
Chapter 1

Dynamical Systems in State Space

A dynamic system responds to an input signal u(t) with an output signal y(t) as depicted in the
following block diagram

u(t) y(t)F

This behavior could be regarded as a “mapping in time domain” of a function u : t 7→ u(t) to a
function y : t 7→ y(t),

u 7→ y = F{u} (1.1)

An example is a RC-lowpass circuit and its response to a step input signal

u(t)

R

C

u(t)

y(t)

U

t

y(t)=uC(t)

1.1 System dynamics given by Ordinary Differential Equa-
tions

If the system dynamics is given by ordinary differential equations (ODE), the system can be
represented in the following “state space”:

Input

y(t) = g(x(t),u(t), t)

Output

u(t) ẋ(t) = f(x(t),u(t), t) y(t)

• x is the n-dimensional internal state of the system. It can be regarded as ’memory’ of the
system.

• The dynamics is given by the equations of motion in form of an ODE

ẋ(t) = f(x(t),u(t), t) (1.2)

called “state equation” (or “system equation”). It determines the time evolution of the state
x(t) by an ordinary differential equation.

4



• The second equation
y(t) = g(x(t),u(t), t) (1.3)

is called “output equation” and maps the state (and input) to the output vector y(t). Note
that the output, state and input vectors can have a different dimensions.

1.2 Linear Time-Invariant (LTI) System

When f ,g are linear functions and function parameters do not change over time, we have a LTI
system written as

ẋ(t) = Ax(t) + Bu(t) (1.4)

y(t) = Cx(t) + Du(t) (1.5)

in which the vectors and matrices can be multi-dimensional: the state x ∈ Rn has dimension
n, the input vector u ∈ Rp has dimension p and the output vector y ∈ Rq has dimension q.
Accordingly, the state space matrices have dimensions: A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and
D ∈ Rq×p.

A dynamical system F is called linear if the following conditions are fulfilled:

1. Superposition principle
F{u1 + u2} = F{u1}+ F{u2} (1.6)

which can be illustrated as follows

F{}

F{}

u1(t)

u2(t)

y(t)
F{}

u1(t)

u2(t)

y(t)

=̂

2. Principle of amplification
F{cu} = cF{u} (1.7)

depicted as follows

y(t)u(t)
F{}c F{}

y(t)u(t)
c

A dynamical system F is called time-invariant, if for any function u(t)

y , F{u} (1.8)

the equation
y0 = F{u0} (1.9)

is valid for all t0, where the function definitions u0 : t 7→ u0(t) , u(t − t0) and y0 : t 7→ y0(t) ,
y(t− t0) are introduced. This can be illustrated by

u(t)
u(t− t0)

t0

LTI

t0

y(t− t0)

y(t)

5



1.3 Solving the state-space ODEs

In the following, the equation
ẋ(t) = Ax(t) + Bu(t) (1.10)

with x(t0) = x0 as initial condition will be solved.

Homogeneous solution Consider ẋ(t) = ax(t) in which x(t) is a scalar, the solution is:

x(t) = c.eat (1.11)

where c is a constant. We want to generalize this result for the multi-dimensional case.
We use the matrix exponential function, which is defined by

eA(t−t0) ,
∞∑
ν=0

A(t− t0)ν

ν!
(1.12)

Then, the function:

x(t) = eA(t−t0)x0 (1.13)

is the solution for
ẋ(t) = Ax(t) (1.14)

which is the homogeneous part of (1.10).

General solution The general solution of (1.10) is

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)Bu(τ)dτ (1.15)

with
Φ(t, t0) , eA(t−t0) (1.16)

Note that the first term is the homogeneous solution due to the initial condition x0 and the second
term is a convolution integral of input u(t).

Numerical solution Computing the integral for constructing (1.15) is not convenient. We
usually use numerical solution of ODEs in order to simulate the system, numerical simulation also
works for nonlinear systems.

Tools for solving ODEs numerically are available in computational software, such as functions
ode45 in MATLAB, lsode in Octave.

1.4 Transforming higher order ODE to state-space equa-
tions

In this section, we consider a SISO system. The dynamics is assumed to be given by a high degree
differential equation

y(n) + a1y
(n−1) + · · ·+ an−1ẏ + any = u (1.17)

The superscript (n) denotes the nth time derivative, the ai ∈ R are constant real coefficients.

6



This nth order ODE is transformed into a 1st order system by introduction of the state x =
[x1, . . . , xn]> and the definitions

x1
.
= y(n−1) (1.18)

x2
.
= y(n−2) (1.19)

... (1.20)

xn
.
= y (1.21)

The ODE (1.17) can then be written as

ẋ1 =
d

dt
y(n−1) = y(n) = −a1y(n−1) − a2y(n−2) − · · · − any + u

= −a1x1 − a2x2 − · · · − anxn + u (1.22)

or in matrix representation

ẋ(t) =



−a1 −a2 · · · −an−1 −an
1 0 . . . 0 0

0 1 0
...

...
. . .

0 0 1 0

x(t) +



1
0
...
...
0

u(t) (1.23)

7


