
i
i

“ex10” — 2019/7/1 — 16:18 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2019

Exercise 10 (Bonus): Model Predictive Control

Prof. Dr. Moritz Diehl, Andrea Zanelli, Dimitris Kouzoupis

Consider the following optimal control problem:

min
x(t), u(t)

1

2

∫ T

0

x(t)>Qcx(t) + u(t)>Rcu(t) dt +
1

2
x(T )>Px(T )

s.t. x(0) = x̂0

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ]

− ū ≤ u(t) ≤ ū,

(1)

where

f(x(t), u(t)) :=

[
x2(t)

−x1(t) + (0.3x2(t) + 1)u(t)

]
(2)

and x̂0 = [1, 3]> is the initial state of the system. In this exercise, we will design two receding
horizon controllers using either an exact solution to the discretized version of (1) or an approximate
scheme called Real-Time Iteration.

1. (a) Set up a script that, using CasADi, discretizes (1) using multiple shooting and solves
the resulting problem using IPOPT. The discretized problem should have the following
form:

min
x, u

1

2

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
+

1

2
xN>PxN

s.t. x0 = x̂0

xi+1 = f(xi, ui), i = 0, ..., N − 1,

− ū ≤ ui ≤ ū, i = 0, ..., N − 1,

(3)

where x = (x0, . . . , xN) and u = (u0, . . . , uN−1). Discretize the dynamics with an explicit
RK4 integrator, use a horizon of T = 3, N = 20 intervals and cost matrices Q = P =
diag(10, 0.1) and R = 0.1. Fix the control bound to ū = 5. Choose the step-size of the
integrator to be h = 0.15 (no intermediate integration steps). Plot the obtained state and
control trajectories over time in two separate plots. Use stairs for the control trajectory
to visualize that the controls are piecewise constant. We will refer to the obtained solution
as open-loop solution.

(2 bonus points)

(b) Using the code from (a), set up a script where the system is controlled in closed-loop by
applying the first optimal control input u∗0 and shifting the prediction horizon forward in
a receding horizon fashion. When applying the control to the system assume that there
are no disturbances (such that the prediction of the NLP is perfect). Plot the obtained
trajectories on top of the open-loop ones.

Consider the nominal case where no disturbances occur and the behavior of the system
can be predicted exactly using the model in (2), are the closed-loop trajectories going to
be different than the open-loop ones computed in (a)? Motivate your answer. Hint: in
order to solve several instances of problem (3) for different x̂0, recall that you can define
a parametric optimization problem in CasADi as follows:

1



i
i

“ex10” — 2019/7/1 — 16:18 — page 2 — #2 i
i

i
i

i
i

1 prob = struct('f', J, 'x', w, 'g', g, 'p', x 0);

where the parameter p can be fed to calls to the solver without having to define a new
problem.

(2 bonus points)

(c) Since solving nonlinear optimization problems online can be rather computationally de-
manding, schemes are present in the literature that exploit approximate solutions. In the
following, you will implement the so-called Real-Time Iteration (RTI) scheme, which re-
lies on the solution of a single convex quadratic problem (QP) that locally approximates
the optimal control problem (3). In order to do so, consider the following formulation:

min
x, u

1

2

N−1∑
i=0

(
x>i Qxi + u>i Rui

)
+

1

2
x>NPxN

s.t. x0 = x̂0

xi+1 = Ai(xi − x̃i) + Bi(ui − ũi) + fi, i = 0, ..., N − 1,

− ū ≤ ui ≤ ū, i = 0, ..., N − 1,

(4)

where (x̃, ũ) represent the linearization point at which the local approximation is com-
puted. Notice that the nonlinear discretized dynamics have been replaced by a local
time-varying model obtained by computing a Taylor series expansion of first order of the
RK4 equations. Once a solution to the QP is obtained, the first control input is applied
to the system and the linearization point is updated using the obtained state-input vec-
tor. Implement the RTI scheme in CasADi and solve the resulting QPs with qpOASES.
Plot the closed-loop trajectories in the same figure used in (a) and (b). Hint: in order to
compute the linearized model in a simple way, you can store the expressions defining the
equality constraints in a vector g and compute directly its Jacobian. Moreover, in order
to avoid redefining a new problem at every iteration, you can define a parametric problem
that has not only x̂0 as a parameter, but also the linearization point w̃ = (x̃, ũ):

1 G = Function('G', {w, x0 hat},{g}); % all constraints
2 JG = Function('JG', {w, x0 hat},{jacobian(g,w)});
3 % linearize constraints
4 wk = MX.sym('wk',length(w),1); % linearization point
5 g l = G(wk, x0 hat) + JG(wk, x0 hat)*(w - wk); % linearized constraints
6

7 H = kron(eye(N), diag([diag(Q);diag(R)]));
8 H = diag([diag(H);diag(Q)]);
9 J = 1/2*w.'*H*w; % QP cost

10

11 p in = [wk;x0 hat]; % QP parameter
12 qp = struct('x',w, 'f',J,'g',[g l],'p', p in); % QP struct
13 solver = qpsol('solver', 'qpoases', qp); % Allocate QP solver

(4 bonus points)

(d) Shorten the prediction horizon used in point (b) and (c) from N = 20 to N = 5, keeping
h = 0.15. How does the performance of the two controllers change?

(2 bonus points)

This sheet gives in total 10 bonus points

2


