
1.5 Discrete-time state-space systems

A discrete-time system represents the evolution of a system at discrete instants of time, taken at
time points kTs with k ∈ Z and Ts a short amount of time, called sampling time.

Discrete-time systems can be expressed as difference equations:

x[k + 1] = f(x[k],u[k])

y[k] = g(x[k],u[k])

Transformation between continuous-time System and discrete-time system Consider
linear continuous-time dynamics:

ẋ(t) = Ax(t) +Bu(t) (1.24)

We can express the relation of x[k + 1] , x
(
(k + 1)Ts

)
and x[k] , x

(
kTs
)
, using the solution

(1.15) for continuous-time ODE:

x
(
(k + 1)Ts

)
= eATsx

(
kTs
)

+

Ts∫
0

eA(Ts−τ)Bu(τ)dτ (1.25)

Assume that the control signal is constant over each sampling interval, i.e. for an interval from
kth to (k+ 1)th samples: u(t) = u[k], t ∈ [kTs, (k+ 1)Ts) (this is called zero order hold sampling).

By defining:

Φ = eATs , Γ =

 Ts∫
0

eAsds

B (1.26)

we have the discrete-time system that is sampled from (1.24):

x[k + 1] = Φx[k] + Γu[k] (1.27)

Reversely, with given matrices for the discrete-time system, we can also find the matrices of
the continuous-time system using relations:

A =
1

Ts
log Φ, B =

 Ts∫
0

eAsds

−1 Γ (1.28)

If A is invertible, we have the relation:

Γ = A−1
(
eATs − I

)
B (1.29)

MATLAB command for converting continuous-time and discrete-time linear systems:
sysd = c2d(sysc, Ts); sysc = d2c(sysd).

Discrete-time System as an Approximation of continuous-time system For nonlinear
continuous-time systems, we don’t have analytic solution of the nonlinear ODE, hence it is difficult
to find the exact transformation from continuous-time to discrete-time like in the linear case.
Instead, we use numerical approximation to compute the discretized values.

Consider Taylor expansion series of function x(t) around the point t0 = kTs:

x(t) = x(t0) +∇x(t0)∆t +O
(
∆2
t

)
(1.30)

with ∆t = x(t) − x(t0). The notation ∇x(t0) is the derivative of the multi-dimensional function
x with respect to time t.

We omit the last term which stands for the contribution of high order derivatives, and get
linear approximation for t = (k + 1)Ts:
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x[k + 1] ≈ x[k] +∇x(t0) (1.31)

In order to implement the computation following (1.31), at each sampling time kTs, we first
compute the derivative of x at that time (we may substitute x[k],u[k] into the nonlinear ODE to
get that derivative).

The formula (1.31) is called Forward Euler approximation. There are other ways that are
widely used: Backward Euler, Runge Kutta methods.

1.6 Linearization of nonlinear systems

Given a nonlinear dynamical system, we may want to examine the behavior of the system around
a reference or steady-state point by linearization of the ODE. The following procedure is applied:

1. Find equilibrium points.

2. Linearize system around the equilibrium point that we are interested.

Equilibrium of a dynamical system Recall the ODE describing a system:

ẋ(t) = f(x(t),u(t))

y = g(x(t),u(t))

Equilibrium points are the points (xe,ue) so that f(xe,ue) = 0, hence ẋ|(xe,ue) = 0, the state
does not change and remains at xe.

Then, we define a new set of variables: z,v,w are new state, input, and output variables,
respectively:

z = x− xe, v = u− ue, w = y − g(xe,ue) (1.32)

Linearization around an equilibrium point The linearized system has the form:

ż(t) = Az + Bv (1.33)

w = Cz + Dv (1.34)

where:

A =
Df

Dx

∣∣∣∣
(xe,ue)

, B =
Df

Du

∣∣∣∣
(xe,ue)

, C =
Dg

Dx

∣∣∣∣
(xe,ue)

, D =
Dg

Du

∣∣∣∣
(xe,ue)

(1.35)

The notation Df
Dx means the partial Jacobian matrix of the multi-dimensional function f ∈ Rm

with respect to variables x ∈ Rn, with formula:

Df

Dx
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 (1.36)
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