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Policy Gradient Methods

» Up to this point, we represented a model or a value function by some parameterized
function approximator and extracted the policy implicitly
» Today, we are going to talk about Policy Gradient Methods: methods which consider a
parameterized policy
m(als,0) = Pr{A; = a|S; = 5,60, = 0},
with parameters 6

» Policy Gradient Methods are able to represent stochastic policies and scale naturally to
very large or continuous action spaces
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Policy Gradient Methods

» \We update these parameters based on the gradient of some performance measure J(0)
that we want to maximize, i.e. via gradient ascent:

—

0t+1 = at + aVJ(Ht),

where V.J(0;) € R is a stochastic estimate whose expectation approximates the gradient
of the performance measure w.r.t. 6,
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Policy Gradient Theorem

Policy Objective Functions:
» For episodic problems we define performance as: J(8) = 1(mg) = Egs)n~po [Vrg (50)]
» For continuing problems: J(0) =Y 11(8)vr,(8)

Policy Gradient Theorem

For any differentiable policy 7(als, @) and any of the above policy objective functions, the
policy gradient is:
Ve J(0) =E,[Velogm(als,0)g-(s,a)]

Reminder: vy, =3 7(als)gx(s,a)
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Score Function

> Likelihood ratios exploit the following identity:

We want the
expectation of this

o Vor(als, 8
Veor(als,0) =7r(a|s,0)ﬂ_(a(|s|0))
= m(als,0)Velogm(als, )

Easy to take the expectation
because we can sample from 7!

> Vglogm(als,8) is called the score function
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Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features:
m(als,0) ~ N(s10,0?), i.e.

m(als, 0) = exp(—5——75—)

Derivation of the score function

The log yields
1 1
log7(als, 8) = =5 log(2mo?) — —(5'0 — a)?
o
and the gradient

1 —5'6
Ve logm(als,8) = —@(STH —a)2s = (aa;g)s.
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REINFORCE

» REINFORCE: Monte Carlo Policy Gradient
» Builds upon Monte Carlo returns as an unbiased sample of ¢,
» However, therefore REINFORCE can suffer from high variance
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REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7 (|-, 9)
Loop for each step of the episode t =0,1,...,T — 1:
G ¢ Ngmyyy 7T Ry (Gy)
0« 0+ ay'GVinm(AS, 0)
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Variance Reduction with Baselines

» Vanilla REINFORCE provides unbiased estimates of the gradient V.J(6), but it can suffer
from high variance

» Goal: reduce variance while remaining unbiased

» Observation: we can generalize the policy gradient theorem by including an arbitrary
action-independent baseline b(s), i.e.

Vo (0) o 3 s) 3 (a5 0) = o)) Vilals)

=37 uls) [ anls, a)Vrlals) () V'S (als)

a
N————’
=0

= Z w(s) Z qr(s,a)V(als)

» Baselines can reduce the variance of gradient estimates significantly!
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Variance Reduction with Baselines

» A constant value can be used as a baseline
» The state-value function can be used as a baseline

Question

Is the Q-function a valid baseline?

Assume an approximation of the state-value function as a baseline. Is REINFORCE then
biased?
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REINFORCE with Baselines

Indeed, an estimate of the state value function, ©(S¢,w), is a very reasonable choice for b(s):

REINFORCE with Baseline (episodic), for estimating mp ~ .

Input: a differentiable policy parameterization 7 (als,0)

Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, ..., Sr_1, Ar_1, Ry, following 7 (+|-, 8)
Loop for each step of the episode t =0,1,..., 7 — 1:
G Yhoppa VT R (Gr)
0 < G — 0(Sg,w)
W W+ aV IV(Se,w)
0 < 0+ a4V Inn(AlS:,0)
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Actor-Critic Methods

» Methods that learn approximations to both policy and value functions are called
actor-critic methods

actor: learned policy
critic: learned value function (usually a state-value function)

Question: |Is REINFORCE-with-baseline considered as an actor-critic method?
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Actor-Critic Methods

» REINFORCE-with-baseline is unbiased, but tends to learn slowly and has high variance

» To gain from advantages of TD methods we use actor-critic methods with a bootstrapping
critic

One-step actor-critic methods

Replace the full return of REINFORCE with one-step return as follows:

Vr(AdlSy, 6,)
(A S;, 0,)
Vr(AlS:, 0,)
(A S5, 0;)

011 =0+ a(Grip1 — 0(St, w))

=0; +« (Rt+1 + ’Y@(St-kla w) = f)(St, w))

VW(At|St, Bt)

:0t+a5t W(At|5t70t)
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Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization m(als, 8)
Input: a differentiable state-value function parameterization (s,w)
Parameters: step sizes a® > 0, o™ > 0
Initialize policy parameter @ € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~7(-|S,0)
Take action A, observe S, R
0 < R+~9(S",w) — 9(S,w) (if S’ is terminal, then 9(S’,w) = 0)

W w4+ a%VIVi(S,w)
0« 0 +a°I5VInm(A|S,0)
I+ ~I

S+ 9

\

MPC and RL — Lecture 15 J. Boedecker and M. Diehl, University Freiburg 15



Proximal Policy Optimization

> We collect data with g,
» And we want to optimize some objective to get a new policy g

> We can write n(mg) in terms of mg,,:

77(779> = 77(7T00|d) + Erp [Z 'Yt-Aﬂeo'd (Sta at)]
t=0

where the advantage function is defined as

Aﬂedd (s,a) = ]ETF9781,+1~;D [qﬂeold (s,a) — Uno,q (s)]

=Ergsis1~p [r(s,a) + VVre,, (8/) — Uno,q (s)]

» Advantage: how much better or worse is every action than average?
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Proximal Policy Optimization

Proof:
o0
Erg [Z 'yt-ATredd (Stv at)]
o
= Erg si01~p Z Y (r(st; at) + Yrg old (st4+1) — Vo4 (s¢))]
t=0

= E‘fr975t+1~;n[7v7reo|d (s0) + Z Vtr(sta a)]

t=0
oo
= ESONPO [_Uﬁedd (80)] + Eﬂewst+1~p[z 7tr(5tv at)]
t=0

= *77(7T00|d) + 77(7T9)

MPC and RL — Lecture 15 J. Boedecker and M. Diehl, University Freiburg 17



Proximal Policy Optimization

» In PPO, we ignore the change in state distribution and optimize a surrogate objective:
Jold (9) = ES~W9°|d ,arvTeg [*Aﬂ’sow (5’ a‘)]

- E(S’a)ww%ld |: 'A”“’old (S’ a):|

o
T o1

» Improvement Theory: n(mg) > Joid(8) — ¢ - max, KL[mg,,||7e]

» If we keep the KL-divergence between our old and new policies small, optimizing the
surrogate is close to optmizing 7)(7g)!
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Proximal Policy Optimization

» Clipped Surrogate Objective:

o

» Adaptive Penalty Surrogate Objective:

o

Es,a)~moy, [779
old

"47"90|d (87 a) — ﬁKL[ﬂ—Qom | |7T9]:|

for iterationi =1,2,... do
Run policy for T timesteps of N trajectories
Estimate advantage function at all timesteps
Do SGD on one of the above objectives for some number of epochs
In case of the Adaptive Penalty Surrogate: Increase j3 if KL-divergence too high,
otherwise decrease 3
end
Algorithm 1: PPO
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