Lipschitz continuity

Which of the following functions are globally Lipschitz continous? $(f_i: \mathbb{R} \to \mathbb{R}, x \mapsto f_i(x), i = 1, \dots, 4)$ Choose all that apply.

(a)
$$f_1(x) = \max(0, x)$$

(b) $f_2(x) = \operatorname{sign}(x)$
(c) $f_3(x) = \sqrt{x^2}$
(d) $f_4(x) = \sqrt{|x|}$

Convexity of functions

- Which of the following functions are convex? $(f_i: \mathbb{R} \to \mathbb{R}, x \mapsto f_i(x), i = 1, \dots, 4)$ Choose all that apply.
 - (a) $f_1(x) = \max(0, x)$ (b) $f_2(x) = \exp(x^2)$ (c) $f_3(x) = \sqrt{x^2} \sin(x)$ (d) $f_4(x) = \sqrt{|x|}$

Optimal Control Problems - Sequential approach

We consider an optimal control problem (OCP) in discrete time. The state and control vectors at each time instance have dimension $n_r = 4$ resp. $n_u = 2$, and the problem has time horizon N =10. The initial value is eliminated as $x_0 = \bar{x}_0$. We choose the sequential approach for the formulation of the OCP, and collect all decision variables in the vector $w \in \mathbb{R}^{n_w}$. As answer, please enter the dimension n_{m} of this vector.

$$n_w = \ldots ?$$

Optimal Control Problem - Simultaneous approach

We consider an optimal control problem (OCP) in discrete time. The state and control vectors at each time instance have dimension $n_r = 4$ resp. $n_{\mu} = 2$, and the problem has time horizon N = 10. The initial value x_0 is kept as a variable. We choose the **simultaneous** approach for the formulation of the OCP, and collect all decision variables in the vector $w \in \mathbb{R}^{n_w}$. As answer, please enter the dimension n_w of this vector.

$$n_w = \ldots ?$$

Newton's method

Regard the following equation system:

$$\frac{1}{x} - y = 0,$$

$$x^4 + y^4 - 1 = 0.$$

We summarize it as F(w) = 0, where w = (x, y) and $F : \mathbb{R}^2 \to \mathbb{R}^2$. We want to solve this root finding problem using (exact) Newton's method. Our current iterate is $w_k = (\frac{1}{2}, 0)$ (i.e., $x_k = \frac{1}{2}, y_k = 0$.) Use Newton's method to find the next iterate $w_{k+1} = w_k + \Delta w_k$, where $\Delta w_k = (\Delta x_k, \Delta y_k)$.

As answer, please enter the value of Δy_k :

$$\Delta y_k = \dots ?$$

Note: You can solve this task by pen&paper or on the computer.

Computing Derivatives

Considered the following function, as constructed in Matlab and CasADi:

```
x = MX.sym('x');
y = 1 + exp(x);
for k = 1:5
    y = y * (sin(k*x) + cos(x));
end
```

```
f = Function('f', \{x\}, \{y\});
```

Use CasADi to compute its derivative f'(x) and evaluate it at $\bar{x} = 1.7$.

As answer, please enter the value of $f'(\bar{x})$:

$$f'(\bar{x}) = \dots?$$

Numerical Integration

Consider the following ordinary differential equation,

 $\dot{u} = u - uv,$ $\dot{v} = uv - v,$

describing the interaction of a predator population v with a prey population u, where $u, v \in \mathbb{R}$ are the size of the respective population (for simplicity we allow non-integer values)^{*a*}. We collect them in state x = (u, v).

The initial state is given as $x_0 = (0.3, 0.4)$. Use the Runge-Kutta method of fourth order (RK4) to integrate this differential equation, with a step length of h = 0.1. Compute the state of the system after N = 150 integration steps. As answer, please enter the corresponding prey population size u_N after N steps. $u_N = \ldots$?

 $[^]aAlso$ known as the Lotka-Volterra equations, cf. https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

Optimization using CasADi

Regard the following optimization problem:

$$\min_{\substack{w \in \mathbb{R}^2 \\ \text{s.t.}}} (w_1 - 1)^2 + w_2^2$$

$$w_1^2 + w_2^2 \ge 1,$$

$$w_2 - w_1^2 = 0,$$

where $w = (w_1, w_2)$. Use CasADi and the solver IPOPT to find the minimizer $w^* = (w_1^*, w_2^*)$ of this problem. As answer, please enter the value of w_2^* :

$$w_2^* = ...?$$