
3.4 Eigenvalue assignment for LTI SISO systems

Eigenvalue assignment (also known as pole placement) means putting the eigenvalues of the closed-
loop system to given values. Before explaining the method in detail, some brief hints how to choose
the eigenvalues for the closed loop shall be summarized.

• In order to achieve stability, all eigenvalues must be shifted to the left half plane, i.e. Re(λi) <
0 for i = 1, . . . , n.

• The location of the eigenvalues determines speed and overshooting/oscillations of the closed
loop.

• For many systems, system dynamics is mainly determined by a dominant eigenvalue (or
eigenvalue pair). In this situation, the focus should be put on this eigenvalue (pair).

As eigenvalues are the roots of the characteristic polynomial (CP), the CP of the closed-loop
system is obtained with eigenvalues that we choose.

With the open-loop system represented by (A,B), using a linear controller u = −Kx, the
closed-loop system is:

ẋ = (A−BK)x (3.25)

For simple systems, in order to determine the feedback gain K, we calculate the characteristic
polynomial of the closed-loop system (3.25) as:

pcl(λ) , det(λI−A + BK) (3.26)

and then compare the coefficients so that pcl(λ) is the same as the CP that gives desired roots
(eigenvalues of A−BK).

This will be demonstrated by the following simple example. Assume a system given by

A =

[
1 3
0 −1

]
B =

[
1
1

]
(3.27)

The eigenvalues (poles) shall be placed at λ1 =−1 and λ2 =−2. Hence the given characteristic
polynomial for the closed loop is

pcl(λ) = (λ− λ1)(λ− λ2) = λ2 + (−λ1 − λ2)λ+ (λ1λ2) (3.28)

This must be same as computed by using (3.26)

pcl(λ) = det(λI−A + BK) = det(

[
λ− 1 + k1 −3 + k2

k1 λ+ 1 + k2

]
)

= λ2 + (k1 + k2)︸ ︷︷ ︸
=−λ1−λ2=3

+ 4k1 − k2 − 1︸ ︷︷ ︸
=λ1λ2=2

(3.29)

Comparing the coefficients as indicated results in

K = [k1, k2] = [1.2, 1.8] (3.30)

This method becomes more complicated when the size of A is big. In the following section, we
study a general formula to compute the feedback controller via the controllable canonical form.
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3.4.1 Eigenvalue assignment for systems in controllable canonical form

We assume that the system is transformed into the controllable canonical form

ż(t) =


−a1 · · · · · · −an

1 0
. . .

. . .

1 0

 z(t) +


1
0
...
0

u(t) (3.31)

y(t) = [b1, . . . , bn] z(t) (3.32)

The feedback controller is given by

u(t) = −K̃x(t) with K̃ =
[
k̃1, . . . , k̃n

]
(3.33)

Then, the ODE for the feedback system read

ż(t) = Ãz(t) + B̃u(t) = (Ã− B̃K̃)z(t)

=


(−a1 − k̃1) · · · · · · (−an − k̃n)

1 0
. . .

. . .

1 0


︸ ︷︷ ︸

Acl,

z(t) (3.34)

with the thereby defined matrix for the closed loop Acl. The idea is now to give the eigenvalues
λ̄i for i = 1, . . . , n in order to obtain a certain dynamical behavior of the system. Hence, the
characteristic polynomial reads

pcl(λ) =

n∏
i=1

(λ− λ̄i) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn (3.35)

and defines the coefficients p1, . . . , pn. As the system is given in control canonical form, the
coefficients of pcl(λ) determine the last row of Acl, hence

Acl =


−p1 · · · · · · −pn

1 0
. . .

. . .

1 0

 (3.36)

Comparison with (3.34) yields −ai − k̃i = −pi, and hence we get the coefficients of the controller
k̃i = pi − ai. In summary, we get the simple rule for eigenvalue assignment:

Eigenvalue assignment

Assume a system in controllable canonical form with characteristic polynomial (CP)

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 (3.37)

A given CP (calculated from given eigenvalues) for the closed loop

λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 (3.38)

is implemented by the state feedback controller with vector

K̃ = [(p1 − a1), . . . , (pn − an)] (3.39)
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3.4.2 Eigenvalue assignment for general LTI SISO systems

In the following, we will apply the eigenvalue assignment to systems given in another representation
than controllable canonical form. The procedure is to consider the transformation to control
canonical form first and then derive a general formula for K.

With a controllable LTI SISO system given by

ẋ(t) = Ax(t) + Bu(t) (3.40)

We use the transformation T, defining the new state vector z(t) = Tx(t) in order to get the
controllable canonical form (3.31).

We have derived the formula of this transformation matrix, as in (3.24):

T = C̃ C−1 (3.41)

Note that the system must be controllable for calculation of the inverse C−1.
Using the feedback gain K̃ in (3.39) that is designed for the transformed system, we can obtain

the relation of such controller w.r.t. the original state:

u(t) = −K̃z(t) = − K̃T︸︷︷︸
K

x(t) (3.42)

The state feedback can be calculated as

K = [(p1 − a1), . . . , (pn − an)] C̃ C−1 (3.43)

(*) Ackermann’s formula Besides the formula (3.43), we can also calculate the state feedback
gain using the Ackermann’s formula, to be derived as follow.

With p(·) the characteristic polynomial of the open-loop system ẋ = Ax, Cayley-Hamilton
theorem says that:

p(A) = 0 (3.44)

This result also holds with a transformation z = Tx, i.e. p(Ã) = 0. Let T be the matrix
that transforms the system into the controllable canonical form (Ã, B̃). We now consider two
polynomials:

p(Ã) = Ãn + a1Ã
n−1 + + · · ·+ an−1Ã + anI = 0 (3.45)

pcl(Ã) = Ãn + p1Ã
n−1 + · · ·+ pn−1Ã + pnI 6= 0 (3.46)

where p1, . . . , pn obtained from the coefficients of the closed-loop characteristic polynomial with
desired eigenvalues.

We then get:

pcl(Ã) = pcl(Ã)− p(Ã)︸ ︷︷ ︸
0

= (p1 − a1)Ãn−1 + · · ·+ (pn−1 − an−1)Ã + (pn − an)I

⇒
[

0 . . . 0 1
]
pcl(Ã) = (p1 − a1)

[
0 · · · 0 1

]
Ãn−1 + · · ·+ (pn − an)

[
0 · · · 0 1

]
(3.47)

Observe that due to the structure of Ã in the controllable canonical form, we have:

[
0 · · · 0 1

]
Ã =

[
0 · · · 0 1 0

]
...[

0 · · · 0 1
]
Ãk =

[
0 · · · 0 1︸︷︷︸

pos. n−k

0 · · · 0
]
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Substituting these matrices into (3.47), we would obtain:

[
0 . . . 0 1

]
pcl(Ã) = [(p1 − a1), . . . , (pn − an)] = K̃ (3.48)

Therefore, in order to obtain K̃ as in (3.39), we can use the computation: K̃ =
[

0 . . . 0 1
]
pcl(Ã).

Furthermore, we can find the feedback gain for the original open-loop system using

K = K̃T =
[

0 . . . 0 1
]
pcl(Ã)T

=
[

0 . . . 0 1
]
pcl(TAT−1)T

=
[

0 . . . 0 1
]
Tpcl(A)

=
[

0 . . . 0 1
]
C̃ C−1pcl(A)

=
[

0 . . . 0 1
]
C−1pcl(A)

The last equation is obtained due to the upper triangular structure of C̃ .
This controller realization is called Ackermann’s formula, which shall be summarized

Ackermann’s formula for eigenvalue assignment

Given the characteristic polynomial pcl(λ) for the closed-loop system, the control feedback
has to be chosen as K =

[
0 . . . 0 1

]
C−1pcl(A), i.e. we take the last row of the

inverse controllability matrix, and multiply to the sum of matrix-exponentials of A with
the coefficients of the desired CP.

In MATLAB, Ackermann’s formula is implemented with command acker, but it could have
numerical issues. Instead, we often use command place that is more robust.

3.5 Prefilter

In the following, the prefilter will be discussed in order to achieve a certain set-point r. It should
be noted that most of the discussed control issues in the subsequent sections and chapters will be
simplified to a zero set-point x → 0 controller for clarity of concepts. The reader should keep in
mind that adding a prefilter as presented in this section will extend those to arbitrary set-points.

Requirement: we introduce a reference input r and demand that the output vector y(t) → r
for t→∞.

This requirement can be achieved by adding a prefilter to the control feedback loop as follows

CB

A

−K

Kf

x0

x(t)ẋ(t)

(q×n)

(n×n)

(n×p)

u(t) y(t)

Plant

r(t)

Prefilter

Reference

(p×q)

(p×n)
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The adding of Kf does not affect the dynamics of the closed-loop system. Hence, in order
to obtain a stable closed-loop system, we could design the feedback gain K using eigenvalue
assignment as described in the previous section.

The control law reads
u(t) = −Kx(t) + Kfr (3.49)

For determination of the prefilter we insert (3.49) into the ODE

ẋ(t) = Ax(t) + Bu(t) (3.50)

y(t) = Cx(t) (3.51)

and obtain for a constant (or at least step-wise constant) r(t) = r0

ẋ(t) = (A−BK)x(t)−BKfr0 (3.52)

The system is assumed to be stable (with A−BK has all eigenvalues on the left half plane, and
thus this matrix is invertible). The state evolution would lead to ẋ(t) → 0 for t → ∞ and hence
the state converges to the equilibrium point of the closed-loop system x(t)→ x̄e. Inserting these
two relations into (3.52) yields

0 = (A−BK)x̄e + BKfr0 (3.53)

and with (3.51)
ye = −C(A−BK)−1BKfr0 (3.54)

As we demand for ye = r0, we need

−C(A−BK)−1BKf = I (3.55)

and for the prefilter

Kf = −
(
C(A−BK)−1B

)−1
(3.56)

Without going further into detail, a final remark on the number of control variables shall be given.
Regarding the dimensions of the matrices in (3.56)

Kf = ( C︸︷︷︸
(q×n)

(BK−A)︸ ︷︷ ︸
(n×n)

−1 B︸︷︷︸
(n×p)

)−1 (3.57)

we get (q × p) for Kf . Hence, it is invertible for p = q, i.e. for control of q output variables, q
control variables (or more) are necessary.
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