag accounting to
2-D airfoil theory. The “solidity” at radius r is defined as:

σr :=
B · c(r)

2πr

Figure 3.10

where B is the number of blades, therefore overall solidity is total blade
area divided by disc area:

σ :=
B ·
∫ R

0
c(r)dr

πR2
(3.25)

Geometry & speeds:

Note:a & a′ can depend on r, thus a = a(r), a′ = a′(r)

41



Figure 3.11

Blade element top view at r):

Figure 3.12 : β is the set pitch angle at radius r, α is the angle of attack,
φ is the flow angle.

Effective wind magnitude:

W =
√
U2
∞(1− a)2 + r2Ω2(1 + a′)2 (3.26)

With 2D-lift coefficient CL(α), 2D-drag coefficient CD(α) and the area
of blade element dAB = c ·dr we get the lift and drag of blade element:
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Figure 3.13

 dL = 1
2 ρ W

2 dAB · CL

dD = 1
2 ρ W

2 dAB · CD

Since sinφ = U∞(1−a)
W and cosφ = r·Ω·(1+a′)

W , we can also have the
following equations:

• Axial force on all blade elements:

dFA = B · (dL · cosφ+ dD · sinφ) (3.27)

• Tangential force on all blade elements:

dFT = B · (dL · sinφ− dD · cosφ) (3.28)

(positive if the blade element produce power)

Figure 3.14

Axial and tangential force cause
induction a & a′ due to
momentum balance (as before).

• Axial force:

dFA = dṁ · (2au∞) (3.29a)

= ρ · 2πr · dr · u∞(1− a) (3.29b)

⇒ dFA =
1

2
ρU2
∞ · 2πr · dr · 4a(1− a) (3.30)
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• Tangential momentum change:

dFT = dṁ(2a′ · r · Ω) =
1

2
ρU∞ · r · Ω · 2πr dr(1− a)4a′ (3.31)

From eq. 3.27 = eq. 3.30, eq. 3.28 = eq. 3.31, we get two equations
for two unkowns a & a′ which need to be solved numerically.

Let us first correct & simplify our equations:

Figure 3.15

Eq. 3.27 = Eq. 3.30:

1

2
ρW 2 ·B · c(CL cosφ+ CD sinφ)dr =

1

2
ρ2πrdrU2

∞4a(1− a) (3.32a)

⇒W 2 ·B · c(CL cosφ+ CD sinφ) = 2πrU2
∞4a(1− a) (3.32b)

Eq. 3.28 = Eq. 3.31:

1

2
ρW 2 ·B ·c(CL sinφ−CD cosφ)dr =

1

2
ρ2πrdrU∞rΩ4a′(1−a) (3.33a)

⇒W 2 ·B · c(CL sinφ− CD cosφ) = 2πr2U∞Ω4a′(1− a) (3.33b)
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Use solidity σr = B·c
2πr , local speed ratio λr = rΩ

U∞
and W :

W =
√
U2
∞λ

2
r(1 + a′)2 + U2

∞(1− a)2 (3.34a)

= U∞
√
λ2
r(1 + a′)2 + (1− a)2 (3.34b)

with the expressions:

Figure 3.16

sinφ = (1−a)√
λ2
r(1+a′)2+(1−a)2

cosφ = λr(1+a′)
λ2
r(1+a′)2+(1−a)2

Therefore we get the equivalent formula:

From Eq. 3.32b:

(λr(1 + a′)2+(1− a)) · σr · (CL
λr(1 + a′)

λ2
r(1 + a′)2 + (1− a)2

+CD
(1− a)√

λ2
r(1 + a′)2 + (1− a)2

) = 4a(1− a) (3.35a)

⇒
√
λ2
r(1 + a′)2 + (1− a)2 · σr · (CLλr(1 + a′+CD(1− a))

= 4a(1− a) (3.35b)

From Eq. 3.33b:

√
λ2
r(1 + a′)2 + (1− a)2 · σr

λr
(CL(1− a)−CDλr(1 + a′))

= 4a′(1− a) (3.36)

Dividing both eq. 3.35b by eq. 3.36 for each side gives:

λr ·
CLλr(1 + a′) + CD(1− a)

CL(1− a)− CDλr(1 + a′)
=

a

a′
(3.37)
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Recall from rotor disc theory a′ = a(1−a)
λ2
r

:

a′ =
a

λr

(1− a)− CD
CL
λr(1 + a′)

λr(1 + a′) + CD
CL

(1− a)
(3.38a)

=
a(1− a)

λ2
r

(
1− CD

CL
λr

1+a′

1−a

1 + CD
CL

(1− a) · 1
λr

)
(3.38b)

And if we get the quadratic equation in a′:

a′
2

+

(
1 +

CD
CL
· 1

λr

)
a′ −

(
a(1− a)

λ2
r

− CD
CL

a

λr

)
(3.39)

There will be only positive solution meaningful:

a′ = −
1 + CD

CL
· 1
λr

2
+

√
(1 + CD

CL
· 1
λr

)2

4
+
a(1− a)

λ2
r

− CD
CL

a

λr
(3.40)

For CD = 0, we set:

a′ = −1

2
+

√
1

4
+
a(1− a)

λ2
r

(3.41a)

= −1

2
+

1

2

√
1 +

4a(1− a)

λ2
r

(3.41b)

= −1

2
+

1

2
+

1

4

4a(1− a)

λ2
r

(3.41c)

=
a(1− a)

λ2
r

+O(λ−4
r ) (3.41d)

Note that by Taylor series
√

1 + x = 1 + 1
2x+O(x2)
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3.4.1 BEM example

Let us now assume a few typical values: λr ∈ [1, 7] and B = 3. For
λR = 7, a = 1

3 for all r (extracting maximum power due to Betz’ limit):

Figure 3.17

CL = 1, CD = 0.01
(Twist and pitch optimally chosen so that
the angle of attack α is constant at 5o)

Figure 3.18

a′ ≈ a(1−a)
λ2
r

= 2
9 ·

1
λ2
r
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Get local solidity from Eq. 3.35b:

σr =
4a(1− a)

CLλr(1 + a′) + CD(1− a)
· 1√

λ2
r(1 + a′)2 + (1− a)2

=
8

9

1

λr(1 + a′) +0.006̄︸ ︷︷ ︸
≈0

· 1

λr(1 + a′)

√
1 +

4

9

1

(1 + a′)λr)︸ ︷︷ ︸≈0

≈ 8

9

1

λ2
r(1 + a′)2

≈ 8

9

1

λ2
r

Figure 3.19
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What does this mean for chord length c?

Since σr = B·c
2πr = 8

9
1
λ2
r
, we know:

c =
2πr

B
· 8

9
· R

2

r2
· 1

λ2
R

=
2πR

Bλ2
R

· 8

9
· 1

µ

≈ 2πR

B
· 2% · 1

µ

≈ 4%
R

µ

Figure 3.20

For R = 50 m,
we get c(R) = 2 m and
c(10 m) = 10 m.
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Most important equation to remember:

λr = r
R · λ� 1

CL
CD
� 1

 Assumptions

Axial momentum balance:

Force on blade area:

FB =
1

2
ρ ·AB (λrU∞)2︸ ︷︷ ︸

W 2

·CL

Equals thrust on annulus:

FA = ρAAU∞(1− a)(U∞ · 2 · a)

=
1

2
ρAA · U2

∞ · 4a(1− a)︸ ︷︷ ︸
CT (a)

Figure 3.21

Local solidity:

σr =
AB
AA

=
B · c
2πr

Optimal chord:

1

2
HHHρ U2

∞ ·AB · CL · λ2
r =

Z
Z
Z

1

2
ρU2
∞ ·AA · 4a(1− a)

⇒ σr · CL = 4a(1−a)
λ2
r

= 8
9 ·

1
λ2
r
a = 1

3 (optimal)

⇒ c(r) ·B
2πr

CL(r) =
8

9

1

λ2

R2

r2

⇒ c(r) =
1

B · CL(r)

2π · 8 ·R2

9 · λ2 · r
∝ 1

r
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Figure 3.22

For fixed CL at a optimal angle of
attack, optimal chord inversely
propotional to radius.
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3.4.2 Linear taper practical blade design

In practical, “linear taper” is also used (see figure 3.24). Because the
chord close to the hub is shorter. To compensate for the lower solidity,
one can increase the angle of attack in order to increase CL(r) accord-
ingly. Here the drag loss in the inner part of the blade is less important
to us.

Figure 3.23

What is the flow angle?

Figure 3.24

The flow angle φ = β + α,
where β is the twist,
therefore α = φ− β
(fixed α for the best CL

CD
).

sinφ =
(1− a)

λr(1 + a′)

√√√√1 +
(1− a)2

λ2(1 + a′)2︸ ︷︷ ︸
≈0

≈ 1− a
λr(1 + a′)

≈ 2

3

1

λr
(a = 2

3 , a
′ = 0)
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Figure 3.25

φ = sin−1( 2
3 ·

R
r·λ ) ≈ 2

3
R
λ ·

1
r

(inversely propotional to r)

Given profile CL, CD, at α fixed at α0 = 5o,

Figure 3.26
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Chapter 4

Mechanics & Dynamics
of Wind Turbines

Loads and Forces:

Sources:

• Aerodynamics (lift & drag)

• Gravity

• Inertia (gyroscopic & centrifugal)

• Electro mechanical (generator torque)

• Operational (brakes, yaw and pitch actuator)

Type of Loads:

• Steady (static & rotational)

• Cyclic: multiples (harmonics) of rotation frequency

“1P” once per revolution

“3P” 3 times per revolution

“B.P” B times per revolution
(If B = number of blades, B.P = “Blade passing frequency”)

• Resonant (vibration of tower & blades)

• Transient (start, stop, yew)

• Stochastic (wind)
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4.1 Steady loads in normal operation

Figure 4.1

FT ≈
P

2
3U∞

(4.1)

FG = mN · g (4.2)

Example: P = 6 MW, U∞ = 9 m/s, mN = 360 t

FT ≈
P

2
3U∞

=
6 MW

2
3 · 9 m/s

= 1 MN

FG = mN · g
= 360 · 103kg · 9.81 m/s2

= 3.6 MN
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4.2 Stress and strain

Regard material under tension:

Figure 4.2

Stress:

σ =
F

A
[Pa] (4.3)

Strain:

ε =
∆L

L
[−] (4.4)

Stress-strain curve:

Figure 4.3

Example steel: E = 200 GPa, Y = 250 MPa, [U = 500 MPa]
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At which strain does a steel start to deform plastically/ per-
manently?

σY = E · εY (4.5)

σY = Y (4.6)

σY =
Y

E
=

250 MPa

200 · 103MPa
= 1.25 · 103 = 0.125% (4.7)

When does a beam start to deform?

Figure 4.4

εY =
d

ρ
(4.8)
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4.3 (Static) beam bending
(Euler-Bernoulli theory)

Hooke’s law:

σ = E · ε (4.9)

σ = stress [Pa]
E = Young’s modulus [Pa]
ε = strain (deformation) [%]

Figure 4.5

Figure 4.6

Figure 4.7
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Strain:

ε =
z

ρ
(4.10)

Because 1
ρ = d2w(x)

dx2 we get:

ε = z · d2w(x)

dx2
(4.11)

Bending moment:

M(x) =

d∫
−d

z · σ(z) · dA (4.12a)

=

d∫
−d

z · E · z · (d2w(x)

dx2
) · dA (4.12b)

= E(
d2w(x)

dx2
)

d∫
−d

z2dA

︸ ︷︷ ︸
:= I (second moment of area)

(4.12c)

= E · I · d2w(x)

dx2
(4.12d)

⇒M = E · I · 1

ρ
(4.13)

Static beam equation/ Euler Bernoulli:

d2

dx2

(
E(x)I(x)d2w(x)

dx2

)
= q(x) (4.14)

“Shear force” = dM(x)
dx = Q(x)

“Distributed load” = d2M(x)
dx2 = dQ(x)

dx = q(x)
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Example 1 - Cantilever beam with end load:

Figure 4.8

M(x) = E · I · d2w
dx2 = F (L− x)

Q(x) = dM
dx = −F

dQ(x)
dx = 0

E, I is constant and there is no
distributed load, q(x) = 0
(No gravity of the beam)

d2w
dx2 = F

E·I · (L− x)

w(x) = F
E·I (Lx

2

2 −
x3

6 + c0 + c1x), with initial value c1 = 0 and c0 = 0

⇔ w(x) = Fx2

6EI (3 · L− x)

W (L)︸ ︷︷ ︸
displacement

= F ·L2

6EI (2 · L) =

force︷︸︸︷
F · L3

3 · E · I︸ ︷︷ ︸
spring constant
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Example 2 - Cantilever beam with constant loading:

Figure 4.9

q(x) ≡ q ≡ constant
E, I is constant.

q

E · I
=

d4w(x)

dx4
(4.15)

⇔ w(x) =
q

E · I
· (x

4

24
+ c3x

3 + c2x
2 + c1x+ c0) (4.16)

Boundary conditions: w(0) = 0⇒ c0 = 0, dw(0)
dx = 0⇒ c1 = 0

M(x) =
d2w

dx2
· E · I (4.17)

M(L) = 0⇒ d2w
dx2 (L) = 0

Q(x) =
dM(x)

dx
(4.18)

Q(L) = 0⇒ d3w
dx3 (L) = 0

From Eq 4.17:
x2

2
+ 6c3x+ 2c2

∣∣∣∣
x=L

= 0 (4.19)

From Eq 4.18:

x+ 6c3|x=L = 0⇒ c3 = −1

6
(4.20)

From Eq 4.19:
L2

2
− L2 + 2c2 = 0⇔ c2 =

1

4
L2 (4.21)
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w(x) =
q

E · I
(
x4

24
+
L

6
x3 +

1

4
L2x2) (4.22a)

=
qx2

EI · 24
(x2 − 4Lx+ 6L2) (4.22b)

M(x) = E · I · d2w

dx2
= 9 · (1

2
x2 − Lx+

L2

2
) (4.23)

Q(x) = q(x− L) (4.24)
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4.3.1 Maximum stress at Boundary

Figure 4.10

σ = E · ε (4.25)

ε = z · d2w

dx2
= z · M(x)

E · I(x)
(z = d) (4.26)

σmax = E · d · M(x)

E · I(x)
=

d

I(x)
·M(x) (4.27)

If σmax = 250 MPa and d = 1 m, what is the maximum moment
Mmax?

Figure 4.11

I = π
4 d

4, I
d = π

4 d
3

Mmax = σmax · Id = 250 MPa· π4 ·1 m3

≈ 2 · 108Nm = 200 m · 1 MN

A higher moment will lead to plastic deformations.
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4.3.2 Loads at blade root (in flapwise direction)

For a blade in an ideal design, the distributed load q(r) is given by 1
B

the thrust of the corresponding annulus:

Figure 4.12

dF = 4a(1− a)︸ ︷︷ ︸
CT(a)

·1
2
ρU2
∞ · 2πr · dr (4.28a)

= CT(a) · 1

2
ρU2
∞ · 2πr︸ ︷︷ ︸

=B·q(r)

·dr (4.28b)

q(r) = CT(a) · 1

2
ρU2
∞ · 2π ·

1

B
(4.29)
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The bending moment at the bladeroot (r = 0) can be computed by
integration:

M(0) =

R∫
0

q(r) · rdr (4.30a)

=
1

B
· CT(a) · 1

2
ρ U2
∞ · 2π ·

R∫
0

r2dr

︸ ︷︷ ︸
:= R3

3

(4.30b)

=
1

B
· CT(a) · 1

2
ρ U2
∞ ·

2

3
πR3 (4.30c)

=
1

B

2

3
·R · CT(a) · 1

2
ρ U2
∞ · (πR2)︸ ︷︷ ︸

:= FT (Total force on actuator disc)

(4.30d)

Shear force at blade root is trivially given by Q(0) = FT
B .

Easy to remember: FT
B (total force on blade) × 2

3R ( 2
3 of radius) equals

moment M(0). If we assume all forces acting on 2
3R, we get the right

bending moment.

Figure 4.13

FT ≈
P

(1− a)U∞
(4.31)

Example: 1 MN for 6 MW at
U∞ = 9 m/s and R = 75 m:

M(0) = 2
3R ·

FT
3 = 50 m · 1

3MN
≈ 16 MN ·m
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What is the maximum bending stress at blade root? Regard the annu-
lus cross-section:

Figure 4.14

r2 − r1 = b� r2

I = π
4 r2

4 − π
4 r1

4 ≈ πr2
3 · b

I
r2

= πr2
2 · b

σmax = r2
I M(0) = M(0)

I
r2

= M(0)
πr22·b

If r2 = 1 m, σmax = 250 MPa, how thick should the blade root shell be?

b =
M(0)

πr2
2
· 1

σmax
= 5

MN ·m
m2 · 1

250 MPa
=

1

50
m = 2 cm
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4.4 Oscillations & eigenmodes

4.4.1 Intro: spring-mass-damper-system

mẍ+ βẋ+ kx = F (t) (4.32)


x : displacement, m : mass
F (t) : external force
kx : spring force
β : (viscous/ linear) damping

Figure 4.15

For F (t) = F0 · ejωt, where F0 > 0 and we take the real part of the
solution in design, then the solution is given by:

x(t) = x0 · ejωt, x0 ∈ C (4.33)

ẋ = (jω) · x0e
jωt (4.34)

ẍ = −ω2x0e
jωt (4.35)

−mω2x0e
jωt + βjωx0e

jωt + kx0e
jωt = F0e

jωt (4.36)

x0 · (k −mω2︸ ︷︷ ︸
real

+ jβω︸︷︷︸
imaginary

) = F0 (4.37)

x0 is a complex number with magnitude:

|x0| =
F0√

(k −mω2)2 + β2ω2
(4.38)

Maximum |x0| is approximately taken at natural resonant “Eigen fre-
quency” ωNR with:

k −m ωNR
2 = 0⇔ ωNR =

√
k

m
(4.39)
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How much can F0 be amplified?

Spring force F spring
0 = k · x

|F spring
0 | = k|x0| =

F0√
(1− ( ω

ωNR
)2)2 + β2

k2 ω
2

(4.40)

At ω = ωNR we get:

|F spring
0 |
F0

=
k

β ωNR
(4.41)

That is, the smaller the damping, the higher the amplification.

Figure 4.16 Bode diagram of
|F spring

0 (ω)|
F0

Amplification factors can be 5 – 10, so resonance shall typically be
avoid. At very low frequencies, spring force equals applied force, i.e.,
static analysis is sufficient (see section 4.2).
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4.4.2 Eigenmodes

For spring-mass-damper systems with more than one degree of free-
dom. The displacement can be described by a vector w(t) ∈ Rn and
the equation of motion becomes:

Mẅ + Dẇ + Kw = F (t) (4.42)

 M : mass matrix, ∈ Rn×n
D : damping matrix
K : stiffness matrix, ∈ Rn×n

Figure 4.17

If damping is neglected (D = 0), natural resonances must satisfy w̄ ∈
Rn:

w(t) = w̄ · ejωt (4.43)

Mẅ + Kw = 0 (4.44)

That is,

− ω2Mw̄ + Kw̄ = 0⇔ (M−1K− ω2I)w̄ = 0 (4.45)

This is an eigenvalue equation for matrix M−1K ∈ Rn×n, and we
know there are n eigenvalues with n eigenvectors w̄ (“eigenmodes”).
As both M and K are positive definite, eigenvalues of M−1K are real
& positive. We are often only interested in the eigenmodes with lowest
eigenfrequency.
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4.4.3 Rayleighs method

Assume we have a good guess of an eigenmode vector, w̄ ∈ Rn. To find
the corresponding ω2 ∈ R, we can use the equation:

Kw̄ = ω2Mw̄ (4.46)

(1) is overdertermined if w̄isfixed, but to multiply (1) by 1
2w̄T gives:

1

2
w̄>Kw̄︸ ︷︷ ︸

elastic/potential energy at max. displacement

=

kinetic energy at max. speed (zero displacement)︷ ︸︸ ︷
ω2 · 1

2
w̄>Mw̄ (4.47)

ω =

√
1
2w̄>Kw̄
1
2w̄>Mw̄

:= f(w̄) (4.48)

If the guess of w̄ is good, this method can give surprisingly accurate
estimation of ω. (To check, one can insert ω & w̄ in eq. 4.46).

What is the error of Rayleighs method?

Assume ω0 ∈ R and ω0 ∈ Rn are the true eigen-pair, i.e., they satisfy:

Kw0 = ω2
0Mw0 (4.49)

w̄ = w0 + ∆w with ∆w is the error of our guess. We then get:

ω2 =
1
2w̄>Kw̄
1
2w̄>Mw̄︸ ︷︷ ︸

:= f(w̄)

=

:= f(w0) = ω0
2︷ ︸︸ ︷

1
2w0

>Kw0

1
2w0

>Mw0

+∇f(w0)>∆w +O(‖∆w‖2) (4.50)

But here:

∇f(w0) =
( 1

2w0
>Mw0)Kw0 − ( 1

2w0
>Kw0)Mw0

( 1
2w0

>Mw0)2
(4.51a)

=
Kw0 − ω0

2Mw0

( 1
2w0

>Mw0)
= 0 (4.51b)
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Thus, the error is of second order:

ω2 = ω2
0 +O(‖∆w‖2) (4.52)

Example 1: for M & K

m2ẍ2 + k2(x2 − x1) = 0

m1ẍ1 + k1 ·x1− k2(x2−x1) = 0

w =

(
x1

x2

)
∈ R2

Figure 4.18

(
m1 0
0 m2

)
︸ ︷︷ ︸

:= M ∈ R2×2

ẅ +

:= K ∈ R2×2︷ ︸︸ ︷[
(k1 + k2) −k2

−k2 k2

]
w = 0 (4.53)

Example 2:

w(t) = w̄ · ejωt

Assume m2 � m1, k1 ≈ k2

w̄ =

(
1
2

)
(eigenvector)

w(t) =

[
ejωt

2 · ejωt
]

Figure 4.19

Ekin =
1

2
w̄>Mw̄ =

1

2
(m1 + 4m2)ω2A0

2 (4.54)
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Epotential =
1

2
w̄>Kw̄ (4.55a)

=
1

2
A0

2 ·
(

1
2

)> [
(k1 + k2) −k2

−k2 k2

](
1
2

)
(4.55b)

=
1

2
A0 ·

(
1
2

)> [
(k1 + k2)− 2k2

−k2 + 2k2

]
(4.55c)

=
1

2
A0(k1 − k2) + 2k2 (4.55d)

=
1

2
A0(k1 + k2) (4.55e)

ω2 =
k1 + k2

m1 + 4m2
≈ k1 + k2

4
· 1

m2
≈ k1

2
· 1

m2
(4.56)
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4.4.4 Dynamic beam equation

Euler-Bernoulli & Lagrange produced equation 4.57, the Dynamic Beam
Equation. Note, this equation also depends on time, and hence the ”dy-
namic” beam equation.

∂2

∂x2

(
E(x) · I(x)∂

2w
∂x2

)
= q(x, t)− µ(x) · ∂

2w
∂t2 (4.57)

 µ(x) : mass density per length
q(x, t) : distributed load
w(x, t) : time varying solution (no damping)

Figure 4.20

Note that this is a linear PDE, which after spacial discretization we get:

Kw = −M · ẅ (4.58)

Ekin =
1

2

L∫
0

M(x) ·
(
∂w

∂t

)2

dx (4.59)

Eela =
1

2

L∫
0

E(x)I(x) ·
(
∂2w

∂x2

)2

dx (4.60)
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4.4.5 Tower eigenmodes

Both nacelles and towers have mass. For example, MHI-VESTAS V164
9.5 MW:

Figure 4.21

So the eigenmodes need to be computed for a very unequal mass dis-
tribution. The lowest two eigenmodes look approximately as follows:

Figure 4.22 lowest eigenmode Figure 4.23 2nd-lowest eigenmode
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Kinetic energy:

Ekin =
1

2

L∫
0

µ(x)

(
∂w(x, t)

∂t

)2

dx (4.61)

Elastic poetential energy:

Eela =
1

2

L∫
0

E(x)I(x)

(
∂2w(x, t)

∂x2

)2

dx (4.62)

Assuming for the example above w(x, t) = w̄(x) · ejωt with w̄(x) =

A0· x
2

L2 for a rough approximation of the lowest eigenmode, and assuming
constant mass µ(x), E(x) and I(x) throughout the tower, we would get
the following estimation by using Raileighs method:

Ekin = ω2 ·

1

2

L∫
0

mtower

L

(
A0

L2

)2 (
x2
)2

dx+
1

2
mnacelleA0

2

 (4.63a)

=
ω2

2
A0

2

mtower

L5

L∫
0

x4dx+mnacelle

 (4.63b)

= ω2A0
2

2

(
1

5
mtower +mnacelle

)
(4.63c)

Eela =
1

2

L∫
0

E · I
(
A0

2

L2

)
dx (4.64a)

=
A0

2

2
E · I

(
4

L4

)
L (4.64b)

=
A0

2

2
E · I 4

L3
(4.64c)

Equating Ekin = Eela gives:

ω2
(mtower

5
+mnacelle

)
=

4EI

L3
(4.65)
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Site and weight of wind turbines:

Example 1: VESTAS V90, 1.8 MW

Tower height: 120 m

Blade length: R = 45 m

Nacelle weight: 75 t

3 blades weight: 40 t

 = 115 t

Tower weight: 152 t

Figure 4.24

Example 2: MHI-VESTAS V164, 9.5 MW

Tower height: 105 m

Blade length: R = 82 m

Nacelle weight: 390 t

3 blades weight: 105 t

 ≈ 150 t

Tower weight: 400 t

Base diameter: 6.5 m Figure 4.25
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4.4.6 Stiff & soft towers

Lowest excitation freuquencies:

1P : “Rotor rotation frequency” (blade excitation, blade asymmetries)

B.P : “Blade passing frequency” (with B = number of blades)

With tip speed ratio λ = R·Ω
U∞

, radius R and wind speed U∞ we have:

ω1P = Ω =
λ · U∞
R

(4.66)

ωB.P = B · Ω = B · λU∞
R

(4.67)

Note that we always have ωB.P = B · ω1P . ω1P typically varies with
wind speed. There would be problems if ω1P or ωB.P become equal to
tower eigenfrequencies, so we have to avoid resonance with (a) tower
design and (b) controller design.

Given the range of operational speeds, the tower can be operated in
three frequency domains (see figure 4.27):

A©: “soft-soft”, if its lowest eigenfrequency ωtower is in region A©.

B©: “soft-stiff”, if ωtower is in region B©.

C©: “stiff-stiff”, if ωtower is in region C©, i.e., higher than B.P . In this
case, all eigenfrequencies are above ωmax

B.P

Figure 4.26

Note: The lowest eigenfrequency of tower matters!
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Example: MHI-VASTAS V164

λ = 8
R = 80 m

U∞ = 10 m/s
Ω = 1 rad/s

Figure 4.27

Figure 4.28
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4.5 Blade oscillation & centrifugal stiffen-
ing

Blade oscillations mostly occur “flapwise”, i.e., forward-backward.

Figure 4.29

Interestingly, due to rotation, the blades “stiffen” and has higher eigen-
frequencies than it would have without rotating. Let’s see why.

4.5.1 Rotating, hinged beam (no elasticity)

Figure 4.30

Moment of inertia:

I =

R∫
0

µ(r) · r2dr (4.68)

Flapwise oscillation angle: ϕ

Rotating frequency: Ω

Restoring moment: M(ϕ)

Iϕ̈ = M(ϕ) (4.69)
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Moment M(ϕ) comes from centrifugal force:

M(ϕ) = −
R∫

0

µ(r)Ω2 · r · cos(ϕ)︸ ︷︷ ︸
≈ 1

·
≈ ϕ︷ ︸︸ ︷

sin(ϕ) ·rdr (4.70a)

≈ −ϕ · Ω2

R∫
0

µ(r)r2dr (4.70b)

= −ϕ · Ω2 · I (4.70c)

With eq. 4.69 this gives:

Iϕ̈ = −Ω2Iϕ⇔ ϕ(t) = A sin(Ωt) (4.71)

Eigenfrequency equals rotor frequency!
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4.5.2 Rotating beam with torsional spring

Figure 4.31

Spring constant K

Natural resonance: ωNR =

√
K

I
(4.72)

M(ϕ) = −Ω2Iϕ−Kϕ (4.73)

Iϕ̈ = −(Ω2I +K)ϕ (4.74)

ϕ̈ = −(Ω2 +
K

I
)ϕ = −(Ω2 + ωNR

2)ϕ (4.75)

ωR
2 = ωNR

2 + Ω2︸ ︷︷ ︸
“centrifugal stiffening”

(4.76)
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Chapter 5

Control of Wind
Turbines

Sometimes we have:

(a) Passive control by mechanical design. For example:

Figure 5.1 Tail-rotor
Figure 5.2 Vane

(b) Active control by sensor-actuator systems, usually using digital con-
trollers:

Figure 5.3
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5.1 Sensors and Actuators in wind turbines

Sensors:

• Genrator speed, rotor speed, wind speed, yaw rate

• Temperature of gearbox oil, generator winding, ambient air, etc

• Blade pitch, blade azimuth, yaw angle, wind direction

• Grid power, current, voltage, grid frequency

• Tower top acceleration, gearbox vibration, shaft torque, blade
root bending moment, etc

• Environment (icing, humidity, lightning)

Actuators:

• Generator

• Motors: pitch, yaw

• Linear rotors, magnets, switches

• Hydraulic powers and pistons (high power & speed)

• Resistance heaters & fans for temperature control

• Brakes (rotor, yaw)
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5.2 Control system architecture

Figure 5.4

Usually, the “supervisory control” is on high level for turbine operating
status. And “Dynamic control” is on low level (e.g. torque, pitch,
power...etc).

84



5.3 Control of variable speed turbines

For speed control, main actuators are:

• blade pitch

• generator torque
(controlled slowly to avoid drive-train oscillations)

Figure 5.5 Rotation speed as function of wind speed

With the problem that wind speed on rotor discs can not be perfectly
known, what is the maximum power production and power coefficient
Cp(λ, β)?

P =
1

2
ρA · u∞3 · CP (λ, β) (5.1)

The equation 5.1 is the power function, where λ = ΩR
u∞

is the tip speed
ratio, β is the collective blade pitch. And the power coefficient CP is
maximized at λ = λ∗ (e.g. = 7) and β = β∗ = 0 (C∗P = CP (λ∗, β∗)).

(Note: ∗ means the optimal value.)
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Figure 5.6 shows pitch, torque and λ as function of wind speed. QGen

is the generator torque. In equilibrium, QGen = QAero.

• Region IIA: λ is fixed to λIIAfix = Ωmin·R
u∞

and β is maximized.

CP = CP (λIIAfix , β)

• Region IIB (subrated): λ = λ∗ and β = β∗

CP = C∗P = CP (λ∗, β∗)

• Region IIC & III: λ is again fixed to λIICfix = Ωmax·R
u∞

and β regu-
lates power.

(Region III is at maximum power.)

Figure 5.6 Pitch, torque, λ V.S. wind speed
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5.4 Torque control at subrated power (in
region IIB)

TorqueQGenerator can be controlled directly and should counteract aero-
dynamic torque QAero. Given rotor inertia I we have the ODE for Ω:

IΩ̇ = QAero −QGenerator (5.2)

QAero depends on u∞ & Ω & β and is given by PAero = Ω ·QAero, where
Ω = λ

Ru∞ so that λ = RΩ
u∞

:

QAero =
PAero

Ω

=
1

2
ρ(πR2)u∞

3 · CP (λ, β) ·R
λu∞

(5.3a)

=
1

2
ρπR3u∞

2

[
CP (λ, β)

λ

]
︸ ︷︷ ︸

:= CQ(λ, β)

(5.3b)

=
1

2
ρπR3u∞

2CQ(
ΩR

u∞
, β)︸ ︷︷ ︸

QAero(Ω, u∞, β)

(5.3c)

=
1

2
ρπR5Ω2

[
CP (λ, β)

λ3

]
(5.3d)

How to choose QGenerator when only Ω is measured?

Idea: Find the function QGenerator(Ω) that brings turbine to an optimal
tip speed ratio λ∗ (in region IIB)). Intuitively, setting high QGen if Ω
is too large and small QGen if Ω is too small in order to stabilize the
rotor speed. At optimal Ω∗ = λ∗·u∞

R we would have:

QAero(Ω∗, u∞, β
∗) = QGen(Ω∗) (5.4)
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So let us generally try the law:

QGen(Ω) := QAero(Ω,
RΩ

λ∗
, β∗)

=
1

2
ρπR3

(
RΩ

λ∗

)2
CP (λ∗, β∗)

λ∗
(5.5a)

=
1

2
ρπR5CP (λ∗, β∗)

(λ∗)3︸ ︷︷ ︸
constant KGen

· Ω2 (5.5b)

Example: (BOSSANYI 2003)

Is this control-loop stable at Ω∗?

From equation 5.2 we know:

Ω̇ := f(Ω) =
1

I
(QAero(Ω, u∞, β

∗)−QGen(Ω)) (5.6)

Question 1: Is f(Ω∗) = 0? And is it in steady state?

If Ω∗ = λ∗u∞
R , then by construction QAero(Ω∗, u∞, β

∗) = KGen · (Ω∗)2

such that indeed f(Ω∗) = 0.

Question 2: If df
dΩ (Ω∗) < 0, is it stable?

At Ω = Ω∗ = λ∗·u∞
r and u∞ = Ω∗R

λ∗ , we get:

df

dΩ
=

1

I

(
1

2
ρπR5

)(
−C

∗
PΩ∗

(λ∗)3
− 2C∗P

(λ∗)3
Ω∗
)

(5.7a)

= −
1
2ρπR

5

I · (λ∗)3
· 3C∗P︸ ︷︷ ︸

constant [-]

· Ω∗ (5.7b)

That is, the settling time is proportional to 1
Ω∗ or R

u∞
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Chapter 6

Alternative Concepts

6.1 Vertical axis wind turbines

Darrieus totor:

Figure 6.1

Figure 6.2 Top view
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Savoxnius wind turbine:

Figure 6.3 Figure 6.4 Top view
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6.2 Airborne wind energy (AWE)

See slides: (click here for slides:
https://www.syscop.de/files/2018ss/WES/lectures/20180711WES-AWE.key.pdf)

Variant 2: Generator on ground (pumping cycle)

Figure 6.5 Ground based and pumping cycle

We assume:

• the effect of gravity is neglected.

• cable is parallel to wind W .

• kite flies crosswind with speed.

where:

V = λ ·W

W : real wind

V : speed of kite

α : roll out speed as fraction of real wind
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Figure 6.6

Effective wind:

−→
We =

[
(1− α)W
−λ ·W

]
(6.1)

The lift and drag force:

−→
FL =

[
λ
(1− α)

]
· 1

λ2 + (1− α2)
· 1

2
ρA · ‖

−→
We‖2 · CL (6.2)

−→
FL =

 (1− α)

−λ

 1

λ2 + (1− α2)
· 1

2
ρA · ‖

−→
We‖2 · CD (6.3)

The component of lift and drag force should have value only on the x
axis. Thus we get:

−→
FL +

−→
FD =

 ∗
0

 (6.4)

(1− α)CL = λCD (6.5)

λ = CL
CD
· (1− α) (6.6)
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6.3 Loyd’s formula

Regard a kite/airfoil under idealized conditions, which means:

• The tether is parallel to the wind.

• No gravity, steady wind W ≡ u∞

• Steady crosswind flight with downward components

Figure 6.7

Given CL & CD, roll out speed, αW , wing area, A and tip speed ratio,
λ, the wind & motion vector in x-y-frame are:

−→
W =

[
W
0

]
(6.7)

−→
V =

[
αW
λW

]
(6.8)

Effective wind:

−→
Ve =

−→
W −

−→
V =

[
(1− α)W
−λW

]
(6.9)

With Ve := ‖Ve‖ = W ·
√

(1− α)2 + λ2 we get:

−→
FD =

1

2
ρA‖Ve‖2 · CD

−→
Ve
‖Ve‖2

(6.10a)

=
1

2
ρAVe

2 · CD
[

(1− α)
−λ

]
1√

(1− α)2 + λ2
(6.10b)
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−→
FL =

1

2
ρA‖Ve‖2 · CL

−→
Ve
‖Ve‖2

(6.11a)

=
1

2
ρAVe

2 · CL
[
λ
(1− α)

]
1√

(1− α)2 + λ2
(6.11b)

−→
FL +

−→
FD =

1

2
ρAVe

2 1√
(1− α)2 + λ2

[
CD(1− α) + CLλ
−CDλ+ CL(1− α)

]
(6.12a)

:=

[
FT
0

]
(6.12b)

Steady state means there is no acceleration, that is, no force in the
y-direction. Thus we get:

λCD = (1− α)CL (6.13)

λ = CL
CD

(1− α) (6.14)

The generated power is equal to roll out speed, αW times FT :

P = α ·W · FT (6.15a)

= α ·W 1

2
ρAW 2

√
(1− α)2 + λ2(CD(1− α) + CLλ) (6.15b)

=
1

2
ρAW 3 · α(1− α)2

[
C3
L

C2
D

+ CL

]
(6.15c)

=
1

2
ρAW 3 C

3
L

C2
D

(
1 +

C2
D

C2
L

)
α(1− α)2 (6.15d)
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The maximum power is reached if α(1− α)2 is maximized:

f(α) = α(1− α)2 (6.16)

f(α′) = (1− α)2 − 2α(1− α)︸ ︷︷ ︸
:= 0

(6.17)

According to equation 6.17, we get (1− α) = 2α⇒ α∗ = 1
3 .

Figure 6.8

f(α∗) =
1

3

(
2

3

)2

=
4

27

Loyd’s formula:

P = 1
2ρAW

3 · 4
27 ·

C3
L

C2
D

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸
≈ 1

(6.18)

Example: Regard CL = 1, CD = 0.05, W = 10 m/s and ρ = 1.2 kg/m3

we get:

P

A
=

= 600 W/m2︷ ︸︸ ︷
1

2
ρW 3 · 4

27
· CL

C2
L

C2
D

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸

:= ζ “Harvesting factor zeta”

ρ =
4

27
· 400(1 +

1

400
) ≈ 59

P

A
= 36 kW/m2
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