
MSI Lecture
5.5

Practical solution of the
Nonlinear Least Squares

Problem

Per Rutquist

ML estimation

• For all possible parameter values:

• Compute likelihood of the given
observation(s)

• Pick the most likely!

Example problem

• Ferris wheel with (noisy)
altimeters

Ferris Wheel

• Find the angle a !

sin(a) ≈ − 0.1

sin(a + 30∘) ≈ 0.6

sin(a + 60∘) ≈ 0.9

Ferris Wheel

• Assume that all ϵ are
independent, and drawn
from a normal distribution
with zero mean and
standard deviation 0.5

• Find the most likely a !

sin(a) + ϵ1 = − 0.1

sin(a + 30∘) + ϵ2 = 0.6

sin(a + 60∘) + ϵ3 = 0.9

Matlab demo
% Defining a nonlinear model M
M = @(a) sin(a + pi/6 * [0 1 2]')

% Our noise covariance matrix
C = diag(0.5^2 * [1 1 1])

% Square root of the covariance
S = sqrtm(C)

% Measurements
y = [-0.1, 0.6, 0.9]'

% The optimally weighted residual function
R = @(a) inv(S) * (M(a) - y)

% Likelihood
% (During the lecure, I forgot the "0.5" below. Sorry about that! /Per)
p = @(a) exp(-0.5*sum(R(a).^2))

% A vector of values to try for the angle a
as = -pi:0.01:pi;

% Evaluate p for each element of the vector
% Note: Matlab automatically "broadcasts" opearations like exp, * and + across dimensions
ps = p(as);

% Alternatively, we could have written:
% ps = arrayfun(p, as);

% Another way would be:
% ps = zeros(size(as));
% for i=1:length(ps)
% ps(i) = p(as(i));
% end

% Plot p as funcition of a
plot(as, ps)

% Find the maximum and its location:
[pmax, ix] = max(ps)
a = as(ix)

• We cannot try all a.

• There are infinitely many.

• Let’s solve a least squares
problem!

• The Gauss-Newton method:

• Linearise the residual function at a point
(your best guess)

• Solve a linear least squares problem
(Find a better guess)

• Repeat!

θ[k+1] = θ[k] − J(θ[k])†R(θ[k])

Note: We do not use the Hessian of R

… cf 4.2 …

Matlab demo

% The Jacobian of the R function:
J = @(a) inv(S) * cos(a + pi/6 .* [0 1 2]')

% Iterations of the Gauss-Newton algoritm:
a = a - J(a) \ R(a)
a = a - J(a) \ R(a)
a = a - J(a) \ R(a)
a = a - J(a) \ R(a)
% ...after a few iterations we should have a good estimate of the
% argmin of norm(R(a))^2

θ = [a]

• How certain is our estimate?

• Works for linear systems and
Gaussian distributions

• May work for nonlinear systems

• No guarantees!

Estimate:

a = 0 ± 0.07

In our case:

Matlab demo

sigma_est = sqrt((R(a)'*R(a))/(length(y)-1) * inv(J(a)'*J(a)))

% We can generate a "measurement"
% by using M(0) as the "ground truth" and adding
% random noise to it.
% (Uncomment the line below to expermient with
% estimating a from a different measurement.)
% y = M(0) + S * randn(size(M(0)))

% … and re-run the simulation

MOAR PARAMETERS!

• Maybe there’s an offset in
all the measurements?

• Let’s introduce another
parameter!

New ML problem

• All ϵ are independent, and
drawn from a normal
distribution with zero
mean and standard
deviation 0.5

• Find θ = [a, b] !

sin(a) + b + ϵ1 = − 0.1

sin(a + 30∘) + b + ϵ2 = 0.6

sin(a + 60∘) + b + ϵ3 = 0.9

Matlab demo
M = @(a, b) sin(a + pi/6 * [0 1 2]') + b

% Note, if you want to see this script produce useful estimates,
% then the data would have to be drawn from a distribution with
% a lot smaller variance. (That is: C should be smaller.)
C = diag(0.5^2 * [1 1 1])

S = sqrtm(C)

y = [-0.1, 0.6, 0.9]'
%y = M(0, 0) + S * randn(size(M(0, 0)))

R = @(a, b) inv(S) * (M(a, b) - y)

p = @(a, b) exp(-0.5*sum(R(a, b).^2))

as = -pi:0.01:pi;
bs = -3:0.01:3;

ps = zeros(length(as), length(bs));
for i=1:length(as)
 for j=1:length(bs)
 ps(i,j) = p(as(i), bs(j));
 end
end

figure(1)
% Plot integral of p over all b values, as function of a
plot(as, sum(ps, 2))

figure(2)
% Plot integral of p over all a values, as function of b
plot(bs, sum(ps, 1))

figure(3)
% Plot p as function of a and b
contour(bs, as, ps)

[pmax, ix] = max(sum(ps, 2))
a = as(ix)

[pmax, ix] = max(sum(ps, 1))
b = bs(ix)

t = [a, b]'

J = @(t) inv(S) * [cos(a + pi/6 .* [0 1 2]'), [1 1 1]']
R2 = @(t) R(t(1), t(2))

t = t - J(t) \ R2(t)
t = t - J(t) \ R2(t)
t = t - J(t) \ R2(t)
t = t - J(t) \ R2(t)

C_est = (R2(t)'*R2(t))/(length(y)-2) * inv(J(t)'*J(t))

sigma_est = sqrt(diag(C_est))

a = − 0.14 ± 0.48

b = − 0.13 ± 0.41

Looking at the
residuals

• Should resemble a sample from a normal
distribution with unity variance

>> R(theta(1), theta(2))
ans =

 0.46141
 -0.65579
 0.19438

