Exercises for Course on State-Space Control Systems (SSC) Albert-Ludwigs-Universität Freiburg – Summer Term 2019

Exercise 2: Eigenvalues and Stability, Lyapunov Stability

Prof. Dr. Moritz Diehl, Dr. Dang Doan, Benjamin Stickan, Katrin Baumgärtner

Theoretical Exercises

- 1. Consider again the inverted pendulum, example (5.4) in *Feedback Systems* where you can assume that u = 0. Check if the equilibrium points (0, 0) and $(\pi, 0)$ are (asymptotically) stable by linearizing at the equilibrium and then examining the eigenvalues. Compare with the phase portrait from last week's exercise sheet.
- 2. Consider the ODE

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \begin{bmatrix} k & 1\\ -4k & -3 \end{bmatrix} x$$

with parameter k. Compute the eigenvalues λ_1, λ_2 of the system matrix and plot the real part of λ_1, λ_2 as a function of k.

For k = 0.5 compute the eigenvectors (numerically using Matlab) and use them to diagonalize the system. Compare the diagonal entries to the eigenvalues.

3. Exercise 5.4 (Lyapunov functions) from Feedback systems.

Matlab

The second order FitzHugh-Nagumo equations are given by

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 10 \left(V - \frac{V^3}{3} - R + I_{\mathrm{in}} \right),\\ \frac{\mathrm{d}R}{\mathrm{d}t} = 0.8 \left(-R + 1.25V + 1.50 \right)$$

They describe a simplified model the spike generation in neurons. V is the membrane potential, R is a recovery variable, I_{in} is the magnitude of the stimulus current. For more details have a look at this article¹.

- 1. How many equilibria are the for a fixed value of I_{in} . Plot the equilibrium as a function of I_{in} .
- 2. Check if the equilibrium points are (asymptotically) stable by linearizing around the equilibrium points and examining the eigenvalues.
- 3. For $I_{in} \in \{0, 1.5, 2.5\}$ use ode45 to simulate the system using initial values close to the equilibrium point and plot V as a function of t.
- 4. What do you observe?

¹Note that they use slightly different parameters in the article.