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Engineering
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• Passenger cars and vans

• Commercial vehicles and work machines

• Rail, marine, aviation

• Energy and water management



Proximity to Customers in Germany
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Presentation Outline
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1. Introduction to Wind Turbine control problem

2. Aero-Elastic modeling of wind turbines

3. Conventional control applied to wind turbines

4. Advanced control concepts for wind turbines



1. Mechanical setup of variable-speed turbines
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 Wind energy is a „mechanical engineering“ dominated domain – lots of steel and concrete

 It‘s a huge, heavy and flexible machine!
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1. Growth is continuous trend in wind energy
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground
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1. Growth is continuous trend in wind energy
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground
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Impacts on LCOE

• Hub height: wind persistence → AEP/capacity factor

• Rotor diameter → AEP/capacity factor

• Generator & Power elec. capacity → rated turbine power

• Component optimization → (material) invest costs

• Intelligent operations and turbine control (WIND4.0)

• AEP/capacity factor

• Operating costs / O&M
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1. „Growth rate“ regionally different – due to economic drivers
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 Turbine location, Grid situation, O&M costs, availability of land, etc.

Quelle: MAKE

EMEA AMER

Sub 1,5 MW
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1. Typical life-cycle costs break-down of a wind turbine
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 Wind turbine is a capital intensive → costs accumulate in seemingly „simple“ components

 Significant operating costs despite free „fuel“ wind
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1. Negative impact of turbine growth
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground

 Higher Hub + larger rotor  higher forces

 Increased mass + inertia lower eigenfrequencies

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010



1. Negative impact of turbine growth
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 Higher Hub + larger rotor  higher forces

 Increased mass + inertia lower eigenfrequencies  Eigenfrequencies move into excitation spectrum

Hz

Excitation of structural oscillations

• Temporal stochastic wind field

• Aerodynamic imbalace / tower shadow

• Rotor mass imbalance

• Waves (offshore)

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010



1. Operarting strategy for wind turbines
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Operational intervals

I. Low wind / idle

IIA. Minimal rotor speed

IIB. Subrated regime → max. energy capture

Competing control objectives

• Maximize energy capture

• Limit of aerodynamic torques and forces (maintain power and

rotor speed limits)

Minimize mechanical loads and fatigue

Damp torsional oscillations in drive-train

Avoid excessive actuator usage (esp. pitch)

Limit power fluctations

 Look-up table derived from steady state considerations

Wind speed [m/s]

IIC. Enforce max. rotor speed

III. Rated regime → min. power jitter / constraint enforcement

IV. Excessive wind speed shut-down
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3. Conventional control applied to wind turbines

4. Advanced control concepts for wind turbines



2. System theoretic view of a wind turbine
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Aero-
dynamics

Elasto-
dynamics

Generator
(Elect. Sys.)

Pitch 
actuator

Control

inputs

Driving

disturbance

Control 

variables

Available measurements

• Electrical power

• Generator speed

• Tower top accel.

• Single-point wind speed

• Blade accel. / blade 

root bending moment



2. Aero-dynamics – static model
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Energy transformation

Wind speed into torque (rotation)
Wind speed into thrust (bending)

Tip speed ratio (TSR)

Maximum at 



2. Aero-dynamics fully define operating strategy
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Operational intervals

IIA. Minimal rotor speed / fine pitch to maximize Cp

IIB. Subrated regime → enforce , no pitching

 Look-up table derived from steady state considerations

IIC. Max. rotor speed → maximize Cp, no pitching

III. Rated regime → maintain energy balance

Wind speed [m/s]



2. Elasto-dynamics – dynamical model (Diss. Arne Körber, 2014)
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Model simplification – only capture what is relevant for control

Modeling assumptions:

• Blade is a stiff rotating beam

• Tower approx. as simple mass-spring-damper

• Drive-train modeled as 2-mass-oscillator

Blade flap

motion
Tower FA

motion

DT 

rotational

motion



2. Elasto-dynamics – dynamical model based on first principles
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Drive-train schematics Equations of motions (ODEs)

Tower-blades schematics (inverted pendulum like)

A. Körber: Extreme and Fatigue Load Reducing Control for Wind Turbines: A Model Predictive Control Approach using Robust State Constraints, 2014 Diss., TU Berlin



2. Open-loop simulation for NRELs FAST 5MW Turbine  
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Stepwise wind excitation response Tower and Blade motion

 Flap-wise motions of blades are mainly damped aerodynamically through effective wind speed feedback

JONKMAN, et al. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.
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3. State-of-the-art turbine control in commercial turbines
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Conventional turbine control architecture dominated by 

SISO (PID) control loops + complex switching logics
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3. State-of-the-art turbine control in commercial turbines
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Generator speed controller

• Regime IIA-IIB: zero pitch, maintain torque balance

Generator speed controller

• Regime III: max. torque/Pelec , only pitch

 Reference-free torque control law „Cpmax Tracking Law“

 Pitch-loop uses constant reference (rated GenSpd)

 Coordination of „competing“ control loops via „complex“ blending and switching logic
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3. Closed-loop simulation for NRELs FAST 5MW Turbine 
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 Response to temporally turbulent wind around rated operation



3. Closed-loop simulation for NRELs FAST 5MW Turbine 
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 Strong tower movements visible



3. Model-based controller design (your favourite type)
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MIMO state-feedback controller for rated turbine operation

• Linearize model at rated wind speed (at steady-state OP)

Observe, that here

• LQR Design to track rated GenSpd and electrical power

State 

estimator

Wind 

Turbine

Feedback

law

Feedback law coordinates torque and pitch
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4. Advanced turbine control via model predictive control
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 MPC focuses on optimizing the economics of plant operation 

 Tracking controller stabilizes rotor speed reference in the face of unexpected wind speed disturbances

Advantages

• Intuitive tuning mainly via model

• Harmonization of competing objectives

• Explicit handling of constraints

• Direct exploitation of reference & 

disturbance forecasts  preventive 

control moves

State-feedback and recurrent optimization at 

appropriate rate 

• Compensate for modeling errors

• Robustness to unknown external 

disturbances 



4. Ingredients of model predictive turbine control
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Valid operating 

regime

Dynamic 

plant model

Performance 

metric

„stabilizing“ 

terminal costs

„performance 

indicating” stage costs

„Feedback“ constraint

input & state 

constraints

s.t.



4. Working principle of model predictive control

29

Basic steps:

1. Dynamic model to make forecast of plant’s 

future behavior

2. Online optimization to compute optimal 

control moves for defined prediction horizon

3. Application of initial control trajectory

4. Observe response & update state information

t0 t1

y(t)

u(t)

t0+Ts

MPC = solve optimal control problem periodically, for 

current dynamic plant state
 Look into the future, instead into the   

past!



4. Typical controller configuration
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„Economically“ inspired tracking MPC performance metric

Proxy fatigue metric

Constraints: 

 Objectives: power capture ↔ structural loads ↔ actuator wear
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GROS, SCHILD: Real-time economic nonlinear model predictive control for wind turbine control. International Journal of Control, 2017



4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W 
Turbine
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 MPC achieves better GenSpd tracking and softer pitch utilization



4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W 
Turbine
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 Positive: MPC improves power capture & reduces tower oscillations

 Negative: higher power fluctuations observed



Conclusions
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• Wind energy enters digitization era → innovations by means of „intelligence“ and IoT

• Traditional control concepts focus on energy maximization

• Progressing energy revolution demands for much more complex operating strategies 

• Control-oriented modeling of wind turbines requires significant abstraction and simplification

• Advanced control concepts like MPC will be part of the solution to overcome future challenges

• Sustainable market penetration of such innovative technologies requires industrialization of 

research results  significant effort to increase reliability & robustness
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