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Thank you!
e-mail: alejandro.astudillovigoya@kuleuven.be
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Interaction aware trajectory planning for automated vehicles 



KKT



Interaction aware trajectory planning for automated vehicles 

Video
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Parallel hybrid powertrain simplified model
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Application problem MPC

How to control the system to minimize greenhouse emissions?



Model

𝑑𝑣(𝑡)

𝑑𝑡
=

𝜏ICE 𝑡

𝑟
𝐺𝐵 𝑡 +

𝜏EL 𝑡

𝑟
𝐺𝐵2 𝑡 −

1
2
𝜌air𝐴𝑓𝐶𝑑𝑣 𝑡 − (𝜇𝑐𝑜𝑠 𝛼 + sin 𝛼 )(𝑔 𝑚v +𝑁p𝑁s𝑚cell +

𝑃p
𝜌ICE

)
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𝑃p
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𝑑𝑆𝑂𝐶(𝑡)

𝑑𝑡
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𝐺𝐵2 𝑡 𝑣 𝑡 𝜏EL(𝑡)

𝐶𝑎𝑝cell 𝑁p 𝑁s 𝑟 𝜂EL 𝑡 𝑢 𝑡 3600

𝑥 𝑡 =
𝑣 𝑡

𝑆𝑂𝐶 𝑡

𝑧 𝑡 =

𝜂ICE 𝑡

𝜂EL 𝑡
𝑢(𝑡)

𝑎 𝑡 =

ICE 𝑡

EL 𝑡
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Differential states

Algebraic states

Control actions

𝜂𝐸𝐿(𝑡) = LT (𝜏EL, 𝑣(𝑡))

𝑢 𝑡 = 𝑢𝑛𝑜𝑚(𝑎4 + 𝑏4 𝑆𝑂𝐶(𝑡) + 𝑐4 𝑆𝑂𝐶(𝑡) 2 + 𝑑4 𝑆𝑂𝐶(𝑡) 3 + 𝑒4 𝑆𝑂𝐶(𝑡) 4 + 𝑓4 𝑆𝑂𝐶(𝑡) 5) …

– R 
𝑣 𝑡 𝐺𝐵2(𝑡)𝜏EL(𝑡)

𝑁p𝑁s𝑟 𝑢(𝑡)𝜂EL(𝑡)
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𝑛p𝑟
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3

)(𝑎2 + 𝑏2 𝐴 + 𝑐2 𝐴 2 + 𝑑2 𝐴 3)

Where:
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𝑣 𝑡
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Optimization problem 

𝐦𝐢𝐧
𝒙,𝒛,𝒂

𝐶𝑜𝑒𝑓1
𝑟 𝐻𝑉

න
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Preliminary results

𝐦𝐢𝐧
𝒙,𝒛,𝒂

𝐶𝑜𝑒𝑓1
𝑟 𝐻𝑉

න
0

𝑡𝑁−1

(
𝑣 𝑡 𝐺𝐵 𝑡 𝜏𝐼𝐶𝐸 𝑡

𝜂𝐼𝐶𝐸 𝑡 + 𝜀
+ 𝛽 (𝑣 𝑡 − 𝑣𝑟𝑒𝑓)2) 𝑑𝑡
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IRTea goes TD3

Control demonstrater cartpole with RL (TD3)

Manipulated Variable

ሶ𝑥𝑡𝑎𝑟𝑔𝑒𝑡 Target velocity of speed

controlled step motor

Controlled Variable

𝑥 Cart position

ሶ𝑥 Cart velocity

𝜑 Pendulum angle

ሶ𝜑 Angular velocitry of

pendulum

Challenges

Continuous state space

Continuous action space

Control Goal Translates to

Swing up -1

Maintain upright

position

-1

Stay within available

space

Barrier?

ሶ𝑥𝑡𝑎𝑟𝑔𝑒𝑡(𝑘)

𝑥(𝑘)

ሶ𝑥(𝑘)

𝜑(𝑘)

𝑑?

ሶ𝜑(𝑘)

dT= 0.01 sec
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Control Problem (Maintain upright position)

Procedure

• Matlab RL Toolbox 

• Training time > 3 h, not converged

• Baseline3: Pythorch implementation RL

• training time 10 Min 

• train cardpole gym environmet (exercise 8)

• train IRT gym env -> not successful yet

• export agent Neuronal Network to Matlab to control demonstrater -> to do

If stays in boundaries ∶ 𝑅𝑒𝑤𝑎𝑟𝑑 = 1 − 𝑥2 + cos 𝜃 2 − ሶ𝑥2 − ሶ𝜃2

𝑑

𝑑𝑡

𝑥
ሶ𝑥
𝜑
ሶ𝜑

=

ሶ𝑥
𝐾 ∙ ሶ𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − ሶ𝑥

𝑇
ሶ𝜑

𝑚 ∙ 𝑔 ∙ L ∙ sin(𝜑)
2 ∙ 𝐽 − ሶ𝑥 ∙ cos 𝜑 − 𝜇 ∙ ሶ𝜑

s.t.

−0.25 𝑚 < 𝑥𝑚𝑖𝑛 < 0.25 m

−12 ° < 𝜑 < 12 °

, else 𝑅𝑒𝑤𝑎𝑟𝑑 = −100

RL 

Agent

Reward

function
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Training in Simulink

DDPG TD3
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Some results (1) 

𝑅𝑒𝑤𝑎𝑟𝑑 = 1 − 𝑥2 + cos 𝜃 2 − ሶ𝑥2 − ሶ𝜃2𝑅𝑒𝑤𝑎𝑟𝑑 = 1
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Some results (2)

𝑅𝑒𝑤𝑎𝑟𝑑 = 1 − 𝑥2 + cos 𝜃 2 − ሶ𝑥2 − ሶ𝜃2

𝑠0 = 0,0, 𝜋, 0 𝑇



Learning point to point motions for robot 
manipulators using RL

Johan & Ruan



Problem formulation



Results

References:

● Soft Actor Critic algorithm: https://stable-baselines.readthedocs.io/en/master/modules/sac.html

Continuous: Soft Actor Critic



Mobile robot parking with 
obstacles using RL

Federico Ulloa Rios

Santiago Iregui Rincón



Problem Formulation

Deterministic dynamics (Bicycle model)

+ Obstacles
+ Vf = 0

Modified GYM Environment

● Continuous action and state space
● Off-policy learning actor critic 

methods (SAC & TD3)



Results
SAC Old problem

Av
er

ag
e 

R

Time steps Time steps

Su
cc

es
s 

ra
te

TD3  New problem
SAC New problem

SAC Old problem

SAC New problem

≈ 2h 50min≈ 30min

Training time @ i7-8850H & NVIDIA Quadro P600

https://docs.google.com/file/d/12BdX-xrKg2Q7IDJEjvnDOFJnqV4SjFCz/preview
https://docs.google.com/file/d/1-cPCflfxqGQiID5SlHQZ2i6a1k419T7d/preview
https://docs.google.com/file/d/1jPBqLDnqzJKiTqkyfZ-h52kYiMsyCT7j/preview


Sourish Pramanick

Niket Ahuja

Nayana Koneru

Model Predictive Control and Reinforcement Learning

Quadrotor Control using MPC

Date: 04.08.2021
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𝑢 = 𝑓𝑡, 𝜏𝑥, 𝜏𝑦, 𝜏𝑧
T

𝐶 𝑠, 𝑎 = 

𝑘=0

𝑁−1

𝑠𝑘 − 𝑠𝑟𝑒𝑓,𝑘
𝑇𝑄 𝑠𝑘 − 𝑠𝑟𝑒𝑓,𝑘 + 𝑎T𝑅𝑎

min
𝑠,𝑎



𝑘=0

𝑁−1

𝑐 𝑠𝑘, 𝑎𝑘 + 𝐸(𝑠𝑁)

𝑠0 = ഥ𝑠0
𝑠𝑘 + 1 =

𝑓 𝑠𝑘, 𝑎𝑘

−𝜋 ≤ 𝜙 ≤ 𝜋

−
𝜋

2
≤ 𝜃 ≤

𝜋

2
−𝜋 ≤ 𝜓 ≤ 𝜋

−0.25 ≤ ሶ𝜙 ≤ 0.25
ሶ−0.25 ≤ 𝜃 ≤ 0.25

−0.25 ≤ ሶ𝜓 ≤ 0.25

Problem Formulation
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Reinforcement Learning for Airborne Wind Energy Power
Optimization

Jochem De Schutter and Jasper Hoffmann

Systems Control and Optimization Laboratory, ALU Freiburg

August 4, 2021



Simulation model

I system dynamics (ns = 3, na = 1):

ψ̇ = gkvaδ + φ̇ cos θ

φ̇ = − va
l sin θ

sinψ

θ̇ = −vw
l

sin θ +
va
l

cos θ

I economic cost (“max. pulling force")

c(s, a) := −CRv
2
a + αψ̇2

va := vwE cos θ

M. Erhard, G. Horn, M. Diehl, A quaternion-based model for optimal control of an airborne wind energy system, Z. Angew. Math. Mech. 97,
No. 1, 7–24 (2017)



Periodic optimal control

minimize
s(·), a(·), T

1

T

T∫
0

c(s(t), a(t))dt

subject to ṡ = f(s(t), a(t)), t ∈ [0, T ],

s(0) = s(T ),

h(s(t), a(t)) ≥ 0, t ∈ [0, T ]
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Optimal periodic orbit



Reinforcement learning

I Penalty-based constraint formulation (gym)
I Proximal policy optimization

(stable-baselines3)
I 10M time-steps, tlearn ≈ 5h.
I |c̄RL| = 21.5kN ≈ 23.8kN = |c̄OCP|
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Reinforcement learning

I Penalty-based constraint formulation (gym)
I Proximal policy optimization

(stable-baselines3)
I 10M time-steps, tlearn ≈ 5h.

Future ideas:
I compare to economic MPC π(s)

I learn stochastic wind model
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Point-Mass Racing Game

MPC and RL Course 2021

Christian Leininger, Rudolf Reiter
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Background Idea

● Game: Two cars: The ego car has better starting position, the opponent car 
has a higher velocity limit.

● Goal: Preventing the opponent car from overtaking, while still racing and 
avoiding obstacles.

● Design idea: Restrict the action space of an RL – policy to be safe by choosing 
the actions to influence only the cost of an MPC, that satisfies constraints.

● Basically the MPC “hides” inside the environment

● The MPC cost consists of a parameterizable part and a fixed part

– Parameterizable part: Linear plane in the position states of the vehicle

– Fixed part: Quadratic cost to keep close to the middle part

● The opponent agent is simulated by just the MPC policy with a fixed cost 
function
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Implementation

● MPC:

–  “Hidden” in the RL environment

– CasADi, to optimize for a trajectory

– Perfect tracking is pretended

– Trajectory followed for some steps until the RL policy changes the cost function

– Circular shaped cars (point-masses) to keep it simple

– Slack variables to stay feasible

– Includes simple state estimation of the other agents trajectory (Not known to each 
other!)

● RL:

– TDQ Truncated Mixture of Continuous Distributional Quantile Critics

– Computes quantiles of Q-value Function  

– Control over and underestimation
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Results

Works as expected!

Generalizes even to minor parameter 
changes. (positions, bounds, dimension)

“Guaranteed safety” (to some degree)

Stability might be an issue for a tracking 
controller
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Thank you for 
your attention!

Questions?



Non-prehensile Table Top 
Manipulation

Flavia Acerbo, Tommaso Sartor, Ajay Sathya



Problem Formulation



Results

● Implemented two approaches: MPC 
and RL.

● A2C algorithm: it learns to take big 
actions when away from the border 
and more cautious actions when 
close (where disturbance can be 
more influential)

● Using MPC, the controller failed 
only in case of large model 
discrepancy.

● Expected reward: 
○ MPC policy 98.45 
○ A2C policy: 99.41 
○ Random policy: -871

https://docs.google.com/file/d/1HvR9IU_jpqjSrkRjPwMzVTBmjUhb0qvt/preview


Extra slides



A2C rollout

https://docs.google.com/file/d/1ayatIqjtCwLw4ZGMEgqy-c5j9eyYVZQQ/preview


Tracking time-varying reference



Chasing reference - videos

heuristic a2c policy

https://docs.google.com/file/d/17hCiizcFC4Apu7p8dKhmwbmTAhLoxgeG/preview
https://docs.google.com/file/d/17hCiizcFC4Apu7p8dKhmwbmTAhLoxgeG/preview
https://docs.google.com/file/d/1mkIgF25LWTRGE0dzdxWSr8KcxN4c8ZEv/preview
https://docs.google.com/file/d/1mkIgF25LWTRGE0dzdxWSr8KcxN4c8ZEv/preview


RL approaches to the game 2048
Project by Hoang Dang & Mario Kantz



The Game 2048

● Solitaire game on 4x4 square grid
● Player can shove all tiles into a cardinal 

direction, merging equal tiles to their sum
● Score is the sum of values of merged tiles
● Between each player action, another tile is 

spawned (90% for 2, 10% for 4)
● Player may only shove into a direction if that 

moves or merges at least one tile
● Game ends when no more moves are possible
● Termination is thus guaranteed after at most 

131,070 player moves



Preliminary Results

● We trained a DQN agent like in exercise 7 
on an OpenAI gym domain of the game

● 16, 50, 50, 4 nodes
● Training occurred in blocks of 1000 

episodes on a running index n counting 
completed blocks

● 𝛆n = 0.1 /√(1+n) , to be able in theory to 
reach deeper parts of the game tree

● Performance capped at only ~ +10% of 
random performance after ~5000 episodes



Q-learning on-policy from Rein-
forcement Learning in MPC

Alvaro Javier Florez Martinez
Alejandro Astudillo Vigoya

KU Leuven

Model Predictive Control and Reinforcement Learning
summer course
Faculty of Engineering, University of Freiburg



Problem description

A parametrized MPC will be use to approximate the optimal policy and the value functions

Qθ(s,a) = minimize
x,u

λθ(x0) + γNVθ(xN ) +

N−1∑
k=0

γk`θ(xk, uk)

subject to x0 = s u0 = a,

xk+1 = fθ(xk, uk),

hθ(xk, uk) ≤ 0

πθ(s) = arg min
a
Qθ(s, a), Vθ(s) = min

a
Qθ(s, a)

Sensitivity of fully converged MPC

∇θQθ(s, a) = ∇θLθ(s, y∗)

Q-Learning

δk =`(sk, ak) + γ min
ak+1

Qθ(sk+1, ak+1)−Qθ(sk, ak)

θ ←θ + αδk∇θQθ(sk, ak)

1



Problem description

A parametrized MPC will be use to approximate the optimal policy and the value functions

minimize
x,u, σ

V0 +
γN

2
xTNSNxN +

N−1∑
k=0

fT
[
xk
uk

]
+

N−1∑
k=0

1

2
γk
(
||xk||2 + ||uk||2 + ωT σk

)
subject to x0 = s,

xk+1 = Axk +Buk + b,[
0
−1

]
+ x− σk ≤ xk ≤

[
1
1

]
+ x+ σk,

σk ≥ 0,

−1 ≤ uk ≤ 1

where
θ = [V0,x,x, b, f,A,B]

Q-Learning

δk =`(sk, ak) + γVθ(sk+1)−Qθ(sk, ak)
θ ←θ + αδk∇θQθ(sk, ak)

2



Results
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Figure 1: States and input
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How to train a 
computer to 

play advanced
air hockey?

BASIC GAME AUTOMATIZATION USING UNITY ENVIRONMENT 

AND REINFORCEMENT LEARNING 

04.08.2021 PROJECT-MEMBER: NICK HARDER AND TIM FÜRMANN 1



First Approach: Self-Made DQN-Agent

DQN: Lecture code from exercise 8 adapted to 
the unity environment and game scenario

State Space: 336 states, but
only 264 accessible

Action Space: 3x3 actions per agent

Training Idea: Train agent using DQN with the 
opponent agent as random noise (actions)

04.08.2021 PROJECT-MEMBER: NICK HARDER AND TIM FÜRMANN 2

Results: 

Training: Unsuccessful -> Error in the environment and python interface

Unity environment, not as straight forward to use in combination with python as expected



Final Results: POCA vs. PPO

MA-POCA (MultiAgent Posthumous Credit 
Assignement): Novel multi-agent trainier that 
trains a centralized ciritc, a neural network that 
acts as a „coach“ for a whole group of agents
=> Team rewards are included, the agents learn 
cooperatively 

PPO (Proximal Policy Optimization)
=> Only single rewards are accounted for, the 
agent learn only for themselves and team 
efforts not additionally accounted for

04.08.2021 PROJECT-MEMBER: NICK HARDER AND TIM FÜRMANN 3

For the Presentation we hopefully have results 
on a second screened PC

(remote work is today still not the best option)



MPC vs RL

(Optimal) Quadrotor Control

Shamil Mamedov, Mathias Bos
KU Leuven
August 2021



1 Problem Formulation

mẍ = −(F1 + F2) sin(φ)
mÿ = (F1 + F2) cos(φ) −mg

Iφ̈ = (F1 − F2)L

states:
[
x, y, φ, ẋ, ẏ, φ̇

]
control actions: [F1, F2]

Y. Song*, M. Steinweg*, E. Kaufmann, D. Scaramuzza,
”Autonomous Drone Racing with Deep Reinforcement

Learning”, 2021



2 Results
Optimal control
minimize T

Reinforcement Learning
Stable baselines 3: SAC
Reward:
- negative distance to goal
- or 1/dist
- penalty on hitting sides
’Future work’: other reward choices...



ILQR-controlled
inverted pendulum

Yizhen Wang
Microsystems engineering



{௦ಿ}, {ಿషభ}
𝑘=0
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For OCP,
N=20
Q=diag(103, 104, 10-2, 10-2)

For LQR,
N=4 
Q= diag(102, 103, 10-2, 10-2)
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