RL and MPC Safety, Stability, and some more recent results

Sébastien Gros, Mario Zanon

Dept. of Cybernetic, NTNU Faculty of Information Tech.

Freiburg

Outline

- 2 Safe RL via Robust MPC
- Stability-constrained Learning with MPC
- 4 Some more results (in brief)

Outline

- 2 Safe RL via Robust MPC
- 3 Stability-constrained Learning with MPC
- 4 Some more results (in brief)

• Let us assume that we can mathematically describe "safety" as a set of safe states:

 $\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}$

イロト イポト イヨト イヨ

• Let us assume that we can mathematically describe "safety" as a set of safe states:

$$\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}$$

 Safe actions: S(s_k) is the set of action a_k for state s_k such that h(s_{k+i}) ≤ 0 can be enforced at all time in the future (i > 0)

Policy π (s) is safe if π (s) $\in \mathbb{S}$ (s) for all states s that can be visited under policy π

< ロト < 同ト < ヨト < ヨト

• Let us assume that we can mathematically describe "safety" as a set of safe states:

```
\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}
```

 Safe actions: S(s_k) is the set of action a_k for state s_k such that h(s_{k+i}) ≤ 0 can be enforced at all time in the future (i > 0)

```
Policy \pi(s) is safe if
```

```
\mathbf{\pi}\left(\mathrm{s}
ight)\in\mathbb{S}\left(\mathrm{s}
ight)
```

for all states s that can be visited under policy π

Remarks:

• S(s) is intrinsically *predictive* (looking into the future)

• Let us assume that we can mathematically describe "safety" as a set of safe states:

```
\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}
```

 Safe actions: S(s_k) is the set of action a_k for state s_k such that h(s_{k+i}) ≤ 0 can be enforced at all time in the future (i > 0)

```
Policy \pi(s) is safe if
```

```
\mathbf{\pi}\left(\mathrm{s}
ight)\in\mathbb{S}\left(\mathrm{s}
ight)
```

for all states s that can be visited under policy π

Remarks:

- S(s) is intrinsically *predictive* (looking into the future)
- Computing $\mathbb{S}(s)$ is "as hard as" Dynamic Programming

• Let us assume that we can mathematically describe "safety" as a set of safe states:

$$\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}$$

 Safe actions: S(s_k) is the set of action a_k for state s_k such that h(s_{k+i}) ≤ 0 can be enforced at all time in the future (i > 0)

```
Policy \pi(s) is safe if
```

```
\mathbf{\pi}\left(\mathrm{s}
ight)\in\mathbb{S}\left(\mathrm{s}
ight)
```

for all states s that can be visited under policy π

Remarks:

- S(s) is intrinsically *predictive* (looking into the future)
- Computing $\mathbb{S}(s)$ is "as hard as" Dynamic Programming
- Data-based $\mathbb{S}\,(s)$ (e.g. via MC sampling) requires data $\to\infty$ if safety must be ensured with probability $\to 1$

• Let us assume that we can mathematically describe "safety" as a set of safe states:

$$\mathbf{h}(\mathbf{s}_k) \leq \mathbf{0}$$

 Safe actions: S(s_k) is the set of action a_k for state s_k such that h(s_{k+i}) ≤ 0 can be enforced at all time in the future (i > 0)

```
Policy \pi(s) is safe if
```

```
\mathbf{\pi}\left(\mathrm{s}
ight)\in\mathbb{S}\left(\mathrm{s}
ight)
```

for all states s that can be visited under policy π

Remarks:

- S(s) is intrinsically *predictive* (looking into the future)
- Computing $\mathbb{S}(s)$ is "as hard as" Dynamic Programming
- Data-based $\mathbb{S}\,(s)$ (e.g. via MC sampling) requires data $\to\infty$ if safety must be ensured with probability $\to 1$
- Achieving π (s) \in S(s) using generic function approximations (e.g. DNN) and sampling can be challenging

イロト イポト イヨト イヨト

Approximate Q^* using a parametric NLP

$$\begin{aligned} Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) &= \min_{\mathbf{w}} \quad \Phi_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &= 0 \\ \mathbf{h}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &\leq 0 \end{aligned}$$

where

- current state & action s, a
- parameters θ (to be adjusted by RL)
- "auxiliary variables" w

NLP can be an MPC scheme but not necessarily

Approximate Q^* using a parametric NLP

$$\begin{aligned} Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) &= \min_{\mathbf{w}} \quad \Phi_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &= 0 \\ \mathbf{h}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &\leq 0 \end{aligned}$$

where

- current state & action s, a
- parameters θ (to be adjusted by RL)
- "auxiliary variables" w

Then

$$\begin{aligned} V_{\theta}\left(s\right) &= \min_{\mathbf{w}, \mathbf{a}} \quad \Phi_{\theta}\left(\mathbf{w}, \mathbf{s}, \mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w}, \mathbf{s}, \mathbf{a}\right) &= 0 \\ \mathbf{h}_{\theta}\left(\mathbf{w}, \mathbf{s}, \mathbf{a}\right) &\leq 0 \end{aligned}$$

NLP can be an MPC scheme but not necessarily

Approximate Q^* using a parametric NLP

$$\begin{aligned} Q_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right) &= \min_{\mathbf{w}} \quad \Phi_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &= 0 \\ \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &\leq 0 \end{aligned}$$

where

- current state & action s, a
- parameters θ (to be adjusted by RL)
- "auxiliary variables" w

Then

$$\begin{split} V_{\theta}\left(\mathbf{s}\right) &= \min_{\mathbf{w},\mathbf{a}} \quad \Phi_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &= \mathbf{0} \\ \mathbf{h}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &\leq \mathbf{0} \end{split}$$

$$\begin{split} \mathbf{w}^{\star}\left(s\right), \mathbf{a}^{\star}\left(s\right) &= \underset{\mathbf{w}, \mathbf{a}}{\arg\min} \quad \Phi_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) \\ &\text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) = \mathbf{0} \\ &\mathbf{h}_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) \leq \mathbf{0} \end{split}$$
and $\pi_{\theta}\left(s\right) &= \mathbf{a}^{\star}\left(s\right)$

NLP can be an MPC scheme but not necessarily

Approximate Q^* using a parametric NLP

$$\begin{aligned} Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) &= \min_{\mathbf{w}} \quad \Phi_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &= 0 \\ \mathbf{h}_{\theta}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) &\leq 0 \end{aligned}$$

where

- ${\ensuremath{\, \circ \,}}$ current state & action s, a
- parameters θ (to be adjusted by RL)
- "auxiliary variables" w

NLP can be an MPC scheme but not necessarily

Remarks:

- NLP can represent any function, hence this form is generic
- Can think of this as a "generalization" of RL-MPC
- Constrains can "naturally" block unsafe actions

Then

$$\begin{split} V_{\theta}\left(s\right) &= \min_{\mathbf{w}, \mathbf{a}} \quad \Phi_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) \\ \text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) &= \mathbf{0} \\ \mathbf{h}_{\theta}\left(\mathbf{w}, s, \mathbf{a}\right) &\leq \mathbf{0} \end{split}$$

$$\begin{split} \mathbf{w}^{\star}\left(s\right), \mathbf{a}^{\star}\left(s\right) &= \mathop{arg\,min}_{\mathbf{w},\mathbf{a}} \quad \Phi_{\theta}\left(\mathbf{w},s,\mathbf{a}\right) \\ &\text{s.t.} \quad \mathbf{g}_{\theta}\left(\mathbf{w},s,\mathbf{a}\right) = \mathbf{0} \\ &\mathbf{h}_{\theta}\left(\mathbf{w},s,\mathbf{a}\right) \leq \mathbf{0} \end{split}$$

and $\pi_{\theta}\left(s\right) &= \mathbf{a}^{\star}\left(s\right)$

 RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe set $\mathbb{S}(s)$ is somehow known, then we can

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$\pi_{\theta}^{\perp}(\mathbf{s}) = \arg\min_{\mathbf{a}} \quad \|\mathbf{a} - \pi_{\theta}(\mathbf{s})\|^{2}$$
 s.t. $\mathbf{a} \in \mathbb{S}(\mathbf{s})$

...though other norms or penalties than $\|.\|^2$ could be used

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$\pi_{\theta}^{\perp}(\mathbf{s}) = \arg\min_{\mathbf{a}} \quad \|\mathbf{a} - \pi_{\theta}(\mathbf{s})\|^{2}$$

s.t. $\mathbf{a} \in \mathbb{S}(\mathbf{s})$

...though other norms or penalties than $\|.\|^2$ could be used

Is that a good idea?

S. Gros, M. Zanon (NTNU)

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$egin{aligned} \pi^{\perp}_{m{ heta}}\left(\mathrm{s}
ight) &= rg\min_{\mathrm{a}} & \left\|\mathrm{a}-\pi_{m{ heta}}\left(\mathrm{s}
ight)
ight\|^{2} \ \mathrm{s.t.} & \mathrm{a}\in\mathbb{S}\left(\mathrm{s}
ight) \end{aligned}$$

...though other norms or penalties than $\|.\|^2$ could be used

Is that a good idea? It depends...

S. Gros, M. Zanon (NTNU)

MPC & RL

Q learning: $Q_{\theta} \approx Q^*$ learned via classic RL, ignoring safety.

イロト イポト イヨト イヨ

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then

$$\begin{array}{ll} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \left\|\mathbf{a} - \pi_{\theta}\left(s\right)\right\|^{2} \\ \text{s.t.} & \mathbf{a} \in \mathbb{S}\left(s\right) & \text{where} & \pi_{\theta}\left(s\right) = \arg\min \, \mathcal{Q}_{\theta}\left(s,\mathbf{a}\right) \end{array}$$

Q learning: $Q_{\theta} \approx Q^*$ learned via classic RL, ignoring safety. Then

 $\begin{array}{ll} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \left\|\mathbf{a} - \pi_{\theta}\left(s\right)\right\|^{2} & \\ & \text{s.t.} & \mathbf{a} \in \mathbb{S}\left(s\right) & \\ & & \text{yields suboptimal policy } \pi_{\theta}^{\perp} \end{array}$

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta} (s) = \arg \min_{a} \quad Q_{\theta} (s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta} (s) = \arg \min_{a} \quad Q_{\theta} (s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): the "regular expression"

$$\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$$

yields incorrect gradients

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta} (s) = \arg \min_{a} \quad Q_{\theta} (s, a)$ s.t. $a \in \mathbb{S} (s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): make sure to evaluate the gradient using

$$\nabla_{\theta} J\left(\pi_{\theta}^{\perp}\right) = \mathbb{E}\left[\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{\mathbf{a}} A_{\pi_{\theta}^{\perp}}\right] \qquad \text{where} \qquad \begin{array}{c} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \|\mathbf{a} - \pi_{\theta}\left(s\right)\|^{2} \\ & \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(s\right) \end{array}$$

i.e. account for projection (differentiate NLP). Provably correct gradients.

イロト イポト イヨト イヨト

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta} (s) = \arg \min_{a} \quad Q_{\theta} (s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): make sure to evaluate the gradient using

$$\nabla_{\theta} J\left(\pi_{\theta}^{\perp}\right) = \mathbb{E}\left[\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{\mathbf{a}} A_{\pi_{\theta}^{\perp}}\right] \qquad \text{where} \qquad \begin{array}{c} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \|\mathbf{a} - \pi_{\theta}\left(s\right)\|^{2} \\ & \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(s\right) \end{array}$$

i.e. account for projection (differentiate NLP). Provably correct gradients.

Stochastic policy gradient: where π_{θ} is a probability density over the actions

$$\nabla_{\boldsymbol{\theta}} J\left(\pi_{\boldsymbol{\theta}}^{\perp}\right) = \mathbb{E}\left[\log \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{a}} A_{\pi_{\boldsymbol{\theta}}^{\perp}}\right]$$

i.e. do not account for projection (cannot). Provably correct gradients.

S. Gros, M. Zanon (NTNU)

イロト イポト イヨト イヨト

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta} (s) = \arg \min_{a} \quad Q_{\theta} (s, a)$ s.t. $a \in \mathbb{S} (s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): make sure to evaluate the gradient using

$$\nabla_{\theta} J\left(\pi_{\theta}^{\perp}\right) = \mathbb{E}\left[\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{\mathbf{a}} A_{\pi_{\theta}^{\perp}}\right] \qquad \text{where} \qquad \begin{array}{c} \pi_{\theta}^{\perp}\left(\mathbf{s}\right) = \arg\min_{\mathbf{a}} & \|\mathbf{a} - \pi_{\theta}\left(\mathbf{s}\right)\|^{2} \\ \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(\mathbf{s}\right) \end{array}$$

i.e. account for projection (differentiate NLP). Provably correct gradients.

Safe Reinforcement Learning via projection on a safe set: how to achieve optimality? S. Gros, M. Zanon, A. Bemporad, IFAC 2020

イロト 不得 トイラト イラト 一日

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

< A

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}(\mathbf{s})$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}(s)$?

• Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
ight)+\mathrm{d}$ is a poor idea...

• NLP-based policy: "disturb" the cost function instead! (different options)

```
Safe policy given by \pi_{\theta}(s) = a_{0}^{\star}(s) with
```

min _{w,a}	$\Phi_{\boldsymbol{ heta}}\left(\mathbf{w},\mathbf{s},\mathbf{a} ight)$
s.t.	$\mathbf{g}_{\boldsymbol{ heta}}\left(\mathbf{w},\mathbf{s},\mathbf{a} ight)=0$
	$\mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \leq 0$

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}\left(s
ight)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Safe policy with exploration: $\pi^{\mathrm{e}}_{m{ heta}}$ given by

$$\begin{split} \min_{\mathbf{w},\mathbf{a}} & \Phi_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) - \mathbf{d}^{\top}\mathbf{a} \\ \text{s.t.} & \mathbf{g}_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) = \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{w},\mathbf{s},\mathbf{a}\right) \leq \mathbf{0} \end{split}$$

satisfies the constraints by construction

Learning requires exploration. E.g. apply $a = \pi_{\theta} (s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}\left(s
ight)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

・ 回 ト ・ ヨ ト ・ ヨ ト

Learning requires exploration. E.g. apply $a = \pi_{\theta} (s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}(s)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

・ 同 ト ・ ヨ ト ・ ヨ

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}\left(s
ight)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

(4) (日本)

Learning requires exploration. E.g. apply $a = \pi_{\theta} (s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}\left(s
ight)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Safe policy with exploration:
$$m{\pi}^{ ext{e}}_{m{ heta}} = \mathbf{a}^{\star}_{0}$$
:

$$\min_{\mathbf{s},\mathbf{a}} \quad T(\mathbf{s}_N) - \mathbf{d}^{\top} \mathbf{a}_0 + \sum_{k=0}^{N-1} L(\mathbf{s}_k, \mathbf{a}_k)$$
s.t. $\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{a}_k)$

$$\mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right)\leq\mathbf{0},\quad\mathbf{s}_{N}\in\mathbb{T}$$

satisfies the constraints by construction

Remarks:

- Exploration $\mathbf{e} = \pi_{\theta}^{\mathrm{e}} \pi_{\theta}$ is not centred-isotopric
- Can create some technical issues with actor-critic methods (linear compatible A_{πθ}), biased policy gradient estimation
- Bias seems not necessarily large in practice

Learning requires exploration. E.g. apply $a = \pi_{\theta} (s) + d$ to the real system where d is a "disturbance"

Explore while keeping $\mathbf{a} \in \mathbb{S}\left(s
ight)$?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Safe policy with exploration:
$$\boldsymbol{\pi}^{\mathrm{e}}_{\boldsymbol{ heta}} = \mathbf{a}^{\star}_{0}$$
:

$$\min_{\mathbf{s},\mathbf{a}} \quad T(\mathbf{s}_N) - \mathbf{d}^\top \mathbf{a}_0 + \sum_{k=0}^{N-1} L(\mathbf{s}_k, \mathbf{a}_k)$$
s.t. $\mathbf{s}_{k+1} = \mathbf{f}(\mathbf{s}_k, \mathbf{a}_k)$

$$\mathbf{h} \left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T}$$

satisfies the constraints by construction

Remarks:

- Exploration $e = \pi_{\theta}^{e} \pi_{\theta}$ is not centred-isotopric
- Can create some technical issues with actor-critic methods (linear compatible A_{πθ}), biased policy gradient estimation
- Bias seems not necessarily large in practice

Bias Correction in Reinforcement Learning via the Deterministic Policy Gradient Method for MPC-Based Policies, S. Gros, M. Zanon, ACC 2021

Bias Correction in Deterministic Policy Gradient Using Robust MPC, A. Kordabad, S. Gros ECC 2021

Outline

- 2 Safe RL via Robust MPC
 - 3 Stability-constrained Learning with MPC
 - 4 Some more results (in brief)

$\begin{array}{ll} \mbox{True system:} & s_{+} \sim \mathbb{P}\left[\,\cdot\,|s,a\,\right] \\ \mbox{Deterministic model:} & \hat{s}_{+} = f_{\boldsymbol{\theta}}\left(s,a\right) \end{array}$

イロト イポト イヨト イヨト

$$\begin{array}{ll} \mbox{True system:} & \mathbf{s}_{+} \sim \mathbb{P}\left[\cdot | \mathbf{s}, \mathbf{a} \right] \\ \mbox{Deterministic model:} & \hat{\mathbf{s}}_{+} = \mathbf{f}_{\theta} \ \overline{(\mathbf{s}, \mathbf{a})} \\ \end{array}$$

$$\mathbf{s}_{+}\in\mathbf{f}_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)+\mathbb{W}_{oldsymbol{ heta}}$$
 (1

with probability 1

 $\mathbb{P}\left[\cdot\right|$

• • • • • • • • • •

-

$$\begin{array}{ll} \mbox{True system:} & s_+ \sim \mathbb{P}\left[\,\cdot\,|s,a\,\right] \\ \mbox{Deterministic model:} & \hat{s}_+ = f_{\overline{\theta}} \, \overline{(s,a)} \end{array}$$

 $\begin{array}{l} \mbox{Dispersion: } \mathbf{f}\left(s,\mathbf{a}\right) + \mathbb{W}_{\boldsymbol{\theta}} \mbox{ contains the support of } \\ \mathbb{P}\left[\,\cdot\,|s,\mathbf{a}\,], \mbox{ i.e.} \end{array} \right.$

$$\mathbf{s}_{+}\in\mathbf{f}_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)+\mathbb{W}_{oldsymbol{ heta}}$$
 (1)

with probability 1

Remarks:

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 is not possible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

$$\begin{array}{ll} \mathsf{True \ system:} & \mathbf{s}_+ \sim \mathbb{P}\left[\,\cdot\, |\mathbf{s},\mathbf{a}\, \right] \\ \mathsf{Deterministic \ model:} & \hat{\mathbf{s}}_+ = \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right) \end{array}$$

Dispersion: $f(s, a) + W_{\theta}$ contains the support of $\mathbb{P}[\cdot | s, a]$, i.e.

 $\mathbf{s}_{+}\in\mathbf{f}_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)+\mathbb{W}_{oldsymbol{ heta}}$

with probability 1

Remarks:

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 is not possible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

(1) Condition

$$\mathbf{s}_{+} - \mathbf{f}_{\theta} (\mathbf{s}, \mathbf{a}) \in \mathbb{W}_{\theta}$$

for all observed triplets $(\mathbf{s}, \mathbf{a}, \mathbf{s}_{+})$
 \rightarrow constraints on θ

$$\begin{array}{ll} \mathsf{True \ system:} & \mathbf{s}_+ \sim \mathbb{P}\left[\,\cdot\,|\mathbf{s},\mathbf{a}\,\right] \\ \mathsf{Deterministic \ model:} & \hat{\mathbf{s}}_+ = \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right) \end{array}$$

 $\begin{array}{l} \mbox{Dispersion: } \mathbf{f}\left(s,\mathbf{a}\right) + \mathbb{W}_{\boldsymbol{\theta}} \mbox{ contains the support of } \\ \mathbb{P}\left[\,\cdot\,|s,\mathbf{a}\,], \mbox{ i.e.} \end{array} \right.$

 $\mathbf{s}_{+}\in\mathbf{f}_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)+\mathbb{W}_{oldsymbol{ heta}}$

with probability 1

Remarks:

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 is not possible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

1) Condition

$$\mathbf{s}_{+} - \mathbf{f}_{\theta} (\mathbf{s}, \mathbf{a}) \in \mathbb{W}_{\theta}$$

for all observed triplets $(\mathbf{s}, \mathbf{a}, \mathbf{s}_{+})$
 \rightarrow constraints on θ

Containing the model-system mismatch becomes constraints in the parameters θ . Constraints can be readily formulated in terms of data.

(日)

S. Gros, M. Zanon (NTNU)

MPC & RI

August 2021 10 / 24

Robust (N)MPC delivers policy $\pi_{\theta}(x_0) = u_0^{\star}$ from

$$\begin{aligned} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} T_{\boldsymbol{\theta}}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ &\text{s.t.} \ \mathbf{u}_{0, \dots, N} \in \mathbb{U} \end{aligned}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \ \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \ \mathcal{T}_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \ \mathbf{u}_{0, \dots, N} \in \mathbb{U} \\ &\mathbf{x}_{1, \dots, N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$
- $\mathbf{x}_{1,...,N-1}$ ($\mathbf{u}, \mathbf{x}_0, \boldsymbol{\theta}, \mathbf{w}$) are the trajectories subject to \mathbf{w}
- X is the "safe" set where the state should be at all time

Robust (N)MPC delivers policy $\pi_{\theta}(\mathrm{x}_0) = \mathrm{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\boldsymbol{\theta}}$
- $\mathbf{x}_{1,...,N-1}$ ($\mathbf{u}, \mathbf{x}_0, \boldsymbol{\theta}, \mathbf{w}$) are the trajectories subject to \mathbf{w}
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)

Robust (N)MPC delivers policy $\pi_{m{ heta}}(x_0) = \mathbf{u}_0^\star$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- **x**_{0,...,N} is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\boldsymbol{\theta}}$
- $\mathbf{x}_{1,...,N-1}$ ($\mathbf{u}, \mathbf{x}_0, \boldsymbol{\theta}, \mathbf{w}$) are the trajectories subject to \mathbf{w}
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC is safe

Robust (N)MPC delivers policy $\pi_{m{ heta}}(x_0) = \mathbf{u}_0^\star$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbf{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\boldsymbol{\theta}}$
- $\mathbf{x}_{1,...,N-1}$ $(\mathbf{u}, \mathbf{x}_0, \boldsymbol{\theta}, \mathbf{w})$ are the trajectories subject to \mathbf{w}
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC is safe

Closed-loop stability under some conditions on θ (not trivial), need $\gamma = 1$ (for now)

Image: A matrix

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats a worst-case scenario, required for stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\boldsymbol{\theta}}$
- $\mathbf{x}_{1,...,N-1}$ ($\mathbf{u}, \mathbf{x}_0, \boldsymbol{\theta}, \mathbf{w}$) are the trajectories subject to \mathbf{w}
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC is safe

Closed-loop stability under some conditions on θ (not trivial), need $\gamma = 1$ (for now)

Image: A matrix

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E}\left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}\right]$

adjusts θ for performance

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

▲ □ ▶ ▲ □ ▶ ▲ □

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID
 Safe RL?

Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

< 回 > < 回 > < 回

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID
 Safe RL?

Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$ Also reads as:

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ $\Delta \boldsymbol{\theta} = \arg \min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \|\Delta \boldsymbol{\theta}\|^2 + \nabla_{\boldsymbol{\theta}} J^{\top} \Delta \boldsymbol{\theta}$

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Policy gradient	Condition
$ abla_{oldsymbol{ heta}} J = \mathbb{E}\left[abla_{oldsymbol{ heta}} \pi_{oldsymbol{ heta}} abla_{\mathbf{u}} A_{oldsymbol{\pi}_{oldsymbol{ heta}}} ight]$	$\mathbf{s}_{+}-\mathbf{f}\left(\mathbf{s},\mathbf{a},oldsymbol{ heta} ight)\in\mathbb{W}_{oldsymbol{ heta}}$
adjusts $ heta$ for performance	enforces safety through $oldsymbol{ heta}$
 No clear connection to SYSID 	• Can be interpreted as a form of
 Sometimes does opposite of SYSID Safe 	SYSID (see set-membership) RL?
Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \boldsymbol{J}$	Safe RL steps $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$:
Also reads as:	$\Delta \theta = \arg \min \frac{1}{2} \ \Delta \theta\ ^2 + \nabla \alpha I^{\top} \Delta \theta$
$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$	$\Delta \theta = \alpha g \lim_{\Delta \theta} 2\alpha g \lim_{\Delta \theta$
$\Delta \boldsymbol{\theta} = \arg\min \frac{1}{2} \ \Delta \boldsymbol{\theta}\ ^2 + \nabla_{\boldsymbol{\theta}} \boldsymbol{J}^{\top} \Delta \boldsymbol{\theta}$	s.t. $\mathbf{s}_{+} - \mathbf{f} (\mathbf{s}, \mathbf{a}, \boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \in \mathbb{W}_{\boldsymbol{\theta} + \Delta \boldsymbol{\theta}}$
$\Delta \theta 2\alpha$	v (s, a, s+) in data set

Image: A match the second s

Policy gradient	Condition	
$ abla_{oldsymbol{ heta}} J = \mathbb{E}\left[abla_{oldsymbol{ heta}} \pi_{oldsymbol{ heta}} abla_{\mathbf{u}} \mathcal{A}_{\mathbf{u}_{oldsymbol{ heta}}} ight]$	$\mathbf{s}_{+}-\mathbf{f}\left(\mathbf{s},\mathbf{a},oldsymbol{ heta} ight)\in\mathbb{W}_{oldsymbol{ heta}}$	
adjusts $ heta$ for performance	enforces safety through $oldsymbol{ heta}$	
No clear connection to SYSID	• Can be interpreted as a form of	
 Sometimes does opposite of SYSID 	SYSID (see set-membership)	
Safe RL?		
Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$	Safe RL steps $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$:	
Also reads as:	$\Delta \theta = \operatorname{and} \operatorname{res}^{1} \ \Delta \theta \ ^{2} + \nabla t^{\top} \Delta \theta$	
$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$	$\Delta \theta = \arg \min_{\Delta \theta} \frac{1}{2\alpha} \ \Delta \theta\ + \nabla_{\theta} J \ \Delta \theta$	
$\Delta \rho = \frac{1}{2} \ \Delta \rho \ ^2 + \nabla t^{\top} \Delta \rho$	$\text{s.t. } \mathbf{s}_{+} - \mathbf{f} \left(\mathbf{s}, \mathbf{a}, \boldsymbol{\theta} + \Delta \boldsymbol{\theta} \right) \in \mathbb{W}_{\boldsymbol{\theta} + \Delta \boldsymbol{\theta}}$	
$\Delta \theta = \arg \min_{\Delta \theta} \frac{1}{2\alpha} \ \Delta \theta\ + \nabla_{\theta} J \ \Delta \theta$	$orall \left({{ m{s}},{ m{a}},{ m{s}}_+ } ight)$ in data set	

Safe RL steps seek performance under safety constraints

Policy gradient	Condition	
$ abla_{oldsymbol{ heta}} J = \mathbb{E}\left[abla_{oldsymbol{ heta}} \pi_{oldsymbol{ heta}} abla_{\mathbf{u}} A_{oldsymbol{\pi}_{oldsymbol{ heta}}} ight]$	$\mathbf{s}_{+}-\mathbf{f}\left(\mathbf{s},\mathbf{a},oldsymbol{ heta} ight)\in\mathbb{W}_{oldsymbol{ heta}}$	
adjusts $oldsymbol{ heta}$ for performance	enforces safety through $oldsymbol{ heta}$	
No clear connection to SYSID	• Can be interpreted as a form of	
 Sometimes does opposite of SYSID 	SYSID (see set-membership)	
Safe RL?		
Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$	Safe RL steps $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$:	
Also reads as:	$\Delta \boldsymbol{\theta} = \arg \min \frac{1}{2} \ \Delta \boldsymbol{\theta} \ ^2 + \nabla \boldsymbol{\theta} \boldsymbol{I}^\top \Delta \boldsymbol{\theta}$	
$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$	$ \Delta \theta 2\alpha = 0 $	
$\Delta \boldsymbol{\theta} = \arg\min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \ \Delta \boldsymbol{\theta} \ ^2 + \nabla_{\boldsymbol{\theta}} J^\top \Delta \boldsymbol{\theta}$	s.t. $\mathbf{s}_{+} - \mathbf{f}(\mathbf{s}, \mathbf{a}, \boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \in \mathbb{W}_{\boldsymbol{\theta} + \Delta \boldsymbol{\theta}}$ $\forall (\mathbf{s}, \mathbf{a}, \mathbf{s}_{+}) \text{ in data set}$	

Safe RL steps seek performance under safety constraints

Safe Reinforcement Learning Using Robust MPC, Transaction on Automatic Control, 2020 Safe Reinforcement Learning with Stability & Safety Guarantees Using Robust MPC, S.Gros, M. Zanon, Automatica 2021 Outline

1 Safe RL via MPC

- 2 Safe RL via Robust MPC
- Stability-constrained Learning with MPC

4 Some more results (in brief)

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s}, \mathbf{a}} \quad \mathcal{T} \left(\mathbf{s}_{N} \right) + \sum_{k=0}^{N-1} \mathcal{L} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \quad \mathbf{h} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Equivalent MPC

$$\begin{split} \min_{\mathbf{s},\mathbf{a}} & -\lambda\left(\mathbf{s}_{0}\right) + \tilde{\mathcal{T}}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \tilde{\mathcal{L}}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{split}$$
where $\tilde{\mathcal{L}}\left(\mathbf{s},\mathbf{a}\right) \geq \kappa\left(\|\mathbf{s}-\mathbf{s}_{s}\|\right), \quad \forall \mathbf{s}, \mathbf{a}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s}, \mathbf{a}} \quad \mathcal{T} \left(\mathbf{s}_{N} \right) + \sum_{k=0}^{N-1} \mathcal{L} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \quad \mathbf{h} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Equivalent MPC

$$\begin{split} \min_{\mathbf{s},\mathbf{a}} & -\lambda\left(\mathbf{s}_{0}\right) + \tilde{\mathcal{T}}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \tilde{\mathcal{L}}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{split}$$
where $\tilde{\mathcal{L}}\left(\mathbf{s},\mathbf{a}\right) \geq \kappa\left(\left\|\mathbf{s}-\mathbf{s}_{s}\right\|\right), \quad \forall \, \mathbf{s}, \mathbf{a}$

If for some K_{∞} function κ ("bowl-shaped"):

$$L(\mathbf{s}, \mathbf{a}) \geq \kappa \left(\|\mathbf{s} - \mathbf{s}_{\mathbf{s}}\|
ight), \quad \forall \, \mathbf{s}, \mathbf{a} \in \mathbb{R}$$

holds, then MPC scheme is stabilizing

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} \quad \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Equivalent MPC

$$\begin{array}{l} \underset{\mathbf{s},\mathbf{a}}{\min} \quad -\lambda\left(\mathbf{s}_{0}\right) + \tilde{\mathcal{T}}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \tilde{\mathcal{L}}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \\ \text{where } \tilde{\mathcal{L}}\left(\mathbf{s},\mathbf{a}\right) \geq \kappa\left(\|\mathbf{s}-\mathbf{s}_{s}\|\right), \quad \forall \, \mathbf{s}, \mathbf{a} \end{array}$$

For generic *L* (economic), if there is λ such that $\tilde{L}(\mathbf{s}, \mathbf{a}) = L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(\|\mathbf{s} - \mathbf{s}_{\mathbf{s}}\|), \quad \forall \mathbf{s}, \mathbf{a}$ then MPC scheme is stabilizing

Remarks:

- No discount $\gamma = 1$
- Exact model, deterministic

イロト 不得下 イヨト イヨト 二日

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} \quad \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Equivalent MPC

$$\begin{split} \min_{\mathbf{s},\mathbf{a}} & -\lambda\left(\mathbf{s}_{0}\right) + \tilde{\mathcal{T}}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \tilde{\mathcal{L}}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \\ & \mathbf{h}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{split}$$
where $\tilde{\mathcal{L}}\left(\mathbf{s}, \mathbf{a}\right) \geq \kappa\left(\|\mathbf{s} - \mathbf{s}_{s}\|\right), \quad \forall \mathbf{s}, \mathbf{a}$

For generic *L* (economic), if there is λ such that $\tilde{L}(\mathbf{s}, \mathbf{a}) = L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(\|\mathbf{s} - \mathbf{s}_{\mathbf{s}}\|), \quad \forall \mathbf{s}, \mathbf{a}$ then MPC scheme is stabilizing

Remarks:

- No discount $\gamma = 1$
- Exact model, deterministic

Theory does not apply to MDPs Can we extend to $\gamma < 1$ and stochastic dynamics?

 $\begin{array}{l} \textbf{Policy} \ \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s}, \mathbf{a}} \quad \gamma^{N} \mathcal{T} \left(\mathbf{s}_{N} \right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \\ \quad \mathbf{h} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \gamma^{k} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}\left(\mathbf{s}_{k}\right)$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k} \right]$

イロト イ団ト イヨト イヨト 二日

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} \quad \gamma^{N} \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\pi} \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$$
where $\mathbf{a}_{k} = \pi(\mathbf{s}_{k})$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P} \left[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k} \right]$

Discounted Strict Dissipativity:

$$L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \gamma \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \geq \kappa(\|\mathbf{s} - \mathbf{s}_{\mathrm{s}}\|)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s}, \mathbf{a}} \quad \gamma^{N} \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}(\mathbf{s}_{k})$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P} \left[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k} \right]$

Strong Discounted Strict Dissipativity:

$$egin{aligned} \mathcal{L}(\mathbf{s},\mathbf{a}) + \lambda(\mathbf{s}) - \gamma\lambda(\mathbf{f}(\mathbf{s},\mathbf{a})) &\geq \kappa(\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}\|) \ \mathcal{L}(\mathbf{s},\mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s},\mathbf{a})) + (\gamma-1)V_{\star}^{\gamma}(\mathbf{f}(\mathbf{s},\mathbf{a})) &\geq \kappa(\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}\|) \end{aligned}$$

where V_{\star}^{γ} is the discounted value function of the problem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{l} \textbf{Policy} \ \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{s,a} \quad \gamma^{N} \mathcal{T}\left(s_{N}\right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L}\left(s_{k}, \mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(s_{k}, \mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(s_{k}, \mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \gamma^{k} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}\left(\mathbf{s}_{k}\right)$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot \mid \mathbf{s}_{k}, \mathbf{a}_{k}\right]$

• Classic dissipativity does not readily extend to stochastic systems. E.g.

$$\mathbb{E}\left[\mathsf{L}(\mathbf{s},\mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s},\mathbf{a})) \geq \kappa(\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}\|) \right]$$

does not work ...

• Lyapunov arguments do not readily apply to stochastic systems. Why?

- The classic notion of "steady-state" fails because of the stochasticity
- Decreasing Lyapunov function does not exist. E.g. for any V convex:

$$\mathbf{s}_{+} \sim \mathcal{N}\left(\mathbf{s}, \Sigma
ight), \qquad \mathbb{E}\left[\left.V\left(\mathbf{s}_{+}
ight) \mid \mathbf{s}
ight] \geq V\left(\mathbf{s}
ight)$$

What to do? Work on the state density rather than the state itself!

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} \quad \gamma^{N} \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}(\mathbf{s}_{k})$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P}[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k}]$

Functional dissipativity: if there is a functional λ such that:

$$\mathcal{L}\left[
ho,oldsymbol{\pi}
ight] - \lambda\left[
ho
ight] + \lambda\left[
ho
ight] \geq \kappa\left(\mathcal{D}\left(
ho\left|\left|\,
ho^{\mathrm{s}}
ight)
ight), \qquad \mathrm{s}\sim
ho, \,\, \mathrm{s}_{+}\sim
ho_{+}$$

then the state distribution ρ converges to $\rho^{\rm s}$

イロト 不得 トイラト イラト 一日

where

- \mathcal{L} is the problem cost functional, e.g. $\mathcal{L} = \mathbb{E} \left[L(\mathbf{s}, \mathbf{a}) \right]$
- $D(\cdot || \cdot)$ is a dissimilarity measure, e.g. Kullback-Liebler Divergence

 $\begin{array}{l} \textbf{Policy } \pi_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} \quad \gamma^{N} \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \gamma^{k} \mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq \mathbf{0}, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}(\mathbf{s}_{k})$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P}[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k}]$

Functional dissipativity: if there is a functional λ such that:

$$\mathcal{L}\left[
ho,oldsymbol{\pi}
ight] - \lambda\left[
ho
ight] + \lambda\left[
ho
ight] \geq \kappa\left(\mathcal{D}\left(
ho\left|\left|\,
ho^{\mathrm{s}}
ight)
ight), \qquad \mathrm{s}\sim
ho, \,\, \mathrm{s}_{+}\sim
ho_{+}$$

then the state distribution ρ converges to $\rho^{\rm s}$

イロト 不得 トイラト イラト 一日

where

- \mathcal{L} is the problem cost functional, e.g. $\mathcal{L} = \mathbb{E} \left[L(\mathbf{s}, \mathbf{a}) \right]$
- $D(\cdot || \cdot)$ is a dissimilarity measure, e.g. Kullback-Liebler Divergence

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\boldsymbol{\pi}_{\boldsymbol{ heta}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

Image: A matching of the second se

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\boldsymbol{\pi}_{\boldsymbol{\theta}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \ \text{from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + T_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\pi_{\theta}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

- Perform undiscounted RL
- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\mathbf{s},\mathbf{a}$

throughout the learning

- L_{θ} different than L (stability)
- Term -λ_θ (s₀) is required for MPC to yield the correct Q, V functions

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \text{ from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + T_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\boldsymbol{\pi}_{oldsymbol{ heta}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

- Perform undiscounted RL
- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\,\mathbf{s},\mathbf{a}$

throughout the learning

- L_{θ} different than L (stability)
- Term -λ_θ (s₀) is required for MPC to yield the correct Q, V functions

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\boldsymbol{\theta}} \text{ from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\boldsymbol{\theta}}\left(\mathbf{s}_{0}\right) + \mathcal{T}_{\boldsymbol{\theta}}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\boldsymbol{\theta}}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Theorem: for a "rich" parametrization:

- $\pi_{ heta} o \pi_{\star}$ if π_{\star} is stabilizing[†]
- $\pi_{ heta}
 ightarrow$ best stabilizing[†] policy otherwise

< 日 > < 同 > < 回 > < 回 > < 回 > <

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\boldsymbol{\pi}_{oldsymbol{ heta}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

- Perform undiscounted RL
- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\,\mathbf{s},\mathbf{a}$

throughout the learning

- L_{θ} different than L (stability)
- Term -λ_θ (s₀) is required for MPC to yield the correct Q, V functions

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \ \text{from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + T_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Theorem: for a "rich" parametrization:

- $\pi_ heta o \pi_\star$ if π_\star is stabilizing[†]
- $\pi_{ heta}
 ightarrow$ best stabilizing[†] policy otherwise
- [†]We are talking about nominal stability here...

イロト イボト イヨト イヨト

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\boldsymbol{\pi}_{\boldsymbol{ heta}}) = \sum_{k=0}^{\infty} \boldsymbol{L}(\mathbf{s}_k, \mathbf{a}_k)$$

Constraint

$$L_{oldsymbol{ heta}}\left({{
m{s}},{
m{a}}}
ight) \ge \kappa \left({\left\| {{
m{s}} - {{
m{s}}_{
m{s}}}}
ight\|}
ight), \quad orall {
m{s}}$$

is semi-infinite programming... not trivial

Some solutions:

- Sum-of-Squares (SOS) prog.
- Convex representation of L_{θ}
- Something else?

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \ \text{from MPC} \\ \min_{\mathbf{s},\mathbf{a}} \quad -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + \mathcal{T}_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Theorem: for a "rich" parametrization:

- $\pi_ heta o \pi_\star$ if π_\star is stabilizing[†]
- $\pi_{ heta}
 ightarrow$ best stabilizing[†] policy otherwise
- [†]We are talking about nominal stability here...

Change of philosophy from "classic" dissipativity theory. Stable design rather than stability analysis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Stability-constrained Learning-based MPC

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\pi_{\theta}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

Extension to stable policy for MDPs?

- Build argument from robust MPC? Weak results...
- Hopefully the new dissipativity theory will help us!

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \text{ from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + T_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} L_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Theorem: for a "rich" parametrization:

- $\pi_{ heta} o \pi_{\star}$ if π_{\star} is stabilizing[†]
- $\pi_{ heta}
 ightarrow$ best stabilizing[†] policy otherwise
- [†]We are talking about nominal stability here...

Change of philosophy from "classic" dissipativity theory. Stable design rather than stability analysis.

イロト 不得 トイラト イラト 一日

Stability-constrained Learning-based MPC

Goal: given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a **stable policy** π_{θ} minimizing:

$$J(\pi_{m{ heta}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$$

Extension to stable policy for MDPs?

- Build argument from robust MPC? Weak results...
- Hopefully the new dissipativity theory will help us!

 $\begin{array}{l} \textbf{Parametrized policy } \pi_{\theta} \ \text{from MPC} \\ \min_{\mathbf{s},\mathbf{a}} & -\lambda_{\theta}\left(\mathbf{s}_{0}\right) + T_{\theta}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{s}_{N} \in \mathbb{T} \end{array}$

Theorem: for a "rich" parametrization:

- $\pi_ heta o \pi_\star$ if π_\star is stabilizing[†]
- $\pi_{ heta}
 ightarrow$ best stabilizing[†] policy otherwise
- [†]We are talking about nominal stability here...

Change of philosophy from "classic" dissipativity theory. Stable design rather than stability analysis.

MPC & RI

Outline

- **1** Safe RL via MPC
- 2 Safe RL via Robust MPC
- 3 Stability-constrained Learning with MPC
- 4 Some more results (in brief)

RL & SYSID are doing two different things (closed-loop performance vs. model fitting). Can they cohabit though?

(4) (日本)

RL & SYSID are doing two different things (closed-loop performance vs. model fitting). Can they cohabit though?

• In the safe RL context, SYSID handles model uncertainties (set membership) and RL handles performance

RL & SYSID are doing two different things (closed-loop performance vs. model fitting). Can they cohabit though?

- In the safe RL context, SYSID handles model uncertainties (set membership) and RL handles performance
- A more direct combination is meaningful:
 - ✓ Can create an algorithm that tunes the MPC model for fitting and the MPC scheme for closed-loop performance at the same time. There can be a "conflict" though.
 - $\checkmark\,$ RL supersedes SYSID, can be implemented via null-space approaches in Q-learning
 - ✓ Extension to policy gradient understood, some technical difficulties, to be published...

• • = • • =

RL & SYSID are doing two different things (closed-loop performance vs. model fitting). Can they cohabit though?

- In the safe RL context, SYSID handles model uncertainties (set membership) and RL handles performance
- A more direct combination is meaningful:
 - ✓ Can create an algorithm that tunes the MPC model for fitting and the MPC scheme for closed-loop performance at the same time. There can be a "conflict" though.
 - $\checkmark\,$ RL supersedes SYSID, can be implemented via null-space approaches in Q-learning
 - ✓ Extension to policy gradient understood, some technical difficulties, to be published...

Combining system identification with reinforcement learning-based MPC, A. B. Martinsen, A. M. Lekkas, S. Gros, IFAC 2020

イロト イポト イヨト イヨト

RL & Mixed integer problem in MPC

RL & Mixed integer problem in MPC

• With Q-learning, fairly trivial... incorrect if no exploration, though

RL & Mixed integer problem in MPC

- With Q-learning, fairly trivial... incorrect if no exploration, though
- For policy gradient, devil is in the details
 - $\checkmark\,$ Integer inputs best treated via stochastic policy approach, continuous ones via deterministic policy
 - ✓ Propose a hybrid policy gradient method combining deterministic and stochastic policies, with corresponding compatible linear $A_{\pi_{\theta}}$ approximations
 - ✓ Works well on mixed-integer MPC examples

Reinforcement Learning for mixed-integer problems based on MPC, S. Gros, M. Zanon, IFAC 2020

RL & MHE-MPC

The full state of the system is often not available, or not even modelled, use observer (e.g. MHE). Can we still do RL and how?

(I) < (II) < (II) < (II) < (II) < (III) </p>

RI & MHE-MPC

Problem becomes POMDP when MPC model does not include all states

RI & MHE-MPC

- Problem becomes POMDP when MPC model does not include all states
- MHE is an intrinsic component of the policy, must be treated in RL as well ۲
 - ✓ Propose an RL scheme that tunes MHE and MPC jointly for closed loop performance in the context of Q learning
 - Algorithmic is simple, performances on simple example are very promising
 - The MHE tuning has a strong impact on performance (on our examples), \checkmark better than model fitting
 - Extension to policy gradient understood, to be published \checkmark
 - ✓ Works also if MPC model omits some of the real states

< ロ > < 同 > < 回 > < 回 >

RI & MHE-MPC

- Problem becomes POMDP when MPC model does not include all states
- MHE is an intrinsic component of the policy, must be treated in RL as well ۲
 - ✓ Propose an RL scheme that tunes MHE and MPC jointly for closed loop performance in the context of Q learning
 - Algorithmic is simple, performances on simple example are very promising
 - The MHE tuning has a strong impact on performance (on our examples), better than model fitting
 - Extension to policy gradient understood, to be published \checkmark
 - ✓ Works also if MPC model omits some of the real states

Reinforcement Learning based on MPC/MHE for Unmodeled and Partially Observable Dynamics, H.N. Esfahani, S. Gros,

ACC 2021

< ロ > < 同 > < 回 > < 回 >

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

A (10) < A (10) < A (10)</p>

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

(4) (日本)

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

A (1) > A (2) > A

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

A (1) > A (2) > A

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}} \right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

(4) (日本)

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{u}} A_{\boldsymbol{\pi}_{\theta}}\right]$

is based on the contribution from a very small number of samples. Parameter updates become "infrequent and jumpy".

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- ✓ Converge the policy to the true one over the learning

MPC-based Reinforcement Learning for Economic Problems with Application to Battery Storage, A. Kordabad, W. Cay, S.

Gros, ECC 2021

S. Gros, M. Zanon (NTNU)

MPC & RL

Tuning of the MPC "meta"-parameters

MPC "meta"-parameters:

- Horizon length N
- When to recompute control sequence (event-based MPC)

$$\begin{split} \text{MPC:} & \underset{s,a}{\min} \quad \mathcal{T}\left(s_{N}\right) + \sum_{k=0}^{N-1} L\left(s_{k}, \mathbf{a}_{k}\right) \\ & \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(s_{k}, \mathbf{a}_{k}\right) \\ & \mathbf{h}\left(s_{k}, \mathbf{a}_{k}\right) \leq \mathbf{0} \\ & \text{yields } \pi_{\mathrm{MPC}}\left(s_{0}\right) = \mathbf{a}_{0}^{\star} \end{split}$$

Event-triggered:

- $\bullet\,$ apply input profile $\mathbf{a}_{0,...,n}^{\star}$ until re-computation is triggered
- often used to reduce computational demand, energy, etc.

Tuning of the MPC "meta"-parameters

MPC "meta"-parameters:

- Horizon length N
- When to recompute control sequence (event-based MPC)

$$\begin{split} \text{MPC:} & \underset{s,a}{\min} \quad \mathcal{T}\left(s_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}\left(s_{k}, \mathbf{a}_{k}\right) \\ & \text{s.t.} \quad s_{k+1} = \mathbf{f}\left(s_{k}, \mathbf{a}_{k}\right) \\ & \mathbf{h}\left(s_{k}, \mathbf{a}_{k}\right) \leq \mathbf{0} \end{split}$$

Event-triggered:

- apply input profile $\mathbf{a}_{0,...,n}^{\star}$ until re-computation is triggered
- often used to reduce computational demand, energy, etc.

Fairly simple idea, requires some care to be treated correctly:

- ✓ Define augmented state to preserve Markov property (essential for RL methods)
- $\checkmark\,$ Stochastic policy gradient methods required, must define the densities very carefully

Tuning of the MPC "meta"-parameters

MPC "meta"-parameters:

- Horizon length N
- When to recompute control sequence (event-based MPC)

$$\begin{split} \textbf{MPC:} & \underset{\mathbf{s},\mathbf{a}}{\min} \quad \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \text{s.t.} \quad \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq \mathbf{0} \end{split}$$

Event-triggered:

- apply input profile $\mathbf{a}_{0,...,n}^{\star}$ until re-computation is triggered
- often used to reduce computational demand, energy, etc.

Fairly simple idea, requires some care to be treated correctly:

- ✓ Define augmented state to preserve Markov property (essential for RL methods)
- $\checkmark\,$ Stochastic policy gradient methods required, must define the densities very carefully

Optimization of the Model Predictive Control Update Interval Using Reinforcement Learning, E. BÃ,hn, S. Gros, S. Moe, T.A. Johansen, MICNON, 2021

RL to evaluate the storage function

$$\begin{array}{ll} \textbf{Policy } \pi_{\text{MPC}} \ \textbf{from} \\ \min_{\mathbf{s},\mathbf{a}} & \mathcal{T}\left(\mathbf{s}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ \text{s.t.} & \mathbf{s}_{k+1} = \mathbf{f}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \\ & \mathbf{h}\left(\mathbf{s}_{k},\mathbf{a}_{k}\right) \leq 0, \quad \mathbf{s}_{N} \in \mathbb{T} \end{array}$$

If for some λ function: $L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(||\mathbf{s} - \mathbf{s}_{\mathbf{s}}||), \quad \forall \mathbf{s}, \mathbf{a}$ holds, then MPC scheme is stabilizing

How to evaluate λ ?

- Approximate f as a polynomial, then Sum-of-Squares technique can be used
- We propose: parametrize λ and evaluate it via Q-learning

To finish

A (10) F (10) F (10)

Some bibliography

Optimization of the MPC "meta-parameters" (horizon, sampling, event-triggered)

- 1. Optimization of the Model Predictive Control Update Interval Using Reinforcement Learning, LDCC, 2021
- 2. Reinforcement Learning of the Prediction Horizon in Model Predictive Control, NMPC 2021

Safe RL via Robust MPC

- 3. Safe Reinforcement Learning Using Robust MPC, TAC, 2020
- 4. Approximate Robust NMPC using Reinforcement Learning, ECC2021
- 5. Reinforcement Learning based on Scenario-tree MPC for ASVs, S. Gros, ACC 2021
- 6. Safe Reinforcement Learning via projection on a safe set: how to achieve optimality? IFAC 2020

Stable Learning using MPC

- 7. Stability-Constrained Markov Decision Processes Using MPC, Automatica, 2021
- 8. Safe Reinforcement Learning with Stability & Safety Guarantees Using Robust MPC, S.Gros, M. Zanon, TAC, 2021
- 9. A Dissipativity Theory for Undiscounted Markov Decision Processes, Automatica, 2021
- 10. A New Dissipativity Condition for Asymptotic Stability of Discounted Economic MPC, Automatica, 2021
- 11. Verification of Dissipativity and Evaluation of Storage Function in Economic NMPC using Q-Learning, NMPC 2021

Policy gradient methods for MPC

- 12. Bias Correction in RL via the Deterministic Policy Gradient Method for MPC-Based Policies, ECC 2021
- 13. Reinforcement Learning based on MPC and the Stochastic Policy Gradient Method, ACC 2021
- 14. Bias Correction in Deterministic Policy Gradient Using Robust MPC, ACC 2021

RL for mixed-integer MPC

15. Reinforcement Learning for mixed-integer problems with MPC-based function approximation, IFAC 2020

RL-MPC and SYSID

16. Combining system identification with reinforcement learning-based MPC, IFAC 2020

RL-MPC and State Estimation

17. Reinforcement Learning based on MPC/MHE for Unmodeled and Partially Observable Dynamics, ACC 2021

Wild cards

- 18. MPC-based Reinforcement Learning for Economic Problems with Application to Battery Storage, ECC 2021
- 19. Reinforcement Learning Based on Real-Time Iteration NMPC, ECC 2021

S. Gros, M. Zanon (NTNU)