Modeling and System Identification – Microexam 3

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg January 30, 2019, 14:10-14:55, Freiburg

Su	rname: First Name:	Matriculation number:
Subject: Programme: Bachelor Master Lehn		ramt others Signature:
	Please fill in your name above and tick exactly ONE box for the right Consider the ODEs $\ddot{a}=c_1\dot{a}+c_2a+\dot{s}$ and $\ddot{s}=c_3\dot{a}+c_4\dot{s}+s$ and $\dot{x}=Ax$ and $y=Cx$ where we define the state as $x=(a,\dot{a},s,\dot{s})^{\top}\in$	the output model $y=c_5s+c_6\dot{a}$. Specify matrices A and C such that
	$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ c_2 & c_1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & c_3 & 1 & c_4 \end{bmatrix}, \ C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ c_2 & c_1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & c_3 & 1 & c_4 \end{bmatrix}$	
2.	Which expression describes the Kalman filter Innovation Update Step of	of the state estimate? $\hat{x}_{[k k]} = \cdots$
	(a) $ \hat{x}_{[k k-1]} + P_{[k k-1]} \cdot C_k^{\top} V_k (y_k - C_k \hat{x}_{[k k-1]})^{-1} $	(b)
	(c) $\hat{x}_{[k-1 k]} + P_{[k-1 k]} \cdot C_{k-1}^{\top} V_k^{-1} (y_{k-1} - C_{k-1} \hat{x}_{[k-1 k]})$	(d) $\hat{\mathbf{x}} \hat{x}_{[k k-1]} + P_{[k k]} \cdot C_k^{\top} V_k^{-1} (y_k - C_k \hat{x}_{[k k-1]})$
	Consider the scalar ARX model $y(k) = \theta_1 y(k-1) + \theta_2 u(k-1)$ $u(k), k = 0, \dots, N$, specify functions $f_k(\theta)$ and weighing factors $\theta^* = [\theta_1^*, \theta_2^*]^\top$ is given by $\theta^* = \arg\min_{\theta \in \mathbb{R}^2} \sum_{k=1}^N c_k \ f_k(\theta)\ _2^2$	$+$ w_k where $w_k \sim \mathcal{N}(0, \sigma^2)$. Given measurements $y(k)$ and controls k (that account for the noise variance) such that the parameter estimate
	$f_k(\theta) = y(k) - \theta_1 y(k-1) + \theta_2$	$u(k-1), c_k = \frac{1}{\sigma^2}$
	Consider the optimization problem from the previous question. It can be State the dimensions of \tilde{y},Φ and W (1 point).	be reformulated as $\theta^* = \arg\min_{\theta \in \mathbb{R}^2} \ \tilde{y} - \Phi\theta\ _W^2$.
	Specify \tilde{y}, Φ and W (1 point).	
	$ ilde{y} = egin{bmatrix} y(1) \ dots \ y(N) \end{bmatrix} \in \mathbb{R}^N, \Phi = egin{bmatrix} y(0) & u(0) \ dots & dots \ y(N-1) & u(N-1) \end{pmatrix}$	$\left\{ \mathbf{R}^{N imes 2}, W = rac{1}{\sigma^2} \cdot \mathbb{I} \in \mathbb{R}^{N imes N} ight\}$
5.	hich of the following is not an assumption of the standard Kalman filter?	
	(a) Measurement and state noise have zero mean.	(b) The model needs to be linear.
	(c) X The model needs to be time invariant.	(d) Measurement and state noise are Gaussian.
6.	Which of the following steps is not part of the Kalman filter algorithm	?
	(a) initialization	(b) x normalization
	(c) innovation update	(d) prediction
7.	Which of the following formulas is associated with the covariance prediction step $P_{[k k-1]}$ of the Kalman filter, if $x_{k+1} = A_k x_k + w_k$, who w_k is i.i.d. zero mean noise with covariance W_k ? $P_{[k k-1]} = \dots$	
	(a) $A_{k-1} \cdot P_{[k k]} \cdot A_{k-1}^{\top} + W_{k-1}$	(b)
	$(c) \qquad \left(A_k^{\top} \cdot P_{[k-1 k-1]} \cdot A_k + W_k\right)^{-1}$	(d) $\mathbf{X} A_{k-1} \cdot P_{[k-1 k-1]} \cdot A_{k-1}^{T} + W_{k-1}$

8.	Let $R(\theta) = \Phi\theta - y$ and $f(\theta) = \frac{1}{2} \ R(\theta)\ _2^2$. Compute the difference be $\nabla^2 f(\theta) - B_{\rm GN}(\theta) = \dots$ $\nabla^2 f(\theta) - B_{\rm GN}(\theta) = 0$, as the model is linear and thus the second	etween the exact Hessian and the Gauss-Newton Hessian approximation. nd order derviatives are zero.
9.		where N is the number of measurements and d is the number of $\min_{\theta \in \mathbb{R}^d} \frac{1}{2} \ R(\theta)\ _2^2$. How can you compute an estimate of the parameter
	$(a) \frac{\ R(\theta^*)\ _2^2}{N-d} (J(\theta^*)^\top J(\theta^*))^{-1}$	(b)
	$ (c) \qquad \frac{R(\theta^*)^2}{N-d} (J(\theta^*)^\top J(\theta^*))^{-1} $	$(d) \int J(\theta^*)^\top J(\theta^*)$
10.	Consider $f(\theta) = \frac{1}{2} R(\theta) _2^2$ with $R(\theta) \in \mathbb{R}^N$ and $J(\theta) = \nabla_{\theta} R(\theta)^{\top}$.	What is the definition of the Hessian of $f(\theta)$? $\nabla^2 f(\theta) = \cdots$
	(a)	(b)
	$(c) \mathbf{x} J(\theta)^{\top} J(\theta) + \sum_{i=1}^{N} \nabla^{2} R_{i}(\theta) R_{i}(\theta)$	$(d) \Box (J(\theta)^{\top}J(\theta))$
11.	Which of the following models generally leads to a convex estimation p	problem?
	(a) Output-Error (b) X LIP, additive noise	(c) Input-Output-Error (d) Equation-Error
12.	An unconstrained minimization problem with strictly convex objective	always has
	(a) a local maximum.	(b) a unique global maximum
	(c) multiple local minima.	(d) x a unique global minimum.
13.	Given measurements $u(k)$ and $y(k)$, $k=1,\ldots,N$, we try to identify a $\min_{\theta\in\mathbb{R}^2}\sum_{k=3}^N(y(k)-\theta_1y(k-1)-\theta_2u(k-2))^2$. What model assumpt	a model by solving the following optimization problem: ions do we make?
	(a) X IIR model with Gaussian equation errors	(b) FIR model with Gaussian equation errors
	(c) FIR model with non-Gaussian equation errors	(d) IIR model with non-Gaussian equation errors
14.	Which numerical integration method is preferable as a good compromis	se of computational effort and accuracy?
	(a) X RK4 (b) Euler	(c) Triangulation (d) Finite Differences
15.	In which way does the Extended Kalman Filter (EKF) <i>extend</i> the regula EKF can be applied to	ar Kalman Filter algorithm? In contrast to the regular Kalman Filter, the
	(a) x nonlinear systems.	(b) systems with large state space dimension.
	(c) time-invariant systems.	(d) systems that are perturbed by non-Gaussian noise.
16.	State one shortcoming of the Extended Kalman Filter.	
	(a) It is in general not an optimal estimator.(b) If the initial state estimate is wrong, it might diverge quickly.(c) The estimated covariance matrix tends to underestimate the true covariance.	nce.
17.	. Consider the Extended Kalman Filter system model $x_{k+1} = f(x_k) + w_k$, $y_k = g(x_k) + v_k$ with state vector $x_k \in \mathbb{R}^3$, output vector $y_k \in \mathbb{R}^2$ and noise terms w_k , v_k . We assume that f and g are nonlinear. Specify matrices A_k and C_k such that the above system can be reformulated in the form that is assumed by the regular Kalman Filter, i.e. $x_{k+1} = A_k x_k + b_k + w_k$, $y_k = C_k x_k + v_k$? $A_k = \frac{\partial f(x_k)}{\partial x_k}, C_k = \frac{\partial g(x_k)}{\partial x_k}$	
18.	Which statement is not true about Moving Horizon Estimation (MHE) videnotes the extended Kalman Filter.	with horizon length N ? Here KF denotes the regular Kalman Filter, EKF
	(a) X MHE is computationally cheaper than EKF.	(b) MHE can be applied to nonlinear systems.
	(c) \square Computing the MHE estimate at time N is as expensive as	(d) MHE is equivalent to KF in the unconstrained linear case.
	computing the MHE estimate at time $2N$.	
	11	Points on page (max. 11)