
Introduction to C ++ for C programmers
high-level meets low-level

Mikhail Katliar

Max Planck Institute for Biological Cybernetics
& Systems Control and Optimization Laboratory,

University of Freiburg

October 29, 2018



What is C++?

C++ is a general-purpose programming language with a bias towards systems
programming that [?]

I is a better C

I supports data abstraction

I supports object-oriented programming

I supports generic programming

C++ for C programmers M. Katliar 2



Where did the name ”C++” come from?

“The name C++ was coined by Rick Mascitti in the summer of 1983. The name
signifies the evolutionary nature of the changes from C. [. . . ] For yet another
interpretation of the name C++, see the appendix of [Orwell,1949].” [?]

C++ for C programmers M. Katliar 3



Is it true that . . . ?

I C++ is low-level (?) No. C++ offers both low-level and high-level features.

I C++ is too slow for low-level work (?) No. If you can afford to use C, you
can afford to use C++, even the higher-level facilities of C++ where you need
their functionality. See [?, ?].

I C++ is useful only if you write truly object-oriented code (?) No. C++
provides support for a wide variety of needs, not just for one style or for one kind
of application. In fact, compared to C, C++ provides more support for very
simple programming tasks. [?]

C++ for C programmers M. Katliar 4



Is it true that . . . ?

I C++ is low-level (?) No. C++ offers both low-level and high-level features.

I C++ is too slow for low-level work (?) No. If you can afford to use C, you
can afford to use C++, even the higher-level facilities of C++ where you need
their functionality. See [?, ?].

I C++ is useful only if you write truly object-oriented code (?) No. C++
provides support for a wide variety of needs, not just for one style or for one kind
of application. In fact, compared to C, C++ provides more support for very
simple programming tasks. [?]

C++ for C programmers M. Katliar 4



Is it true that . . . ?

I C++ is low-level (?) No. C++ offers both low-level and high-level features.

I C++ is too slow for low-level work (?) No. If you can afford to use C, you
can afford to use C++, even the higher-level facilities of C++ where you need
their functionality. See [?, ?].

I C++ is useful only if you write truly object-oriented code (?) No. C++
provides support for a wide variety of needs, not just for one style or for one kind
of application. In fact, compared to C, C++ provides more support for very
simple programming tasks. [?]

C++ for C programmers M. Katliar 4



Did he really say that?

B. Stroustrup:

I “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”.

I “There are only two kinds of languages: the ones people complain about and the
ones nobody uses”.

I “C++ Is my favorite garbage collected language because it generates so little
garbage”.

I “If you give people the choice of writing good code or fast code, there’s
something wrong. Good code should be fast”.

I “I hate to choose between elegance and efficiency”. [?]

C++ for C programmers M. Katliar 5



Did he really say that?

B. Stroustrup:

I “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”.

I “There are only two kinds of languages: the ones people complain about and the
ones nobody uses”.

I “C++ Is my favorite garbage collected language because it generates so little
garbage”.

I “If you give people the choice of writing good code or fast code, there’s
something wrong. Good code should be fast”.

I “I hate to choose between elegance and efficiency”. [?]

C++ for C programmers M. Katliar 5



Did he really say that?

B. Stroustrup:

I “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”.

I “There are only two kinds of languages: the ones people complain about and the
ones nobody uses”.

I “C++ Is my favorite garbage collected language because it generates so little
garbage”.

I “If you give people the choice of writing good code or fast code, there’s
something wrong. Good code should be fast”.

I “I hate to choose between elegance and efficiency”. [?]

C++ for C programmers M. Katliar 5



Did he really say that?

B. Stroustrup:

I “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”.

I “There are only two kinds of languages: the ones people complain about and the
ones nobody uses”.

I “C++ Is my favorite garbage collected language because it generates so little
garbage”.

I “If you give people the choice of writing good code or fast code, there’s
something wrong. Good code should be fast”.

I “I hate to choose between elegance and efficiency”. [?]

C++ for C programmers M. Katliar 5



Did he really say that?

B. Stroustrup:

I “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”.

I “There are only two kinds of languages: the ones people complain about and the
ones nobody uses”.

I “C++ Is my favorite garbage collected language because it generates so little
garbage”.

I “If you give people the choice of writing good code or fast code, there’s
something wrong. Good code should be fast”.

I “I hate to choose between elegance and efficiency”. [?]

C++ for C programmers M. Katliar 5



What is the difference between C and C ++?

I C++ is a direct descendant of C that retains almost all of C as a subset.

I C++ provides stronger type checking than C and directly supports a wider range
of programming styles than C.

I C++ supports data abstraction, object-oriented programming, and generic
programming.

I “I have never seen a program that could be expressed better in C than in C++
(and I don’t think such a program could exist - every construct in C has an
obvious C++ equivalent).” [?]

C++ for C programmers M. Katliar 6



What is the difference between C and C ++?

I C++ is a direct descendant of C that retains almost all of C as a subset.

I C++ provides stronger type checking than C and directly supports a wider range
of programming styles than C.

I C++ supports data abstraction, object-oriented programming, and generic
programming.

I “I have never seen a program that could be expressed better in C than in C++
(and I don’t think such a program could exist - every construct in C has an
obvious C++ equivalent).” [?]

C++ for C programmers M. Katliar 6



What is the difference between C and C ++?

I C++ is a direct descendant of C that retains almost all of C as a subset.

I C++ provides stronger type checking than C and directly supports a wider range
of programming styles than C.

I C++ supports data abstraction, object-oriented programming, and generic
programming.

I “I have never seen a program that could be expressed better in C than in C++
(and I don’t think such a program could exist - every construct in C has an
obvious C++ equivalent).” [?]

C++ for C programmers M. Katliar 6



What is the difference between C and C ++?

I C++ is a direct descendant of C that retains almost all of C as a subset.

I C++ provides stronger type checking than C and directly supports a wider range
of programming styles than C.

I C++ supports data abstraction, object-oriented programming, and generic
programming.

I “I have never seen a program that could be expressed better in C than in C++
(and I don’t think such a program could exist - every construct in C has an
obvious C++ equivalent).” [?]

C++ for C programmers M. Katliar 6



C++ language features

I Access modifiers + member functions = classes

I References

I Function overloading

I Constructors and deterministic destructors

I Nicer dynamic memory management

I Inheritance

I Virtual functions

I Run-time Type Information (RTTI)

I Exceptions

I Templates

I Standard library

C++ for C programmers M. Katliar 7



C++ Standard Library

I I/O streams

I Containers

I Strings

I Smart pointers

I Type checking

I Threads

I Random numbers

I Time measurement

I Localization

I . . .

C++ for C programmers M. Katliar 8



What follows

In the rest of the talk, we consider 2 mechanisms which make life easier, and how they
work in C++:

1. Encapsulation

2. Constructors, destructors and RAII

C++ for C programmers M. Katliar 9



Example 1

Before we start talking about encapsulation, let’s consider an example (Example 1).

C++ for C programmers M. Katliar 10



Encapsulation

Definition

Encapsulation (aka data abstraction) means means separation of implementation
details (internal representation of an object) from the interface (how an object is used).

I Encapsulation allows the internal representation of an object to be changed
without affecting the user code – good!

I If the user code can access object’s internal representation, it will break when the
implementation details change – bad! This breaks incapsulation.

I ⇒ to achive proper encapsulation, internal representation should be inaccessible.
But it should be accessible, in order to do anything useful.

I How this contradiction can be resolved?

C++ for C programmers M. Katliar 11



Encapsulation

Definition

Encapsulation (aka data abstraction) means means separation of implementation
details (internal representation of an object) from the interface (how an object is used).

I Encapsulation allows the internal representation of an object to be changed
without affecting the user code – good!

I If the user code can access object’s internal representation, it will break when the
implementation details change – bad! This breaks incapsulation.

I ⇒ to achive proper encapsulation, internal representation should be inaccessible.
But it should be accessible, in order to do anything useful.

I How this contradiction can be resolved?

C++ for C programmers M. Katliar 11



Encapsulation

Definition

Encapsulation (aka data abstraction) means means separation of implementation
details (internal representation of an object) from the interface (how an object is used).

I Encapsulation allows the internal representation of an object to be changed
without affecting the user code – good!

I If the user code can access object’s internal representation, it will break when the
implementation details change – bad! This breaks incapsulation.

I ⇒ to achive proper encapsulation, internal representation should be inaccessible.
But it should be accessible, in order to do anything useful.

I How this contradiction can be resolved?

C++ for C programmers M. Katliar 11



Encapsulation

Definition

Encapsulation (aka data abstraction) means means separation of implementation
details (internal representation of an object) from the interface (how an object is used).

I Encapsulation allows the internal representation of an object to be changed
without affecting the user code – good!

I If the user code can access object’s internal representation, it will break when the
implementation details change – bad! This breaks incapsulation.

I ⇒ to achive proper encapsulation, internal representation should be inaccessible.
But it should be accessible, in order to do anything useful.

I How this contradiction can be resolved?

C++ for C programmers M. Katliar 11



Encapsulation

Definition

Encapsulation (aka data abstraction) means means separation of implementation
details (internal representation of an object) from the interface (how an object is used).

I Encapsulation allows the internal representation of an object to be changed
without affecting the user code – good!

I If the user code can access object’s internal representation, it will break when the
implementation details change – bad! This breaks incapsulation.

I ⇒ to achive proper encapsulation, internal representation should be inaccessible.
But it should be accessible, in order to do anything useful.

I How this contradiction can be resolved?

C++ for C programmers M. Katliar 11



Member access

Access modifiers

I private members are accessible to the member functions of the class only.

I public members are accessible to everyone

I As a rule, all data should be private, otherwise encapsulation is broken.

class vs struct

The only difference between class and struct is that

I Within struct, the default access is public.

I Within class, the default access is private.

C++ for C programmers M. Katliar 12



Member access

Access modifiers

I private members are accessible to the member functions of the class only.

I public members are accessible to everyone

I As a rule, all data should be private, otherwise encapsulation is broken.

class vs struct

The only difference between class and struct is that

I Within struct, the default access is public.

I Within class, the default access is private.

C++ for C programmers M. Katliar 12



Crtitical distinction

There is a critical distinction between accessing object’s data directly vs via functions:

I Functions have separate interface (signature) and implementation.

I When directly accessing data members, interface ≡ implementation.

I Directly manipulating data members can put and object into an inconsistent state!

⇒ data must always be private.

C++ for C programmers M. Katliar 13



Crtitical distinction

There is a critical distinction between accessing object’s data directly vs via functions:

I Functions have separate interface (signature) and implementation.

I When directly accessing data members, interface ≡ implementation.

I Directly manipulating data members can put and object into an inconsistent state!

⇒ data must always be private.

C++ for C programmers M. Katliar 13



Crtitical distinction

There is a critical distinction between accessing object’s data directly vs via functions:

I Functions have separate interface (signature) and implementation.

I When directly accessing data members, interface ≡ implementation.

I Directly manipulating data members can put and object into an inconsistent state!

⇒ data must always be private.

C++ for C programmers M. Katliar 13



Crtitical distinction

There is a critical distinction between accessing object’s data directly vs via functions:

I Functions have separate interface (signature) and implementation.

I When directly accessing data members, interface ≡ implementation.

I Directly manipulating data members can put and object into an inconsistent state!

⇒ data must always be private.

C++ for C programmers M. Katliar 13



Crtitical distinction

There is a critical distinction between accessing object’s data directly vs via functions:

I Functions have separate interface (signature) and implementation.

I When directly accessing data members, interface ≡ implementation.

I Directly manipulating data members can put and object into an inconsistent state!

⇒ data must always be private.

C++ for C programmers M. Katliar 13



Example 2

Before going into ctror and dtor topic, let’s go back to an example (Example 1).
How can we still mess up with this code?

C++ for C programmers M. Katliar 14



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



Constructors and destructors

I Constructor is a function which is called at the beginning of object’s lifecycle. It
initializes the internal state and acquires necessary resources.

I Destructor is a function which is called at the end of object’s lifecycle. It releases
the resources acquired in the constructor.

I For automatic variables, the ctor is called when the variable is declared, and dtor
is called when it goes out of scope (automatically!).

I For global static variables, the ctor is called before entering main() and the dtor
is called after exiting main() (automatically!).

I For automatic and global static variables, it is guaranteed that dtors are called in
reverse order w.r.t. ctors.

I It is guaranteed that the dtors for fully-constructed objects will be called
regardless of the program flow.

C++ for C programmers M. Katliar 15



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16



RAII

Resources

. . . are anything that you first acquire and then release (memory, files, mutexes, device
driver contexts, etc.)

RAII

I Acquire the resource in ctor.

I Release the resource in dtor.

I The compiler guarantees that dtor will be called ⇒ the resource will always be
released ⇒ no resource leaks!

This is called “resource allocation is initialization” (RAII) idiom.

Remember

One object – one resource! (Why?)

C++ for C programmers M. Katliar 16


