
i
i

“exercise8” — 2021/1/17 — 17:16 — page 1 — #1 i
i

i
i

i
i

Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 8: Nonlinear Least Squares + Linear Kalman Filter
(to be returned on Jan 27th, 2021, 9:00)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Naya Baslan, Jakob Harzer, Doga Can Öner

Parameter estimation for output error minimization (5 points + 2 bonus points)

In this exercise we will consider the model of a differential drive robot with unicycle dynamics. The
movement of the robot depends on the angular velocities of the left and the right wheel ωL and ωR, as well
as on their radii RL and RR. Differing radii influence the behaviour of the robot.

v

x

y

β

The system can be described by a state space model with three internal states. The state vector x =
[x, y, β]> contains the position of the robot in the X − Y plane and the deviation β from its initial
orientation. The system can be controlled by the angular velocities of the wheels: u = [ωL, ωR]>. The
output of the system is the position of the robot: y = [x, y]>. The model follows as

ẋ =

 v · cos β

v · sin β
ωLRL−ωRRR

L

 y =

[
x
y

]
(1)

with L being the length of the axis between the two wheels and the velocity v being

v =
ωL ·RL + ωR ·RR

2
.

The system state is x = [x, y, β]> and is equal to the robot’s pose. The system can be controlled by the
angular velocities of the wheels: u = [ωL ωR]>. The output y is the position of the robot and measured
with a sampling time of ∆t = 0.01 s.

We already provided you some functions to simulate the position of the two-wheel-robot using the
state space model. For reference use chapter 6.2 ’Numerical Integration Methods’ from the lecture notes.
Please go through all of the provided functions and try to understand what they are doing.

• [xdot] = robot_ode(x,u,p) evaluates the right-hand side of the ODE ẋ = f(x, u, p), with
parameters p = [RL, RR, L]. Use the following values: RL = 0.2 m, RR = 0.2 m and L = 0.6 m.

• [x_next] = RK4_step(h, x0, u, ode, p) performs one RK4 integration step for a
general ODE ẋ = f(x, u, p) starting at x0, with input u, parameters p and step size h.

• [x_sim] = sim_RK4(t,x0, u, ode, p) simulates the robot’s behaviour at times t given
a set of inputs u, starting at x0 = [0 0 0]>.

1

i
i

“exercise8” — 2021/1/17 — 17:16 — page 2 — #2 i
i

i
i

i
i

In this task, we would like to estimate the dimensions of the robot θ = [RL, RR, L]> using lsqnonlin1.
Assuming that the robot system has only output errors, and that these errors are Gaussian with zero mean
and variances σ2

x = 1.6 ·10−3 m2 and σ2
y = 4 ·10−4 m2, then the Maximum Likelihood Estimation problem

to estimate θ is:

θ∗ = arg min
θ∈R3

N∑
k=0

‖yk −Mk(U,x0, θ)‖2Σ−1
y
,

where yk = (x, y)> ∈ R2 with x and y being the coordinates of the robot and N is the number of
measurements; Σy is the weighing matrix containing the variances on the x and y measurements,

Σy =

[
σ2
x 0

0 σ2
y

]
;

Mk(U,x0, θ) denotes the modeled position at timestep k for given U,x0, θ where U ∈ R(N−1)×2 is a
matrix that contains all applied control inputs u1, . . . , uN , each consisting of the angular velocity of the
left and right wheel respectively (ωL and ωR); x0 contains the robot’s initial pose x0 = [x0, y0, β0]

> =
[0, 0, 0]> which we assume to be perfectly known.

1. ON PAPER: Formulate the output model

Mk : R(N−1)×2 × R3 × R3 → R2, (U,x0, θ) 7→ ŷk

where you may use a function F : R3 → R3 to denote the discretized system dynamics. (1 point)

2. MATLAB: Implement a function

residual(theta, x0, U, t, y, sigma_y)

which computes the residual vector between the given measured location yk and the modeled loca-
tion Mk(U,x0, θ). Keep in mind to incorporate the measurement variances Σy correctly, i.e. weight
the residual and to perform the right number of integration steps. Check the provided code for
additional information on the parameters. (1 point)

3. MATLAB: Use lsqnonlin to estimate θ∗. (1 point)

4. MATLAB: Compute the simulated trajectory using θ∗ and use the provided code to plot it versus
the measurements and a 4th order polynomial fit.
ON PAPER: What do you observe? (1 point)

5. ON PAPER: Check if the assumptions made on the noise were correct by plotting a histogram for
the residual in x and y (using θ∗). (1 point)

6. MATLAB: Approximate the covariance matrix Σθ∗ of your estimate θ∗ (check page 52 of the
lecture notes). (2 bonus points)

1lsqnonlin takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes ‖f(θ)‖22 with respect to θ. Thus,
you have to stack the residuals obtained for different timesteps to obtain a single residual vector.

2

i
i

“exercise8” — 2021/1/17 — 17:16 — page 3 — #3 i
i

i
i

i
i

Kalman Filter for State Estimation of Omni Wheel Robot (5 points)

In this task, we consider a robot with omni wheels which means it can instantaneously move in any
direction. We assume that the robot’s orientation does not change and thus we model the robot’s state
x ∈ R4 by

x =

[
p
v

]
where p = (p1, p2)

> ∈ R2 denotes the position of the robot in m, v = (v1, v2)
> ∈ R2 denotes its

velocity in m
s

. The time derivatives of p and v are given by ṗ = v and v̇ = u − µv with control inputs
u = (u1, u2)

> ∈ R2 and constant parameter µ = 0.0011
s . We assume that the control inputs u are perfectly

known.

1. ON PAPER: Specify the continuous time state-space model, i.e. define matrices Ac ∈ R4×4 and
Bc ∈ R4×2 such that the following holds:

ẋ = f(x, u) = Acx+Bcu

Formulate the corresponding discrete time model for the robot’s dynamics using a one-step Euler
integrator with step length h = 0.5 s, i.e. specify matrices Ad ∈ R4×4 and Bd ∈ R4×2 such that

xk+1 = F (xk, uk) = Adxk +Bduk (1 point)

2. ON PAPER: We assume that the discrete time state dynamics are perturbed by additive zero-mean
Gaussian noise. Note that we cannot observe the state directly, but can only measure the robot’s
position p using a GPS sensor. These GPS measurements are perturbed by additive zero-mean
Gaussian noise with covariance matrix Σγp .

Summarizing, our state and measurement model has the form

xk+1 = Adxk +Bduk + χk, (2)
yk = Cxk + γk, (3)

where χk ∼ N (0,Σχ) and γk ∼ N (0,Σγ). We assume

Σχp = 2 · 10−2 · I m2, Σχv = 4 · 10−3 · I m2

s2
, Σγp = 16 · I m2.

Specify the matrix C ∈ R2×4 such that yk ∈ R2 corresponds to the noisy GPS measurement. Also
write down the covariance matrices Σχ and Σγ . (1 point)

3. MATLAB: Write two functions

[x_predict, P_predict] = predict(x_estimate, P_estimate, A, b, W)

[x_estimate, P_estimate] = update(y, x_predict, P_predict, C, V)

that implement the prediction and update step of the Kalman filter.

Hint: See equations (9.21) to (9.24) on page 103 of the lecture notes. Here x_predict corresponds
to x[k|k−1] and x_estimate corresponds to x[k|k]. (1 point)

4. MATLAB: For the given measurement and control trajectories, y = (y0, . . . , yN) and u = (u0, . . . , uN−1),
compute the state estimates x[k|k] and state predictions x[k|k−1] where we assume an estimated initial
state x0 ∼ N (0,Σ0) where Σ0 = 10−5 · I, i.e. we assume to know the initial state almost exactly.

(1 point)

5. MATLAB: We already provided code to plot the estimated trajectory, the predicted position p[k|k−1]
and the corresponding confidence ellipsoids.
You only have to compute Σp[k|k−1]

from P[k|k−1]. (1 points)

This sheet gives in total 10 points plus 2 bonus points.

3

