

Estimation of Parameters in Models for Dynamics Processes -Formulations, Numerical Methods, Applications

Johannes P. Schlöder

Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University

based on joint work with A. Altmann-Dieses, H. G. Bock, K. Hatz, S. Lenz, and E. Kostina

Systems Control and Optimization Laboratory IMTEK, Faculty of Engineering, University of Freiburg, November 26, 2018

Overview

- Parameter Estimation Problems
 Example: Urethane Reaction
 Differential Equation and Optimal Control Models & Data
 Optimization Boundary Value Problems
- Structure Exploiting Numerical Methods for Optimization Boundary Value Problems
 - The Direct Multiple Shooting Method for Parameter Estimation
 - The Generalized Gauss Newton Method
 - Assessment of the Statistical Error of the Parameter Estimates
- "Proof of Concept" and "Real World" Applications

Classroom Example: The Reaction of Urethane

The Reaction of Urethane

$$\begin{array}{ccc} \mathsf{A} + \mathsf{B} & \to & \mathsf{C} \\ \mathsf{A} + \mathsf{C} & \rightleftharpoons & \mathsf{D} \\ \mathsf{3} & \mathsf{A} & \to & \mathsf{E} \end{array}$$

A: isocyanate C: urethane E: isocyanurate L: solvent DMSO

B: butanol D: allophanate

$$\dot{n_E} = \mathbf{V} \cdot \mathbf{k_{ref_4}} \cdot \exp\left(-\frac{\mathbf{E_{a4}}}{R} \cdot \left(\frac{1}{\mathbf{T}(t)} - \frac{1}{T_{ref_4}}\right)\right) \cdot \left(\frac{n_A}{\mathbf{V}}\right)^2$$

÷

÷

The Reaction of Urethane

DAE model

- highly nonlinear Arrhenius kinetics
- 8 unknown parameters p

Measurements from different experiments with

- 3 measurement methods (A,C/D,E) with different variances
- different control functions u(t): temperature, feed 1, feed 2
- different control variables q: initial molar numbers, reaction volume

Structured nonlinear parameter estimation problem

A General Problem Formulation

Model: Ordinary Differential Equations (ODE)

$$\dot{y} = f(t, y p, q, u)$$

y states

or: Differential Algebraic Equations (DAE)

 $\dot{y} = f(t, y, z, p, q, u)$ 0 = g(t, y, z, p, q, u)

y "differential" states z "algebraic" states

p: (unknown) system parameters (PE) to determined q: control parameters, u: control functions (given)

complex dynamics, instabilities, stiffness, discontinuities ...

+ further constraints: initial or boundary conditions, positivity

 $y(t_0) = y_0(p) \text{ or } r(y(t_0), y(t_1), \dots, y(T), p) = 0, p_i \ge 0$

up to PDE (method of lines)

or: Optimal Control Problems

$$\min_{y,u} \sum_{j} \gamma_{j} \Phi_{M}^{j}(y(T))$$

s.t. $\dot{y}(t) = f(t, y(t), u(t), p)$
 $0 \le c(t, y(t), u(t), p)$
 $0 = r(y(t_{0}), y(T), p)$

y "differential" states
u control functions
γ weighting parameters
p system parameters

observed process is result of an optimization, e.g. in gait analysis

The Experimental Data

measurements

$$\eta_{ij} = b_{ij}(t_i, y(t_i), z(t_i), p) + \varepsilon_{ij} \qquad j \in Ind(i)$$

- measurement functions b_{ii} , with add'l calibration parameters
- measurement errors ϵ_{ii}
- from multiple experiments, under varying conditions
 - instationary states
 - stationary
 - bifurcations

may comprise a priori information on parameters as "pseudo-measurements"

each has specific model!

The Parameter Estimation Problem (DAE)

DAE process model

$$\begin{split} \dot{y} &= f(t,y,z,p,q,u) \\ 0 &= g(t,y,z,p,q,u) \\ x &\coloneqq (y,z) \end{split}$$

data

$$\eta_{ij} = b_{ij}(t_i, x(t_i), p, q) + \varepsilon_{ij}$$

here: $\varepsilon_{ij} \in N(0, \sigma_{ij}^2)$

determine p **and** x (parameters **and** states!)

$$\begin{split} \underset{x,p}{\text{min}} & \sum_{i,j} \frac{(\eta_{ij} - b_{ij}(t_i, x(t_i), p, q))^2}{\sigma_{ij}^2} \\ & \dot{y} = f(t, y, z, p, q, u) \\ & 0 = g(t, y, z, p, q, u) \\ & d(x(t_0), \dots, x(t_f), p, q) = 0, \quad \text{or} \ge 0 \end{split} \\ \end{split}$$

The Multiple Experiment Case (DAE)

DAE process model

 $\dot{\mathbf{y}}_{k} = \mathbf{f}_{k}(\mathbf{t}, \mathbf{y}_{k}, \mathbf{z}_{k}, \mathbf{p}, \mathbf{q}_{k}, \mathbf{u}_{k})$ $0 = \mathbf{g}(\mathbf{t}, \mathbf{y}_{k}, \mathbf{z}_{k}, \mathbf{p}, \mathbf{q}_{k}, \mathbf{u}_{k})$

data

$$\begin{split} \eta_{ijk} &= b_{ijk}(t_{ik}, x(t_{ik}), p, q) + \varepsilon_{ijk} \\ here : \varepsilon_{ijk} &\in N(0, \sigma_{ijk}^2) \end{split}$$

determine p and x_k (k=1,...,# exp)

$$\begin{split} \min_{x_k,p} \sum_{k}^{\text{\#exp}} & \sum_{i,j} \frac{\left(\eta_{ijk} - b_{ijk}(t_{ik}, x_k(t_{ik}), p, q_k)\right)^2}{\sigma_{ijk}^2} \\ & \dot{y}_k = f_k(t, y_k, z_k, p, q_k, u_k) & \text{family of} \\ & 0 = g_k(t, y_k, z_k, p, q_k, u_k) & \text{boundary value} \\ & d_k(x_k(t_{0k}), \dots, x_k(t_{fk}), p, q_k) = 0, \text{ or } \ge 0 & \text{problems} \end{split}$$

The Choice of Norms

 least squares norm: Legendre 1805, Gauss 1809 (normally distributed measurement error)

but much can be said in favour of

• ℓ_1 -norm: Boscovic 1758, Laplace 1812 robust against outliers (Laplace-distributed measurement error)

Kostina '02, '04

 $\left\|\boldsymbol{x}\right\|_{2}^{2}=\sum_{i}\!\boldsymbol{x}_{i}^{2}$

Direct Methods for Constrained Parameter Estimation

Direct "All-at-Once" Optimization Boundary Value Problem (BVP) Methods

- the IVP approach: "single shooting"
 - integrate DAE over whole interval to yield x(t;x₀,p) resp., solve OCP for given γ, p
 - eliminate all infinite variables in favour of unknown parameters γ , p,
 - plug into suitable optimizer

Direct "All-at-Once" Optimization Boundary Value Problem (BVP) Methods

- the IVP approach: "single shooting"
 - integrate DAE over whole interval to yield x(t;x₀,p) resp., solve OCP for given γ, p
 - eliminate all infinite variables in favour of unknown parameters γ, p,
 plag into suitable optimizer
- the BVP approach: discretize the DAE/OCP, and solve simultaneously
 - optimization problem

"all-at-once"

 discretized BVP as equality constraint or necessary conditions for discretized OCP plus further constraints
 in one loop

The Direct Multiple Shooting Method for Parameter Estimation in DAE

parameterize/discretize DAE by the *multiple shooting* method, i. e.,

choose suitable mesh

 $t_0 < t_1 < \ldots < t_m = t_f$

introduce state variables at nodes t_i

 $s_i^x = x(t_i), \ s_i^z = z(t_i)$

as additional optimization variables

alternatives: collocation on finite elements, finite differences, ...

Biegler

PARFIT

Bock, Bär, Schl. '78, '81, '83, '87 ff Bock, Eich, Schl. '88, Kostina '01, '04, Kircheis '16

The Direct Multiple Shooting Method for Parameter Estimation in DAE

integrate relaxed DAE on multiple shooting subintervals [t_i, t_{i+1}]

 jumps and relaxation terms must vanish at the solution → additional continuity and consistency conditions replace DAE

$$y(t_{i+1}; s_i^y, s_i^z, p) - s_{i+1}^y = 0$$
$$g(t_i, s_i^y, s_i^z, p) = 0$$

Result: Constrained Nonlinear Least Squares Problem

[CNLS]

$$\min_{X} \|F_{1}(X)\|_{2}^{2}$$

s.t. $F_{2}(X) = 0, \text{ or } \ge 0$

 $X = (p,s_0, s_1,...,s_m)$ parameters and states

X⁰: initial guess!

solution by Newton-type methods

 $X^{k+1} = X^k + t^k \Delta X^k$

where ΔX^k solves a constrained linear least squares problem (CLLS)

[CLLS]

$$\min_{\Delta X} \left\| F_1(X^k) + J_1(X^k) \Delta X \right\|_2^2$$

s.t. $F_2(X^k) + J_2(X^k) \Delta X = 0$, or ≥ 0

$$\mathsf{J}_{\mathsf{i}} := \frac{\partial \mathsf{F}_{\mathsf{i}}}{\partial \mathsf{X}}$$

solution by generalized inverse $\Delta X^k := -J^+(X^k)F(X^k)$ with $J^+ = J^+JJ^+$

Block-Sparse Structures of Jacobian

- super-structures from multiple experiments
- structure from multiple shooting
- sub-structures from spatial discretization of PDE
- sub-sub-structures from sparse state equations

experiments 1 - 100

	$A_0^y A_0^z$ Algebraic + Invariant Cond. $B_0^y B_0^z$ Initial + Interior Point Cond.		a_0 b_0	
	$G_0^{\tilde{y}} G_0^{\tilde{z}} - I$ Continuity		m_1	
	$A_1^y A_1^z$		<i>a</i> ₁	
	$B_1 B_1$		b_1	
T	$O_1 O_1 -I$		· <i>m</i> 2	E
J =		;	:	=-F
	G^{y} G^{z} $-I$:	
	$a_{m-1} a_{m-1} a_{m-1} a_{m}^{y}$		am	
	$B_m^V = B_m^Z$		b_m	
9	$D_0^{\nu} D_0^z D_1^{\nu} D_1^z D_1^z \cdots D_{m-1}^{\nu} D_{m-1}^z D_m^{\nu} D_m^z$		d	
	$E_0^y E_0^z E_1^y = E_1^z = \cdots = E_{m-1}^y E_{m-1}^z = E_m^y = E_m^z$		е	

multiple shooting points
typically10 - 40

FAQ: Why Multiple Shooting?

- key property: discretized states as add'l optimization variables
 - allows *better initial guesses*, using information about process, which helps avoid "far away" local minima
 - *reduces nonlinearity*, even down to one-step convergence
 - is *numerically stable*, suitable even for highly unstable,
 - e.g. chaotic dynamics
- efficient parallel implementation
- adaptive accuracy discretization strategies
- add'l advantage of multiple shooting
 - state-of-the-art solvers for DAE applicable
 - treatment of discontinuities (hybrid systems)
 - e.g. phase changes, hysteresis, ...

"adaptive accuracy" realized through integrator

An Unstable Test Problem

Unstable Test Problem

• state equations:

$$\dot{x}_1 = x_2 , x_1(0) = 0 \dot{x}_2 = \mu^2 x_1 - (\mu^2 + p^2) \sin pt , x_2(0) = \pi$$
 $t \in [0, 1]$

for Scientific Com

• special solution for "true" parameter value $p = \pi$:

 $x_1(t) = \sin \pi t$ $x_2(t) = \pi \cos \pi t$

• pseudo random measurement noise, $\sigma = 0.05$

Unstable Test Problem - Single Shooting

Scientific Com

initial trajectory with p=1, and with p=float(π) in 64 bit

initial value problem is extremely ill-conditioned!

Unstable Test Problem - General Solution

$$x_1 = \sin pt + \varepsilon_1 \sinh \mu t + \varepsilon_2 \cosh \mu t;$$
 $\varepsilon_1 = \frac{x_2(0) - p}{\mu}$

 $x_2 = p \cos pt + \varepsilon_1 \mu \quad \cosh \mu t + \varepsilon_2 \mu \quad \sinh \mu t; \quad \varepsilon_2 = x_1(0)$

Eigenvalues of
$$f_x(t, x(t), p)$$
 are $\lambda_{1,2} = \pm \mu$

Error propagation: exp(+/- µt)!

 μ =60, i.e. error propogation over [0,1] is 10²⁷ - highly unstable!

Unstable Test Problem - Multiple Shooting

Scientific Com

initial trajectory for p=1 - convergence after 4 iterations

parameter estimation problem is well-conditioned!

Efficiency of Boundary Value Problem Methods

Theorem

Assumptions

Dense exact data for all states available

Model equations linear in parameters

Initial guesses for states: given data

Length of multiple shooting (resp. collocation) intervals $h \rightarrow 0$

Then

One step convergence to true parameter value p^*

$$p^{1} = p^{0} + \Delta p^{0} = p^{*} + O(h)$$

Reduction of Nonlinearity by Decoupling

Advantages of BVP approach also in case of non-dense noisy data

Lotka-Volterra Problem

Lotka-Volterra: Model and Data

$$\dot{x}_1 = -p_1 x_1 + p_2 x_1 x_2$$
$$\dot{x}_2 = +p_3 x_2 - p_4 x_1 x_2$$

 x_1 : predators x_2 : preys

DE linear in par's

Data: $\sigma = 5\%$

Comparison: Single vs. Multiple Shooting

Single Shooting

Convergence after 20 iterations Convergence after 4 iterations

Initial guesses

 $p_1 = 0.5$ $p_3 = -0.5$

 $p_2 = 0.5$ $p_4 = -0.2$

Multiple Shooting

Lotka-Volterra: Solution with Multiple Shooting

$p_1 = 0.5$ $p_2 = 0.5$ $p_3 = -0.5$ $p_4 = -0.2$

Solution: $p_1 = 1.01 \pm 0.02$ $p_2 = 1.01 \pm 0.03$ $p_3 = 0.99 \pm 0.02$ $p_4 = 1.01 \pm 0.03$

Some Algorithmic Features

Evaluation of CLLS Computation of 1st and Higher Order Derivatives

the crucial requirement for practical use: numerics must be "derivative-free" for the user!

- adaptive integrators for ODE and relaxed DAE
- fast and error controlled computation of 1st and higher order derivatives
 - combining "automatic differentiation" of model equations and
 - "internal differentiation" of adaptive discretization scheme
 - treatment of implicitly given discontinuities and jumps in dynamics
 - in forward or *reverse (adjoint)* mode

e.g. DAESOL, RKFSWT

Bauer et al. '98 Albersmeyer '05 Kirches '06

Parallel Evaluation and Decomposition

- 1. Evaluation of functions and gradients: parallel on interval level
- 2. Parallel condensing

treatment of staircase system

log(m) - algorithm

Variants: Orthogonal transformations for unstable systems Block Gauss elimination for stable systems

Fast Sequential Solution Reduced Generalized Gauss Newton

Idea:

Use initial, multipoint, DAE consistency conditions, ...

to reduce number of directional derivatives of IVP solutions to minimum

1. DAE consistency Computation of solution mf $N\delta + \Delta \hat{S}, \ \delta$ free 2. Continuity Insertion of solution mf $G^y \Delta S^y + G^z \Delta S^z - \Delta S^y_+ + m = 0$ $(\# \text{ Gradients} : \# \Delta S^y + \# \Delta S^z)$ $G^y G^z N\delta + [G^y G^z] \Delta \hat{S} - \Delta S^y_+ + m = 0$ $(\# \text{ Gradients} : \# \delta + 1)$

Needed directional derivatives = # Degrees of freedom + 1 \rightarrow PD

Treatment of Condensed System

Large-scale linear constrained system is reduced to condensed system in n variables

> min $||A_1v + b_1||_{\alpha}$ s.t. $A_{2E}v + b_{2E} = 0$ $A_{2I}v + b_{2I} \ge 0$ $v \in \mathbb{R}^n$ $\alpha = 1, 2, \infty$

 $n \leq$ number of states + parameters **n small**!

Solution: l_1, l_{∞} Modifications of "Adaptive Method" (Gabasov, Kirillova, Kostina, ... l_2 Orthogonal Transformations & Active Set Strategies and Elimination

Detection of ill-posedness, rank deficiency \rightarrow regularisation strategies

Regularisation Strategies

- Determine rank n_r ($n_r < n$) of linear system, e.g. in course of decomposition
- Determine solution manifold Cx + d = 0 (C full rank $n_r, x \in \Re^n$)

Solve minimum norm problem
$$\min_{x} \|x\|_{\alpha}$$

s.t. $Cx + d = \alpha = 1, 2, ...$

- Constrained linear least squares or linear programming problem, resp.
- Note: In l_1 case 0-components can be expected!

Convergence of Constrained Gauss-Newton

- Interdisciplinary Center for Scientific Computing
- active set constant near solution → equality constrained problem convergence proof based on 2 principal assumptions:

$$\left| (J^+(X - \Delta X)(J(X - t\Delta X)) - J(X))(\Delta X) \right| \le \omega t \left\| \Delta X \right\|^2 \text{ with } \omega < \infty$$

$$\|(J^+(Z) - J^+(X))R(X)\| \le \kappa(X)\|Z - X\| \le \kappa\|Z - X\|$$
 with $\kappa < 1$

 $\forall t \in [0,1], \forall X, Z \in D \text{ with } \Delta X = J^+(X)F(X), R(X) = F(X) - J(X)\Delta X$

- **local** *linear* **convergence** of full step method with asymptotic rate κ
- advantage: method not attracted by large residual local minima X^{*,} so called "statistically unstable" minima - cannot be interpreted as continuous deformation of "true parameter" !
- global convergence: by efficient new strategies based on "affine invariance" principles - guarantee full step in local domain of convergence

Statistical Assessment of Solution

Statistical Sensitivity Analysis for Constrained Case

 need to know uncertainty of parameter estimate X^{*}(ε) depending on measurements errors ε∈N(0,β²I)

$$X^*(\varepsilon) \in N(X^*,C)$$

 $\epsilon \in N(0,\beta^2 I)$

• first order expansion:

$$X^{*}(\varepsilon) - X^{*} \doteq -J(X^{*})^{+} \begin{pmatrix} \varepsilon \\ 0 \end{pmatrix}, X^{*} \coloneqq X^{*}(0)$$

• covariance matrix approximation:

$$\mathbf{C} := \mathbf{E} \left(\mathbf{J} (\mathbf{X}^*)^{+} \begin{pmatrix} \varepsilon \\ \mathbf{0} \end{pmatrix} \begin{pmatrix} \varepsilon \\ \mathbf{0} \end{pmatrix}^{\mathsf{T}} \mathbf{J} (\mathbf{X}^*)^{+\mathsf{T}} \right) = \mathbf{J} (\mathbf{X}^*)^{+} \begin{pmatrix} \beta^2 \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{J} (\mathbf{X}^*)^{+\mathsf{T}}$$

Statistical Sensitivity Analysis for Constrained Case Interdisciplinary Center for Scientific Computing

- confidence ellipsoid G, includes "true value" with error probability $\approx \alpha$

$$\mathbf{G} \coloneqq \{\mathbf{X} \mid \mathbf{X} - \mathbf{X}^* = -\mathbf{J}^+(\mathbf{X}^*) \begin{pmatrix} \varepsilon \\ \mathbf{0} \end{pmatrix}, \|\varepsilon\|_2^2 \leq \gamma(\alpha)\}, \gamma(\alpha) \coloneqq \mathbf{v}_1 \mathbf{F}^{1-\alpha}(\mathbf{v}_1, \mathbf{v}_2) \leq \gamma(\alpha)\}, \mathbf{v}_1 \in \mathbf{V}_1 \in \mathbf{V}_1$$

• Lemma: G can be enclosed by confidence box

$$\prod [X_i^* - \delta_i, X_i^* + \delta_i], \quad \delta_i = C_{ii}^{1/2} \gamma(\alpha))^{1/2}$$

• need to compute only $C_{ii}^{1/2}$, "standard deviations" of parameters

→basis for optimum experimental design

Applications

Transport and Degradation of Xenobiotics in Soil

in cooperation with

Transport and Degradation of Xenobiotics in Soil

mini-lysimeter

- Investigation of fate of xenobiotics
- Expensive lysimeter experiments for registration
- To be replaced by computer experiments
- Here: parameter estimation
- Later: optimal mini-lysimeter experiments
 - optimal irrigation
 - optimal solute application
 - Optimal sampling

Field experiment: Water Transport (K. Aden)

Interdisciplinary Center for Scientific Computing

- Ioamy sand without vegetation
- time-domain reflectrometry (TDR): hourly readout
- > measurements of water content θ in 7, 15 and 20 cm
- period: Oct 28, 1997 Dec 13, 1997

PDE-Model: Richards Equation

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(D(\theta) \frac{\partial \theta}{\partial z} - K(\theta) \right)$$

$$K(\theta) = K_s \Theta^{1/2} \left[1 - \left(1 - \Theta^{n/(n-1)} \right)^{1-1/n} \right]^2, \qquad \Theta = \frac{\theta - \theta_r}{\theta_s - \theta_r}$$
$$D(\theta) = K(\theta) \overline{C}(\theta)$$
$$\overline{C}(\theta) = \frac{1}{\alpha nm} \left(\Theta^{-1/m} - 1 \right)^{-m} \Theta^{-1/m} \frac{1}{\theta - \theta_r}, \qquad m = 1 - \frac{1}{n}$$

- > Initial condition: Linear interpolation of θ_{7cm} , θ_{15cm} , θ_{20cm} at the start of experiments (Oct 28, 1997)
- Upper boundary: Dirichlet condition (TDR data in 7 cm)
- Lower boundary: Dirichlet condition (TDR data in 20 cm)

Transport and Degradation of Xenobiotics in Soil

Result: Estimates for n, \propto and K_s

	guess	estimate
n	1.5	1.262 ± 0.0024
α	0.05	0.0324 ± 0.0024
K _s	35.0	20.92 ± 1.68

Inte

for Scientific Computing

	α	K _s
n	0.14	-0.61
α	-	-0.94

Identification of Cerebral Palsy Gaits

Cerebral Palsy Gaits

after surgery

Assumption: Movement is optimal

Task: Find suitable optimal control problem!

... K. Hatz in coop with S. Wolf (Orthopedics HD)

Identification of Cerebral Palsy Gaits

Model for patient's motion:

- 48 states q: 3 global coordinates, 3 global angles, 18 local joint angles (generalized coordinates), and the corresponding velocities q
- 18 controls u
- constrained multibody system
- formulated with HuMAnS Toolbox (INRIA, France)

Multibody System Dynamics

Scientific Com

patient data from Orthopedics Lab, resp. Deleva data

Inverse Optimal Control for Cerebral Palsy Gaits

$$\begin{split} \min_{y,u,p,\gamma} \sum_{i,j} \frac{(\eta_{ij} - b_{ij}(t_i, y(t_i))^2}{\sigma_{ij}^2} \\ \text{s.t.} \quad \min_{y:=(q,\dot{q}),u} \sum_k \gamma_k C_k[q, \dot{q}, u, p] \\ \text{s.t.} \quad \dot{y}(t) = f(t, y(t), u(t), p) \\ 0 \le c(t, y(t), u(t), p) \\ 0 = r(y(t_0), y(T)) \end{split} \qquad \begin{aligned} \text{MBS dynamics} \\ \text{control/path constraints} \\ \text{boundary conditions} \end{aligned}$$

Possible criteria C_k: stability, energy, duration,...

Challenges: discontinuities and jumps in states, large-scale, ...

Efficient Direct All-at-Once Approach

after discretization of optimal control problem with direct multiple shooting

$$\begin{split} \min_{x,p,\gamma,\lambda,\mu} \sum_{i,j} \frac{(\eta_{ij} - b_{ij}(t_i, y(t_i))^2}{\sigma_{ij}^2} \\ \text{s.t.} & 0 = y(t_{i+1}; t_i, s_i, w_{i,} p) \cdot s_{i+1} \\ & 0 \leq \tilde{c}(s_0, ..., s_m, w, p) \\ & 0 = r(s_0, s_m) \\ 0 = r(s_0, s_m) \\ 0 = \nabla_x L(x, \gamma, p, \lambda, \mu) \\ & 0 \leq \mu \\ & 0 \geq \mu^T \tilde{c}(s_0, ..., s_m, w, p) \\ \hline & 1 = \sum_k \gamma_k \\ & 0 \leq \gamma_k \quad \forall k \end{split}$$
 KKT conditions
$$\begin{aligned} \text{L Lagrangian} \\ \lambda, \mu \text{ adjoints} \\ \text{objective regularization} \end{aligned}$$

large-scale constrained Is-problem with complementarity condition

Measurements for Cerebral Palsy Gait

Vicon data

Inter

for Scientific Computing

Measured and Estimated CP Gait

... K. Hatz

green: measured gait blue: estimated optimal OCP gait

Summary

- Parameter Estimation in Differential Equations
- Optimization Boundary Value Problems Hierarchical Optimization Problems
- > Direct Multiple Shooting
- Some Applications

Ongoing work

Numerical Tools for Inverse Optimal Control Nonlinear Optimum Experimental Design Dual Control: Experimental Design in Control

Thank you very much for your attention!