
i
i

“exercise8˙solution” — 2021/1/28 — 9:17 — page 1 — #1 i
i

i
i

i
i

Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 8: Nonlinear Least Squares + Linear Kalman Filter
(Solution of Task 1)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Naya Baslan, Jakob Harzer, Doga Can Öner

Parameter estimation for output error minimization (5 points + 2 bonus points)

In this exercise we will consider the model of a differential drive robot with unicycle dynamics. The
movement of the robot depends on the angular velocities of the left and the right wheel ωL and ωR, as well
as on their radii RL and RR. Differing radii influence the behaviour of the robot.

v

x

y

β

The system can be described by a state space model with three internal states. The state vector x =
[x, y, β]> contains the position of the robot in the X − Y plane and the deviation β from its initial
orientation. The system can be controlled by the angular velocities of the wheels: u = [ωL, ωR]>. The
output of the system is the position of the robot: y = [x, y]>. The model follows as

ẋ =

 v · cos β

v · sin β
ωLRL−ωRRR

L

 y =

[
x
y

]
(1)

with L being the length of the axis between the two wheels and the velocity v being

v =
ωL ·RL + ωR ·RR

2
.

The system state is x = [x, y, β]> and is equal to the robot’s pose. The system can be controlled by the
angular velocities of the wheels: u = [ωL ωR]>. The output y is the position of the robot and measured
with a sampling time of ∆t = 0.01 s.

We already provided you some functions to simulate the position of the two-wheel-robot using the
state space model. For reference use chapter 6.2 ’Numerical Integration Methods’ from the lecture notes.
Please go through all of the provided functions and try to understand what they are doing.

• [xdot] = robot_ode(x,u,p) evaluates the right-hand side of the ODE ẋ = f(x, u, p), with
parameters p = [RL, RR, L]. Use the following values: RL = 0.2 m, RR = 0.2 m and L = 0.6 m.

• [x_next] = RK4_step(h, x0, u, ode, p) performs one RK4 integration step for a
general ODE ẋ = f(x, u, p) starting at x0, with input u, parameters p and step size h.

• [x_sim] = sim_RK4(t,x0, u, ode, p) simulates the robot’s behaviour at times t given
a set of inputs u, starting at x0 = [0 0 0]>.

1



i
i

“exercise8˙solution” — 2021/1/28 — 9:17 — page 2 — #2 i
i

i
i

i
i

In this task, we would like to estimate the dimensions of the robot θ = [RL, RR, L]> using lsqnonlin1.
Assuming that the robot system has only output errors, and that these errors are Gaussian with zero mean
and variances σ2

x = 1.6 ·10−3 m2 and σ2
y = 4 ·10−4 m2, then the Maximum Likelihood Estimation problem

to estimate θ is:

θ∗ = arg min
θ∈R3

N∑
k=0

‖yk −Mk(U,x0, θ)‖2Σ−1
y
,

where yk = (x, y)> ∈ R2 with x and y being the coordinates of the robot and N is the number of
measurements; Σy is the weighing matrix containing the variances on the x and y measurements,

Σy =

[
σ2
x 0

0 σ2
y

]
;

Mk(U,x0, θ) denotes the modeled position at timestep k for given U,x0, θ where U ∈ R(N−1)×2 is a
matrix that contains all applied control inputs u1, . . . , uN , each consisting of the angular velocity of the
left and right wheel respectively (ωL and ωR); x0 contains the robot’s initial pose x0 = [x0, y0, β0]

> =
[0, 0, 0]> which we assume to be perfectly known.

1. ON PAPER: Formulate the output model

Mk : R(N−1)×2 × R3 × R3 → R2, (U,x0, θ) 7→ ŷk

where you may use a function F : R3 × R2 × R → R3 to denote the discretized system dynamics
describing the mapping (xk, uk, θ) 7→ xk+1. (1 point)

Solution: First, we use the discretized system dynamics F to define the k-step forward simulation
Fk:

x0 = F0(x0, θ) := x0

x1 = F1(x0, u0, θ) := F (x0, u0, θ)

x2 = F2(x0, u0, u1, θ) := F (F (x0, u0, θ), u1, θ)

x3 = F3(x0, u0, u1, u2, θ) := F (F (F (x0, u0, θ), u1, θ), u2, θ)

...
xk = Fk(x0, u0, u1, u2, . . . , uk−1, θ) := F (. . . F (F (F (x0, u0, θ), u1, θ), u2, θ) . . .), uk−1, θ)

Using Fk, we can formulate the output model Mk : (U,x0, θ) 7→ ŷk as

Mk(U,x0, θ) := C · Fk(x0, u0, u1, u2, . . . , uk−1, θ)

with

C :=

[
1 0 0
0 1 0

]
.

Note that Mk depends only on u0, . . . , uk−1, but we still use U here to keep the notation simple.

1lsqnonlin takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes ‖f(θ)‖22 with respect to θ. Thus,
you have to stack the residuals obtained for different timesteps to obtain a single residual vector.

2


