
i
i

“exercise8” — 2020/1/8 — 15:45 — page 1 — #1 i
i

i
i

i
i

Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 8: Nonlinear Least Squares
(to be returned by Jan 15th, 2020, 8:30 in HS 00 036 (Schick-Saal),

or in building 102, 1st floor, ’Anbau’ until 10:00)

Prof. Dr. Moritz Diehl, Tobias Schöls, Naya Baslan, Jakob Harzer, Bryan Ramos

In this exercise we will consider again the model of a robot moving on a plane as presented in exercise
sheet 7. It’s kinematic model is given by the state-space equations

ẋ =

 v · cos β

v · sin β
ωLRL−ωRRR

L

 , y =

[
x
y

]
(1)

where the robot’s velocity v is given by v = ωL·RL+ωR·RR

2
. The system state is x = [x, y, β]> and is equal

to the robot’s pose. The system can be controlled by the angular velocities of the wheels: u = [ωL ωR]>.
The output y is the position of the robot and measured with a sampling time of ∆t = 0.01 s.

Exercise Tasks

1. Forward simulation of the robot’s state (5 points)
In this task you will simulate the position of the two-wheel-robot using the state space model. For
reference use chapter 6.2 ’Numerical Integration Methods’ from the lecture notes.

(a) MATLAB: Given the state-space model, implement a function

[xdot] = robot_ode(x,u,p)

which evaluates the right-hand side of the ODE ẋ = f(x, u, p), with parameters p = [RL, RR, L].
Use the following values: RL = 0.2 m, RR = 0.2 m and L = 0.6 m. (1 point)

(b) MATLAB: Implement a function

[x_next] = euler_step(h, x0, u, ode, p)

which performs one Euler integration step for a general ODE ẋ = f(x, u, p) starting at x0,
with input u, parameters p and step size h. (1 point)

(c) MATLAB: Implement a function

[x_next] = rk4_step(h, x0, u, ode, p)

which performs one Runge-Kutta (of order 4) integration step for a general ODE ẋ = f(x, u, p)
starting at x0, with input u, parameters p and step size h. (1 point)

(d) MATLAB: Write a function

[x_sim] = sim(t,x0,u, integrator, ode, p)

which simulates the robot’s behaviour at times t given a set of inputs u, starting at x0 =
[0 0 0]> where you use the given integrator. (1 point)

(e) MATLAB: Plot the results you obtain from the sim function when calling it with euler_step
and RK4_step.
ON PAPER: Are there any difference? Why (not)? (1 point)

1



i
i

“exercise8” — 2020/1/8 — 15:45 — page 2 — #2 i
i

i
i

i
i

2. Parameter estimation for output error minimization (8 points)
After observing the movement of a different sized robot, you would like to estimate the dimensions
of this robot θ = [RL, RR, L]> using lsqnonlin1 . Assuming that the robot system has only
output errors, and that these errors are Gaussian with zero mean and variances σ2

x = 1.6 · 10−3 m2

and σ2
y = 4 · 10−4 m2, then the Maximum Likelihood Estimation problem to estimate θ is:

θ∗ = arg min
θ∈R3

N∑
k=0

‖yk −Mk(U,x0, θ)‖2Σ−1
y
,

where yk = (x, y)> ∈ R2 with x and y being the coordinates of the robot and N is the number of
measurements; Σy is the weighing matrix containing the variances on the x and y measurements
defined as:

Σy =

[
σ2
x 0

0 σ2
y

]
;

Mk(U,x0, θ) denotes the modeled position at timestep k for given U,x0, θ where U ∈ R(N−1)×2 is
a matrix that contains all applied control inputs u1, . . . , uN , each consisting of the angular velocity
of the left and right wheel respectively (ωL and ωR); x0 contains the robot’s initial pose x0 =
[x0, y0, β0]

> = [0, 0, 0]> which we assume to be perfectly known.

(a) ON PAPER: First formulate a discrete time model for the robot’s dynamics F : R3 → R3

using a one-step Euler integrator and the kinematic model given in (1). Then formulate the
output model

Mk : R(N−1)×2 × R3 × R3 → R2, (U,x0, θ) 7→ ŷk

Hint: You may use F for the formulation of Mk. (1 point)

(b) MATLAB: Implement a function

residual(theta, x0, U, t, y, sigma_y)

which computes the residual vector between the given measured location yk and the modeled
location Mk(U,x0, θ) . Keep in mind to incorporate the measurement variances Σy correctly,
i.e. weight the residual and to perform the right number of integration steps. Check the pro-
vided code for additional information on the paramters. (2 points)

(c) MATLAB: Use lsqnonlin to estimate θ∗. (1 point)

(d) MATLAB: Compute the simulated trajectory using θ∗ and use the provided code to plot it
versus the measurements and a 4th order polynomial fit.
ON PAPER: What do you observe? (1 point)

(e) ON PAPER: Check if the assumptions made on the noise were correct by plotting a histogram
for the residual in x and y (using θ∗). (1 point)

(f) MATLAB: Approximate the covariance matrix Σθ∗ of your estimate θ∗ (check page 48 of the
lecture notes). (2 points)

This sheet gives in total 13 points.
1lsqnonlin takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes ‖f(θ)‖22 with respect to θ. Thus,

you have to stack the residuals obtained for different timesteps to obtain a single residual vector.

2


