Modeling and System Identification – Microexam 3

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg January 30, 2019, 14:10-14:55, Freiburg

Surname:	First Name:	Matriculation number:
Subject:	Programme: Bachelor Master Lehrar	nt others Signature:

Please fill in your name above and tick exactly ONE box for the right answer of each question below.

1. Consider the ODEs $\ddot{a} = c_1\dot{a} + c_2a + \dot{s}$ and $\ddot{s} = c_3\dot{a} + c_4\dot{s} + s$ and the output model $y = c_5s + c_6\dot{a}$. Specify matrices A and C such that $\dot{x} = Ax$ and y = Cx where we define the state as $x = (a, \dot{a}, s, \dot{s})^{\top} \in \mathbb{R}^4$ (2 points).

2. Which expression describes the Kalman filter Innovation Update Step of the state estimate? $\hat{x}_{[k|k]} = \cdots$

(a) $\hat{x}_{[k k-1]} + P_{[k k-1]} \cdot C_k^\top V_k (y_k - C_k \hat{x}_{[k k-1]})^{-1}$	(b) $\qquad \hat{x}_{[k k-1]} + P_{[k k]} \cdot C_k^\top V_k^{-1} (y_{k-1} - C_k \hat{x}_{[k k-1]})$
(c) $\hat{x}_{[k-1 k]} + P_{[k-1 k]} \cdot C_{k-1}^{\top} V_k^{-1} (y_{k-1} - C_{k-1} \hat{x}_{[k-1 k]})$	(d) $\qquad \hat{x}_{[k k-1]} + P_{[k k]} \cdot C_k^\top V_k^{-1} (y_k - C_k \hat{x}_{[k k-1]})$

3. Consider the scalar ARX model $y(k) = \theta_1 y(k-1) + \theta_2 u(k-1) + w_k$ where $w_k \sim \mathcal{N}(0, \sigma^2)$. Given measurements y(k) and controls $u(k), k = 0, \dots, N$, specify functions $f_k(\theta)$ and weighing factors c_k (that account for the noise variance) such that the parameter estimate $\theta^* = [\theta_1^*, \theta_2^*]^\top$ is given by $\theta^* = \arg \min_{\theta \in \mathbb{R}^2} \sum_{k=1}^N c_k ||f_k(\theta)||_2^2$

4. Consider the optimization problem from the previous question. It can be reformulated as $\theta^* = \arg \min_{\theta \in \mathbb{R}^2} \|\tilde{y} - \Phi\theta\|_W^2$. State the dimensions of \tilde{y}, Φ and W (1 point).

Specify \tilde{y}, Φ and W (1 point).

5. Which of the following is **not** an assumption of the standard Kalman filter?

	(a) Measurement and state noise have zero mean.	(b) The model needs to be linear.	
	(c) The model needs to be time invariant.	(d) Measurement and state noise are Gaussian.	
5. Which of the following steps is not part of the Kalman filter algorithm?			
	(a) initialization	(b) normalization	
	(c) innovation update	(d) prediction	
	7. Which of the following formulas is associated with the covariance prediction step $P_{[k k-1]}$ of the Kalman filter, if $x_{k+1} = A_k x_k + w_k$, where w_k is i.i.d. zero mean noise with covariance W_k ? $P_{[k k-1]} = \dots$		

(a) $A_{k-1} \cdot P_{[k k]} \cdot A_{k-1}^{\top} + W_{k-1}$	(b) $ A_{k-1}^{\top} \cdot P_{[k k-1]} \cdot A_{k-1} + W_{k-1} $
(c) $\left[\left(A_k^\top \cdot P_{[k-1 k-1]} \cdot A_k + W_k \right)^{-1} \right]$	(d) $\Box A_{k-1} \cdot P_{[k-1 k-1]} \cdot A_{k-1}^{\top} + W_{k-1}$

- 8. Let $R(\theta) = \Phi \theta y$ and $f(\theta) = \frac{1}{2} ||R(\theta)||_2^2$. Compute the difference between the exact Hessian and the Gauss-Newton Hessian approximation. $\nabla^2 f(\theta) - B_{GN}(\theta) = \dots$
- 9. Given the residual function R(θ) ∈ ℝ^N and its Jacobian J(θ) ∈ ℝ^{N×d} where N is the number of measurements and d is the number of parameters, we compute a parameter estimate θ^{*} by solving θ^{*} = arg min_{θ∈ℝ^d} ¹/₂ ||R(θ)||²/₂. How can you compute an estimate of the parameter covariance Σ_{θ*}?

	(a) $\prod \frac{\ R(\theta^*)\ _2^2}{N-d} (J(\theta^*)^\top J(\theta^*))^{-1}$		(b) $\square \ R(\theta^*)\ _2^2 (J(\theta^*)^\top J(\theta^*))^{-1}$	
	(c) $\prod \frac{R(\theta^*)^2}{N-d} (J(\theta^*)^\top J(\theta^*))^{-1}$		(d) $ [J(\theta^*)^\top J(\theta^*)] $	
10.	Consider $f(\theta) = \frac{1}{2} R(\theta) _2^2$ with $R(\theta)$	$R(\theta) \in \mathbb{R}^N$ and $J(\theta) = \nabla_{\theta} R(\theta)^{\top}$.	What is the definition of the Hessian	of $f(\theta)$? $\nabla^2 f(\theta) = \cdots$
	(a) $ [J(\theta)^\top R(\theta)] $		(b) $\Box J(\theta)^{\top} J(\theta) + \sum_{i=1}^{N} \nabla_{\theta} J_{i}(\theta)$	
	(c) $ [J(\theta)^{\top} J(\theta) + \sum_{i=1}^{N} \nabla^{2} R_{i}(\theta) R_{i}(\theta) $		(d) $[(J(\theta)^{\top}J(\theta))]$	
11.	Which of the following models generally leads to a convex estimation pr		roblem?	
	(a) Output-Error	(b) LIP, additive noise	(c) Input-Output-Error	(d) Equation-Error
12.	An unconstrained minimization pro	blem with strictly convex objective a	always has	
	(a) a local maximum.		(b) a unique global maximum	l
	(c) multiple local minima.		(d) a unique global minimum	
13.	Given measurements $u(k)$ and $y(k)$ $\min_{\theta \in \mathbb{R}^2} \sum_{k=3}^{N} (y(k) - \theta_1 y(k-1) - \theta_2 y(k-1)) = 0$	$k = 1, \dots, N$, we try to identify a $\partial_2 u(k-2))^2$. What model assumpt	model by solving the following options do we make?	mization problem:
	(a) IIR model with Gaussian e	equation errors	(b) FIR model with Gaussian	equation errors
	(c) FIR model with non-Gaus	ssian equation errors	(d) IIR model with non-Gauss	sian equation errors
14.	Which numerical integration metho	d is preferable as a good compromis	e of computational effort and accura	cy?
	(a) RK4	(b) Euler	(c) Triangulation	(d) Finite Differences
15. In which way does the Extended Kalman Filter (EKF) <i>extend</i> the regular Kalman Filter algorithm? In contrast to the regular Kalman Filter, the EKF can be applied to				
	(a) nonlinear systems.		(b) systems with large state space dimension.	
	(c) time-invariant systems.		(d) systems that are perturbed by non-Gaussian noise.	

16. State one shortcoming of the Extended Kalman Filter.

- 17. Consider the Extended Kalman Filter system model $x_{k+1} = f(x_k) + w_k$, $y_k = g(x_k) + v_k$ with state vector $x_k \in \mathbb{R}^3$, output vector $y_k \in \mathbb{R}^2$, and noise terms w_k , v_k . We assume that f and g are nonlinear. Specify matrices A_k and C_k such that the above system can be reformulated in the form that is assumed by the regular Kalman Filter, i.e. $x_{k+1} = A_k x_k + b_k + w_k$, $y_k = C_k x_k + v_k$?
- 18. Which statement is **not** true about Moving Horizon Estimation (MHE) with horizon length N? Here KF denotes the regular Kalman Filter, EKF denotes the extended Kalman Filter.

(a) MHE is computationally cheaper than EKF.	(b) MHE can be applied to nonlinear systems.		
(c) \square Computing the MHE estimate at time N is as expensive as	(d) MHE is equivalent to KF in the unconstrained linear case.		
computing the MHE estimate at time $2N$.			

Points on page (max. 11)